5- 优化设计-2下降迭代原理和一维优化方法
- 格式:ppt
- 大小:268.00 KB
- 文档页数:29
优化设计的概念和原理概念1 前言对任何一位设计者来说,其目的是做出最优设计方案,使所设计的产品或工程设施,具有最好的使用性能和最低的材料消耗与制造成本,以便获得最佳的经济效益和社会效益。
因此,在实际设计中,科技人员往往首先拿出几种不同的方案,通过对比分析以选取其中的最优方案。
但在现实中,往往由于经费限制,使所选择的候选方案数目受到很大的限制,因此急需一种科学有效的数学方法,于是诞生了“最优化设计”理论。
最优化设计是在计算机广泛应用的基础上发展起来的一项新技术,是根据最优化原理和方法综合各方面因素,以人机配合方式或“自动探索”方式,在计算机上进行的半自动或自动设计,以选出在现有工程条件下的最佳设计方案的一种现代设计方法。
其设计原则是最优设计:设计手段是电子计算机及计算程序;设计方法是采用最优化数学方法.本文将就最优化设计常用的概念如:设计变量、目标函数、约束条件等做简要介绍。
2设计变量设计变量是在设计过程中进行选择最终必须确定的各项独立参数。
在选择过程中它们是变量,但当变量一旦确定以后,设计对象也就完全确定。
最优化设计就是研究如何合理地优选这些设计变量值的一种现代设计方法。
在机械设计中常用的独立参数有结构的总体配置尺寸,元件的几何尺寸及材料的力学和物理特性等。
在这些参数中,凡是可以根据设计要求事先给定的,则不是设计变量,而称之为设计常量。
最简单的设计变量是元件尺寸,如杆元件的长度,横截面积,抗弯元件的惯性矩:板元件的厚度等。
3目标函数目标函数即设计中要达到的目标。
在最优化设计中,可将所追求的设计目标(最优指标)用设计变量的函数形式表示出来,这一过程称为建立目标函数,一般目标函数表达为f(x)=f(xl,xZ,…,x。
)此函数式代表设计的某项最重要的特征,例如所设计元件的性能、质量或体积以及成本等。
最常见的情况是以质量作为函数,因为质量的大小是对价值最易于定量的一种量度。
虽然,费用有更大的实际重要性,但通常需有足够的资料方能构成以费用做为目标函数。
牛顿迭代法的优化理论和方法一、引言优化问题是现代科学和工程中一个重要的问题。
牛顿迭代法是一种常用的优化算法,用于解决非线性优化问题。
本文将介绍牛顿迭代法的原理、算法以及应用。
二、牛顿迭代法的原理牛顿迭代法的原理是利用二阶导数信息来构造一个二次近似函数,通过求解这个近似函数的零点来逼近原函数的零点。
具体来说,假设我们要求解方程 $f(x) = 0$,考虑在 $x_0$ 处对$f(x)$ 进行泰勒展开:$$ f(x) = f(x_0) + f'(x_0)(x-x_0) +\frac{1}{2}f''(\xi)(x-x_0)^2 $$ 其中 $\xi$ 位于 $x$ 和 $x_0$ 之间。
假设 $x_0$ 是方程的一个近似解,那么我们可以忽略高阶项,得到一个二次近似函数:$$ f(x) \approx f(x_0) + f'(x_0)(x-x_0) +\frac{1}{2}f''(x_0)(x-x_0)^2 $$ 令上式等于 0,解得:$$ x_1 = x_0 -\frac{f'(x_0)}{f''(x_0)} $$ 这个解 $x_1$ 更接近方程的根,我们可以利用它来作为 $x_0$ 重复上述过程,得到一个更优的解。
三、牛顿迭代法的算法根据上面的原理,可以得到牛顿迭代法的算法:1. 选取初值 $x_0$。
2. 计算 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$。
3. 如果收敛,停止迭代;否则返回第二步。
这里的 $f'(x_k)$ 是 $f(x)$ 在 $x_k$ 处的导数。
四、牛顿迭代法的应用牛顿迭代法的应用非常广泛,下面列举几个常见的例子。
1. 求解方程。
对于非线性方程 $f(x) = 0$,可以使用牛顿迭代法求解。
需要注意的是,如果初值选取不恰当,可能会出现迭代不收敛、收敛速度慢等情况。