基于情感倾向的个性化信息推荐算法研究
- 格式:pdf
- 大小:189.09 KB
- 文档页数:7
媒体行业中的情感分析技术的应用研究概述:情感分析技术是一种将自然语言处理、机器学习和文本挖掘等技术结合在一起,用于识别、提取和分析人们在文本中所表达的情感和情绪的方法。
在当今互联网时代,媒体行业作为人们获取和传播信息的重要渠道,情感分析技术的应用为媒体行业提供了有力的工具。
本文将探讨情感分析技术在媒体行业中的应用研究,并重点关注其在新闻、社交媒体和广告方面的应用。
一、情感分析技术在新闻行业的应用1.1 新闻情感分析的意义新闻是媒体行业的核心内容,而情感分析技术可以帮助新闻从大量的文章中筛选出对读者最具情感价值的内容,从而提升新闻传播的效果。
通过情感分析技术,可以实时监测新闻报道的公众反应,了解读者对新闻事件的情感和态度,有助于新闻机构进行舆情研究和舆情预测。
1.2 情感分析技术在新闻推荐中的应用情感分析技术可以分析用户对新闻内容的情感倾向,进而为用户推荐符合其情感需求的新闻报道。
通过对用户历史行为和情感喜好的分析,可以根据用户的情感类型,提供个性化的新闻推荐服务,使用户更加满意。
1.3 情感分析技术在新闻舆情监测中的应用情感分析技术可以对社交媒体平台上的用户评论、转发和点赞等信息进行情感分析,从而实时监测新闻事件的舆情走势。
媒体机构可以根据情感分析结果,及时了解公众对新闻事件的态度和情感倾向,为新闻报道提供参考依据,并进行危机公关管理。
二、情感分析技术在社交媒体行业的应用2.1 社交媒体情感分析的意义社交媒体作为人们传播意见和情感的主要平台,情感分析技术在社交媒体行业中的应用有着重要的意义。
它可以帮助社交媒体平台了解用户对平台上的内容的情感倾向和态度,从而改进服务和推荐算法,提升用户体验。
2.2 情感分析技术在用户情感表达分析中的应用情感分析技术可以对用户在社交媒体上发布的内容进行情感分析,识别出用户所传递的情感和情绪,并分析其背后的原因。
这些分析结果可以帮助社交媒体平台更好地了解用户需求、改进推荐算法和用户关系管理。
基于情感分析的智能客户服务系统设计与实现智能客户服务系统是利用人工智能技术,在客户服务过程中实现自动化和智能化的一种系统。
近年来,情感分析技术在智能客户服务系统中的应用越来越受到关注。
基于情感分析的智能客户服务系统可以分析客户的情感和意图,准确回答客户的问题,并提供个性化的服务,从而提高客户满意度和业务效率。
一、引言随着互联网和人工智能技术的迅猛发展,智能客户服务系统已成为企业提供卓越客户体验的重要手段。
然而,传统的客户服务系统往往无法满足客户个性化需求和情感交流的需求,导致用户体验下降。
因此,基于情感分析的智能客户服务系统应运而生。
二、情感分析技术概述情感分析是一种通过计算机自动识别和分类文本情感的技术。
它可以分析文本中包含的正向、负向、中性的情感倾向,并进一步识别出情感原因和情感强度。
情感分析技术涉及自然语言处理、机器学习和数据挖掘等领域,可以应用于客户服务系统,提升系统的智能化水平。
三、基于情感分析的智能客户服务系统设计与实现1. 数据收集和预处理为了进行情感分析,首先需要收集大量与客户服务相关的数据。
这些数据可以包括客户的对话文本、评分和评论等。
在数据收集后,需要对数据进行预处理,包括去除噪声、标记情感类别和构建词典等。
2. 情感识别模型训练情感识别模型是基于机器学习算法构建的,用于自动判断文本情感类别。
常用的模型包括朴素贝叶斯、支持向量机和深度学习模型等。
在模型训练过程中,需要使用预处理后的数据进行训练,并选择合适的特征表示方法和分类算法。
3. 意图识别和问题分类情感分析不仅仅关注情感倾向,还需要识别出客户的意图和问题类型,以便做出更准确的回答。
意图识别和问题分类可以基于文本的语义和结构特征,结合机器学习模型和自然语言理解技术,实现智能分类和归类。
4. 自动回答和个性化推荐基于情感分析的智能客户服务系统应具备自动回答问题和个性化推荐的能力。
系统可以根据用户的情感和意图,快速生成准确的回答,并根据用户的历史记录和偏好,推荐相关的产品、服务或解决方案。
电子商务网站用户评论情感分析与评价预测方法研究概述:电子商务网站近年来蓬勃发展,用户评论已成为用户购买决策的重要参考依据。
因此,对用户评论进行情感分析与评价预测已成为电子商务领域的研究热点。
本文将深入研究电子商务网站用户评论的情感分析和评价预测方法,探讨其在提升用户体验和增加销售额方面的潜力。
一、情感分析方法的研究1. 传统机器学习方法传统机器学习方法是对用户评论进行情感分类的一种常用方法。
该方法首先从用户评论中提取特征,例如词袋模型、TF-IDF权重等,然后使用分类器(如SVM、朴素贝叶斯、决策树等)进行情感分类。
此方法能够有效地为评论进行情感划分,但对于评论中更复杂的情感表达和语言的理解较为有限。
2. 深度学习方法近年来,深度学习方法在情感分析领域取得了显著的进展。
利用深度学习算法,如循环神经网络(RNN)和长短时记忆(LSTM),可以更好地理解评论中的语义和上下文信息。
