第三章 直流斩波电路
- 格式:ppt
- 大小:440.00 KB
- 文档页数:60
一、设计项目与要求1、输入直流电压U i=60V,R=8Ω;2、输出电压范围为0-100V,试选用合适斩波电路;3、计算占空比α=23%和α=59%时,负载两端输出电压和电流;4、画出α=23%和α=59%时斩波电路的电压电流波形分析图;5、IGBT的工作特性分析。
二、电路原理图设计2.1主电路的设计斩波电路:将直流电变为另一固定电压或可调电压的直流电。
也称为直流-直流变换器(DC/DCConverter)。
一般指直接将直流电变为另一直流电,不包括直流-交流-直流。
升降压斩波斩波电路结构Boost型升降压斩波变换器的特点是输出电压可以低于电源电压,也可以高于电源电压,是将降压斩波和升压斩波电路结合的一种直接变换电路。
主要由功率开关、二极管、储能电感、输出滤波电容等组成。
本次课题是在输入直流电压为60V时,想要输出电压的范围为0-100V,故而要选择的斩波电路应为升降压斩波斩波电路。
图1升降压斩波电路原理图2.2触发电路设计斩波器触发电路由三部分组成,图2为斩波器触发电路的原理图。
第一部分为由幅值比较电路U1和积分电路U2组成一个频率和幅值均可调的锯齿波发生器。
电位器RP1用来调节锯齿波的上下位置,电位器RP2用来调节锯齿波的频率,频率从100到700Hz可调。
由于晶闸管的开关速度及LC振荡频率所限,所以在斩波实验中我们一般选用200Hz这一范围。
第二部分是比较器部分。
比较器U3输入的一路是锯齿波信号,另一路是给定的电平信号,输出为前沿固定后沿可调的方波信号。
改变输入的电平信号的值,则相应改变了输出方波的占空比。
第三部分是比较器产生的方波送到4098双单稳电路U4,单稳电路则在方波的前沿和后沿分别产生两个脉冲,如图4所示,其后沿脉冲随方波的宽度变化而移动,前沿脉冲相位则保持不变,输出的脉冲经三极管放大通过脉冲变压器输出。
将上述两脉冲分别送至主晶闸管及辅助晶闸管,其中方波前沿触发脉冲G1、K1接主晶闸管VT1,而后沿触发脉冲G2、K2接辅助晶闸管VT2。
实验三 直流斩波电路实验一·实验目的1.掌握Buck 电路的基本组成和工作原理;2.熟悉Buck 电路的基本特性;3.掌握Buck 电路的PSIM 仿真模型;4.熟悉电力电子实验台PTS-1000的操作和功能;5.通过直接的波形展示,了解输出电压的纹波。
二·实验设备本实验需要掌握降压型直流斩波电路即Buck 电路的工作特性。
实验时,直流电源GW PSW 160-7.2 360W 接入Buck 电路输入端,直流电源输出电压操作范围为30~70V ,直流负载GW PEL-2004与PEL-2040接入Buck 电路输出端,采用示波器GW GDS-2304A/GDS-2204E 观察电路电压电流信号。
Buck 电路模块本实验设备如图3-1所示,输入电压因安全考虑设定在50V ,输出电压为24V 。
输入端先经过一个10A 的保险丝,接着并联两个100uF/250V 输入电解电容,随后一个由MOS 与二极管及电感(365uH)组成的降压式转换器,后端为三个100uF/250V 的输出电解电容并联,最后接至输出端。
图3-1 Buck 电路实验模块辅助电源该模块输入电压范围为100~250V ,输出为三组不共地的隔离电源,分别是(1)12V (2)12V ,5V (3)15V ,-15V ,如图3-2所示。
图3-2 辅助电源MOS管驱动电路驱动电源模块由门极驱动电路和门极驱动电源电路组成,图3-3左为门极驱动电路,右为门极驱动电源电路。
输入一个12V电压至门极驱动电源,其输出为±12V的方波。
门极驱动电路的输入为此±12V的方波和由DSP产生的PWM信号,输出为驱动MOS的信号。
图3-3 MOS管驱动电路JTAG烧录电路此电路可将计算机中的程序代码烧录至DSP芯片,如图3-4所示,计算机通过该电路与DSP连接。
图3-4 JTAG烧录电路直流电源GW PSW 160-7.2GW PSW 160-7.2 360W直流电源,额定电压输入为160V,输出功率360W,如图3-5所示,图3-5 直流电源GW PSW 160-7.2示波器GDS-2304A/GDS-2204E测量波形信号时使用GDS-2304A (或GDS-2204E),4通道,彩色数字储存示波器,如图3-6所示,图3-6 示波器GDS-2304A/GDS-2204E直流负载PEL-2000直流负载使用PEL-2040与PEL-2004,如图3-7所示,具有编辑功能,可模拟负载的实际状况。
(1)直流-直流变流电路(DC-DC )定义:将一种直流电变为另一固定电压或可调电压的直流电的装置。