此外,卷积神经网络(CNN)还可以对评论中的特定词语和短语进行有效的情感推测。
深度学习方法在情感分析中可以提供更好的性能和更高的准确率。
二、评价预测方法的研究1. 基于用户评价历史的方法基于用户评价历史的方法是一种常用的评价预测方法。
该方法通过对用户历史评论进行统计和分析,挖掘用户的购买偏好和倾向,从而预测其未来的购买行为。
通过建立用户评分历史的模型,可以更好地理解用户的消费喜好和需求,为用户提供个性化的推荐服务。
2. 基于文本内容的方法基于文本内容的方法通过分析用户评论的文本内容,从中提取相关特征,以预测商品的评价和销售。
该方法可以利用自然语言处理和机器学习技术,对用户评论进行文本分析、主题建模和情感识别,从而预测商品的评价和销售情况。
三、应用前景及挑战电子商务网站用户评论情感分析与评价预测方法在提升用户体验和增加销售额方面具有广阔的应用前景。
通过准确分析用户评论的情感和评价,电商平台可以根据用户需求进行产品改进和优化,提供更好的商品和服务,从而增加用户满意度和忠诚度。
基于机器学习的电影推荐与影评情感分析研究电影推荐系统是电影平台中常见的功能,其通过分析用户的历史观影记录和喜好,推荐符合用户口味的电影,从而提高用户的观影体验。
然而,在大量的电影选择中,用户往往难以快速找到自己喜欢的电影,这时候就需要一个基于机器学习的电影推荐系统来辅助用户做出选择。
一方面,基于机器学习的电影推荐系统可以通过用户的历史观影记录,对用户的喜好进行分析和建模。
系统可以根据用户的历史评分、观看时间、观看频率等信息,提取关键特征,并构建用户画像。
在用户画像的基础上,可以利用机器学习方法,比如协同过滤、决策树、神经网络等算法,来预测用户对未观看电影的兴趣程度。
通过这种方式,电影推荐系统可以根据用户的个性化需求,为用户提供个性化的电影推荐。
另一方面,基于机器学习的电影推荐系统还可以利用影评数据进行情感分析。
在影评数据中,用户对电影的评价和情感体现了对电影的喜好和态度。
通过对影评数据的情感分析,可以提取出用户对电影的喜欢程度、情感倾向等信息。
这些信息可以作为补充用户历史观影记录的数据,进一步提高电影推荐的准确性。
例如,对于情感分析结果为正面的影评,推荐系统可以根据用户的历史记录,给用户推荐更多相似类型和情感倾向的电影。
基于机器学习的电影推荐系统的核心在于算法的选择和模型的建立。
对于算法的选择,可以考虑协同过滤算法、内容过滤算法和混合推荐算法的组合应用。
协同过滤算法是一种常用的推荐算法,可以根据用户之间的相似度,将用户的历史喜好扩展到未知电影上。
内容过滤算法则是通过分析电影的属性和特征,来为用户推荐与其历史喜好相似的电影。
混合推荐算法则是将协同过滤算法和内容过滤算法相结合,综合考虑用户之间的相似度和电影的属性特征,提供更准确的推荐结果。
在模型的建立方面,可以采用机器学习的经典方法,如决策树、神经网络等。
决策树是一种基于树形结构的分类模型,可以通过构建树来分析特征与目标变量之间的关系。
神经网络则是一种模拟人脑神经元之间相互连接的计算模型,通过训练神经网络模型,可以得到对电影推荐的权重和规则。
社交媒体用户行为分析及个性化推荐算法研究随着互联网技术的不断发展,社交媒体已经成为人们日常生活中不可或缺的一部分。
人们通过社交媒体平台创建个人账号,与其他用户进行沟通、分享信息、观看娱乐内容等。
这些交互行为形成了用户行为数据,通过分析这些数据,可以了解用户的兴趣、偏好以及个性化需求。
本文将探讨社交媒体用户行为分析及个性化推荐算法的研究。
一、社交媒体用户行为分析社交媒体平台提供了大量用户行为数据,这些数据包括用户的关注列表、点赞、评论、分享、观看时长等。
通过从这些行为中提取特征,可以揭示用户的个人兴趣和行为习惯。
1.用户兴趣分析用户的兴趣是推荐算法的关键。
社交媒体平台可以根据用户的关注列表和行为数据,对用户的兴趣进行建模。
通过分析用户关注的主题、频繁访问的内容,可以推测用户的兴趣偏好。
同时,通过挖掘用户的社交网络关系,可以发现用户之间的兴趣相似性,从而更好地推荐适合用户的内容。
2.用户行为习惯分析用户的行为习惯是指用户在社交媒体平台上的各种行为特点和规律。
例如,某些用户喜欢早晨阅读新闻,而另一些用户喜欢在晚上观看电影或音乐视频。
通过分析用户在不同时间段的活跃度、发布内容的类型、与其他用户的互动等行为特征,可以了解用户的行为习惯并进行个性化推荐。
3.用户情感分析社交媒体用户的情感分析是对用户在社交媒体平台上表达的情感进行分析和评估。
用户在社交媒体上发表的文字、图片、视频等内容中蕴含着丰富的情感信息。
通过分析用户的情感倾向,可以更好地理解用户的态度、情感以及个性化需求。
情感分析可以应用于社交媒体广告推荐、舆情监测、情感教育等领域。
二、个性化推荐算法研究个性化推荐算法基于用户的兴趣和行为数据,为用户提供符合其个人需求的内容推荐。
社交媒体平台可以根据用户的兴趣、行为习惯和情感信息,设计个性化推荐算法,提升用户的使用体验和平台的粘性。