(2)常见的直流-直流变流电路为直流斩波电路。
(3)基本直流斩波电路为:降压斩波电路和升压斩波电路。
降压斩波电路电路原理图(1)包含全控型器件V ,由IGBT 组成。
(2)包含续流二极管VD ,作用是保证IGBT 关断时给负载中电感电流提供通道。
(3)负载:直流电动机,两端呈现反电动势m E 。
(4)分析前提:假设负载中电感值很大,即保证电流连续。
工作原理分析(1)给出IGBT 的栅射极电压GE U 波形,即G i 波形,周期为T 。
(2)10t -(on t )期间:IGBT 导通,电源E 向负载供电,负载电压E U =o ,由于电感存在,因此负载电流不能突变,所以按指数曲线上升。
(3)T t -1(of f t )期间:控制IGBT 关断,负载电流经过续流二极管VD 续流,负载电压基本为0,负载电流呈现指数曲线下降。
(4)当负载电感值较大时,负载电流连续而且脉动小。
公式(1)负载电压平均值:E E Tt U on α==o ,其中α为占空比。
(2)电感L 极大时,负载电流平均值:R E U I m o -=o 。
计算题:例5-1总结(1)通过改变降压斩波电路的占空比大小,就可以改变输出负载电压的平均值。
电路原理图(1)包含全控型器件V ,由IGBT 组成。
(2)包含极大值的电感L 和电容C 。
(3)负载为电阻R 。
工作原理分析(1)当IGBT 导通阶段:● 电源E 向电感L 充电,充电电流为恒定电流1I ;●电容C 上的电压向负载R 供电,因C 值很大,因此输出电压为恒值o U 。
●通态时间为on t ,此阶段电感L 上积蓄能量为on t EI 1。
(2)当IGBT 关断阶段:●电源E 和电感L 共同向电容C 充电,并向负载R 提供能量。
● 此期间,电感L 释放的能量为off t I E U 1o )(-。
降压式直流斩波电路设计第三章降压式直流斩波电路设计3.1 降压式设计原理降压式直流斩波电路是一种用来连接电源和负载,能够有效降低电源输出电压,同时保持电源工作电压及负载工作电压在允许范围内的电路。
由于降压式直流斩波电路有双极半桥,可以有效减少电源输出电压,并且保证电源工作电压和负载工作电压的稳定性。
一般来说,降压式直流斩波电路的运行原理如下:当电源输出电压大于负载工作电压时,双极半桥由负极起动,电源输出电压会被半桥放电,电流不断流入负载,从而使电源输出电压降低;当电源输出电压低于负载工作电压时,双极半桥由正极起动,电源输出电压被半桥吸收,电流向负载输出,从而使电源输出电压增加。
3.2 降压式斩波电路设计降压式直流斩波电路的设计主要包括以下几个方面:(1)选择合适的电路板尺寸:首先,根据电路的尺寸要求,为降压式直流斩波电路板选择合适的尺寸。
(2)安装合适的电路板模块:其次,根据不同设计要求,需要安装合适的模块,比如双极半桥和稳压模块等。
(3)选择合适的参数:最后,为了确保电路的正确运行,还需要根据电路应用场景选择合适的参数,比如电源电压、斩波电压、负载最大输出电流等。
3.3 降压式斩波电路实验为了检测降压式直流斩波电路的设计是否符合设计要求,我们进行了实验检验。
实验内容如下:(1)电源输出电压:我们采用WZT-30-2L-24电源,在实验室测试,电源输出电压为24V±1V。
(2)负载工作电压:我们在实验室测试,负载工作电压稳定在5V±0.1V。
(3)负载最大输出电流:我们在实验室测试,负载最大输出电流为4A。
实验结果表明,设计的降压式直流斩波电路符合设计要求,可以正常运行。
基本直流斩波电路及工作原理嘿,小朋友们!今天我们来了解一下基本直流斩波电路及其工作原理。
简单来说,直流斩波电路就是可以把一个固定的直流电压变成我们想要的各种不同大小的直流电压的一种电路哦。
那直流斩波电路是怎么工作的呢?我们来想象一下,有一个开关,这个开关可以快速地打开和关闭。
当开关打开的时候,电流就可以从电源通过一个电感和一个负载,然后流回电源,这个时候负载上就会有电压。
当开关关闭的时候呢,电流就不能通过开关了,但是电感里面储存了能量,这个能量会通过一个二极管继续给负载供电,这样负载上还是会有电压。
比如说,我们有一个10 伏的直流电源,我们想要得到一个5 伏的直流电压。
那我们就可以让这个开关快速地打开和关闭。
当开关打开的时间比较长,关闭的时间比较短的时候,负载上得到的电压平均值就会比较高;当开关打开的时间比较短,关闭的时间比较长的时候,负载上得到的电压平均值就会比较低。
通过这样控制开关的打开和关闭时间,我们就可以把10 伏的直流电源变成我们想要的 5 伏直流电压啦!在直流斩波电路中,还有一个很重要的东西,就是电感。