1.基于内容的推荐算法基于内容的推荐算法根据用户的兴趣偏好和内容的特征进行匹配。
电子商务平台的用户评论情感分析与个性化推荐策略随着互联网的快速发展,电子商务平台成为人们购物的首选渠道。
在这个平台上,用户可以浏览各种商品,并根据其他用户的评论来做出购买决策。
因此,对用户评论的情感分析和个性化推荐策略已经成为电子商务平台发展的重要方向。
一、用户评论情感分析用户评论情感分析是通过对用户在电子商务平台上发布的评论进行文本情感分析,探测评论中的情感倾向,包括正面、负面和中性情感。
这对于商家来说非常重要,因为正面的评价可以吸引其他用户购买,负面的评价则可能导致潜在客户的流失。
1. 情感分析算法情感分析算法是对用户评论进行情感识别和分类的关键技术。
常见的情感分析算法有基于机器学习的方法和基于深度学习的方法。
基于机器学习的方法常使用支持向量机(Support Vector Machine,SVM)和朴素贝叶斯分类器(Naive Bayes Classifier)。
这些算法对评论进行特征提取,如词袋模型(Bag of Words)和TF-IDF(Term Frequency-Inverse Document Frequency),然后进行情感分类。
基于深度学习的方法则主要利用递归神经网络(Recurrent Neural Network,RNN)和长短期记忆网络(Long Short-Term Memory,LSTM)等模型,可以有效地捕捉评论中的语义信息,提高情感分析的准确性。
2. 情感分析结果的应用情感分析结果可以帮助电子商务平台对用户评论进行自动分类和标记。
例如,可以将正面评论标记为“推荐”或“高评分”,以吸引其他用户购买;负面评论标记为“差评”或“不推荐”,以提醒商家改进产品和服务。
此外,情感分析结果还可以用于预测用户的购买行为和购买意愿。
根据用户的评论情感,可以推测用户对商品的喜好程度,从而为用户个性化推荐商品。
二、个性化推荐策略个性化推荐是根据用户的历史行为、购买记录和个人特征等信息,为每个用户推荐他们最感兴趣的商品。
数据分析解读用户偏好与个性化推荐随着互联网技术的不断发展和普及,人们对个性化服务的需求也越来越高。
在这样一个信息爆炸的时代,如何向用户提供个性化推荐成为了许多企业追求的目标。
数据分析作为一种强有力的工具,正扮演着解读用户偏好和实现个性化推荐的重要角色。
一、数据收集和整理在进行数据分析之前,首先需要收集和整理大量的用户数据。
这些数据可以包括用户在网站或APP上的行为数据、购买记录、浏览习惯等信息。
通过使用各种技术手段,比如Cookie和像素跟踪等,可以获取用户在互联网上的各种行为数据。
同时,还可以利用问卷调查等方式收集用户的个人资料和喜好信息。
将这些数据进行整理和清洗,确保数据的准确性和完整性,为后续的分析做好准备。
二、数据分析方法1. 关联分析关联分析是一种常用的数据分析方法,用于挖掘用户的偏好和购买关系。
通过构建关联规则,可以得出用户在购买某个产品时,最有可能同时购买的其他产品。
这对于精准推荐相关商品具有重要意义。
例如,在电商平台上购买了手机的用户很有可能会同时购买手机壳、耳机等配件产品。
2. 聚类分析聚类分析是一种将用户分成不同群体的方法,每个群体内部的用户具有相似的特征。
通过聚类分析,可以发现用户之间的相似性和差异性,为个性化推荐提供依据。
例如,将用户按照购买偏好、浏览行为等进行聚类,就可以将他们划分为不同的群体,并推荐符合他们兴趣的产品或内容。
3. 文本挖掘文本挖掘是一种将用户评论、评分等文本信息转化为结构化数据的方法。
通过分析用户的情感倾向、关注点等,可以了解用户的喜好和需求。
例如,对用户的评论进行情感分析,可以发现用户对某个产品的评价是积极还是消极,从而为个性化推荐提供参考。
三、个性化推荐算法在数据分析的基础上,需要使用个性化推荐算法来为用户提供个性化的推荐服务。
常见的推荐算法包括协同过滤算法、基于内容的推荐算法、深度学习算法等。
这些算法会根据用户的历史行为和偏好,通过计算相似度或者建立模型来预测用户的兴趣,并向其推荐相关的产品或内容。
面向社交媒体的情感分析与情感计算研究随着社交媒体的普及和使用程度的增加,人们越来越多地在社交媒体上表达和分享自己的情感。
这种社交媒体上的情感信息给大数据分析和情感计算研究带来了新的机遇和挑战。
面向社交媒体的情感分析与情感计算研究旨在从社交媒体数据中提取情感信息,并对其进行分析和计算。
首先,面向社交媒体的情感分析与情感计算研究需要解决情感信息的识别和提取问题。
在社交媒体上,情感信息常常以非正式和高度个性化的方式表达,例如,用词不规范、表情符号丰富等。
因此,需要开发自然语言处理和机器学习算法,来识别和提取出社交媒体上的情感信息。
例如,基于深度学习的方法可以通过训练神经网络来学习情感表达的模式,从而实现情感信息的自动提取。
其次,面向社交媒体的情感分析与情感计算研究需要解决情感信息的分类和评估问题。