电感就像是一个能量的小仓库,当开关打开的时候,电感会储存能量;当开关关闭的时候,电感就会把储存的能量释放出来,给负载供电。
这样可以让负载上的电流更加平稳,不会一会儿大一会儿小。
还有一个二极管也很重要哦!当开关关闭的时候,二极管就会导通,让电感里的电流能够继续流过负载,保证负载上一直有电压。
基本直流斩波电路就是通过控制开关的打开和关闭时间,来改变负载上得到的电压平均值。
这样我们就可以把一个固定的直流电压变成我们想要的各种不同大小的直流电压啦!是不是很神奇呢?希望小朋友们能大概理解基本直流斩波电路及工作原理,如果还有不清楚的地方,可以随时问老师或者爸爸妈妈哦!。
直流斩波电路简介直流斩波电路(DC Chopper)是一种用来控制直流电动机的电路。
它可以为直流电机提供高效的调速和转向控制,因此在工业应用中非常广泛。
直流斩波电路主要由斩波器、控制电路和直流电源组成。
斩波器是控制电动机转速和方向的核心部分,它通过调节输出电压和电流的波形来实现电机的控制。
控制电路则通常采用微处理器或单片机,用来控制斩波器的工作状态和输出信号的频率、幅值和相位。
直流电源则是为整个系统提供电能,以保证电机能够正常运行。
斩波器斩波器是直流斩波电路中最重要的部分,它通常包括一个开关器件和一个电感元件。
开关器件可以是晶闸管、MOSFET管、IGBT管等。
而电感元件则是用来限制输出电流和平滑输出电压波形的。
在斩波器中,当开关器件导通时,电感元件会吸收输入电源中的能量,同时输出电压也会上升。
而当开关器件关断时,电感元件会反向放电,同时输出电压也会下降。
通过改变开关器件的工作状态,我们就可以改变电源的输出电压和电流波形,从而实现对电动机的控制。
控制电路在直流斩波电路中,控制电路主要负责控制斩波器的开关状态。
控制电路通常由微处理器或单片机实现,可以使用PID等算法来控制输出电压和电流的稳定性和响应性。
控制电路同样可以控制输出信号的频率、幅值和相位。
这些信号不仅可以控制电动机的运行状态,还可以用来监测电机的转速和位置,以实现更加精确的控制。
直流电源直流电源是为整个电路提供电能的部分,它的稳定性和可靠性对整个电路的运行非常重要。
在直流斩波电路中,直流电源通常采用整流电路和充电电路的结合,以实现对电池的充电和电机运行的供电。
直流电源的质量也直接影响了斩波器和控制电路的稳定性,因此需要特别注意。
应用直流斩波电路可以应用于各种不同类型的电机控制,包括直流电动机、无刷直流电机和步进电机等。
它的高效能和高精度控制使得它在精密控制和节能降耗等方面具有广泛的应用前景。
除此之外,直流斩波电路还可以应用在光伏逆变器、风力发电机、电子变压器等领域中,以实现对电能的转换和传输。
直流斩波电路工作原理分析直流斩波电路的主要是实现直流电能的变换,对直流电的电压或电流进行控制。
按照输入电压与输出电压之间的关系,可以分为六种不同的形式,分别为降压斩波电路(BUCK )、升压斩波电路(BOOST )、升降压斩波电路(BUCK-BOOST )、Cuk 斩波电路、Sepic 斩波电路和Zeta 斩波电路。
下面分别对它们的工作原理进行简单的介绍。
一.降压斩波电路降压斩波(BUCK )电路的拓扑结构图如1-1所示。
U io图1-1 BUCK 电路拓扑结构分析在开关器件导通和关断时,电路的动态工作过程。
图1-1中实线部分表示开关器件导通时的回路,虚线部分表示器件关断时的续流回路。
在续流过程中,根据电感中的电流的不同分为,电感电流连续(CCM )和断续(DCM )两种情况。
由此可以得到降压斩波电路的动态工作过程如图1-2所示。
U ioa) S 导通时等效电路oCob) S 关断,i L ≠0时等效电路c) S 关断,i L =0时等效电路图1-2 BUCK 电路动态工作过程在工作过程中,驱动信号以及电感上的电压和电流波形如图1-2所示。
u Su Li Li La) 电感电流连续时波形b) 电感电流断续时波形图1-3 BUCK 电路的工作原理图由电感器件的伏秒平衡原理,可以得出在电流连续和断续两种情况下,BUCK 斩波电路的输出电压。
a) 电感电流连续时,有()(1)0i o o U U D U D ---= (1-1)化简可得o i U DU = (1-2)b) 电感电流断续时,有1()0i o o U U D U --∆= (1-3)化简可得1o i DU U D =+∆ (1-4) 由此可以看出,电感电流断续情况下的输出电压更高。
二.升压斩波电路升压斩波(BOOST )电路的拓扑结构如图2-1所示。
U iLo图2-1 BOOST 电路拓扑结构在图2-1中,实线部分表示开关器件导通时的回路,虚线部分表示开关器件关断时的回路,由此可以得到升压斩波电路的动态工作过程如图2-2所示。