在社交媒体上,情感信息通常包含多种情感,例如,喜好、愤怒、悲伤等。
因此,需要设计情感分类算法来将社交媒体上的情感信息进行分类。
此外,在进行情感计算时,还需要对情感信息进行评估,例如,确定情感极性(正面或负面)和情感强度等。
为了解决这些问题,可以利用机器学习和自然语言处理技术,结合社交媒体上的情感词典和情感语料库进行情感分类和评估。
此外,面向社交媒体的情感分析与情感计算研究还需要关注情感信息的时空特性。
在社交媒体上,情感信息通常具有时效性和地域性。
情感信息的时效性表示情感在不同时间段的变化,例如,对某一事件的情感反应可能会随时间而变化。
情感信息的地域性表示情感在不同地理位置的分布,例如,某个地区的用户可能对某个事件有不同的情感倾向。
因此,需要从社交媒体数据中提取出情感信息的时空特性,从而更好地了解和分析社交媒体上的情感信息。
最后,面向社交媒体的情感分析与情感计算研究还需要考虑情感信息与其他信息的关联性。
在社交媒体上,情感信息往往与其他信息(如用户信息、内容信息等)相关联,这种关联性对于情感分析和情感计算具有重要意义。
文本情感分析中的情感极性分类算法研究随着社交媒体的普及和用户生成内容的爆炸增长,情感分析成为了一项重要的任务。
情感分析可以帮助我们理解文本背后的情绪和观点,对于舆情监测、产品推荐和情感倾向分析等领域具有广泛的应用。
其中,情感极性分类是情感分析的核心任务之一,旨在判断文本的情感是正面、负面还是中性。
在文本情感分析中,情感极性分类算法研究成为了学术界和工业界的关注焦点,许多有效的算法被提出和应用。
本文将介绍一些比较流行和有效的情感极性分类算法,并探讨它们的优缺点。
1. 传统机器学习算法:传统机器学习算法是情感分析中使用得较多的算法之一。
这些算法包括支持向量机(SVM)、朴素贝叶斯(Naive Bayes)、最大熵模型等。
传统机器学习算法的主要优点是易于实施和解释,同时在小数据集上表现良好。
然而,传统机器学习算法对于语义理解和上下文分析的能力相对较弱,难以捕捉到文本的深层次语义信息。
2. 深度学习算法:随着深度学习算法的快速发展,深度神经网络被应用于情感极性分类任务中,取得了显著的性能提升。
深度学习算法以其强大的表示学习能力和端到端的特性而闻名。
例如,卷积神经网络(CNN)和循环神经网络(RNN)是常用于情感极性分类的深度学习模型。
卷积神经网络(CNN)适用于处理定长的文本序列,通过卷积层提取局部信息,然后通过池化层聚合特征。
卷积神经网络适用于长程依赖性较少的情感极性分类任务。
循环神经网络(RNN)则适用于处理可变长度的文本序列,通过递归的方式对文本序列进行建模,能够捕捉到文本的长期依赖关系。
长短期记忆网络(LSTM)和门控循环单元网络(GRU)是常用的循环神经网络的变种。
然而,深度学习算法在情感极性分类中也存在一些挑战。
首先,深度学习算法需要大量的标注数据进行训练,而情感极性分类任务的标注数据往往较为稀缺。
其次,深度学习算法对于模型结构和超参数的选择非常敏感,需要进行大量的调参工作。
3. 迁移学习方法:迁移学习是一种通过从源领域学习到的知识来改进目标领域学习性能的方法。
Research on A PersonalizedRecommendation Algorithm of Based onEmotional Tendency computing1Donghui Xiao *Research Center of Intelligence Science and TechnologyBeijing University of Posts and TelecommunicationsBeijing, P. R. China 100876Donghui.xiao@AbstractAt present, the research of emotion computing has attracted increasing attention in theinformation domain. meanwhile, traditional information recommendationtechnologies still can’t satisfy user’s personalized requirement, A personalizedrecommendation algorithm based on emotional tendency computing is introduced inthis paper. First, the original texts are filtered according to user’s interest. Second,user expresses own emotional preference through reading the filtered information andchoosing the emotional attitude words. The tendentious weights of emotional featurewords are calculated and taken into account, and then,user’s emotional vector spacemodel is rebuilt. Third, text categorization based on emotional model are performedand the good information is recommended to user. Experiments show that thealgorithm has higher precision.Keywords: Emotional tendency computing; information filtering; emotion model;recommendation algorithm.1IntroductionWith the development of internet technology, more and more users can obtain daily internet information they require. However, user will also get into an embarrassing position when they face a lot of useless information, meanwhile, although traditional information recommendation technologies can meet some requirement of users, due to their all-purpose characteristics, they still can not satisfy the requirement of different users’ personalized feature. How to provide users with information which corresponds with their personalized feature, this topic has become a significant research project Currently, in the information domain, the research of emotion computing [1] has attracted increasing attention, it plays a significant role in the realization of information processing and interaction between man and machine based on intelligence. Emotion is an experience of attitude, which represents that people hold certain attitude to objective things. Emotion is also the reflection that whether people are satisfactory to his demand be fulfilled. It includes two aspects, emotional course and emotional personality. Emotional preference shows a relatively stable appraisable emotion, including applaud,deny,Love and hate etc. The degree of user’s emotional preference can express well the user’s1 Support by Research Fund for the Doctoral Program of Ministry of Education (20060013007)Support by Research Fund for Natural Science of Beijing (4073037)A recommendation algorithm of multilayer filtering based on emotional tendency computing is introduced in this paper. The original texts are filtered based on content for the first time according to user’s interest model, and then, the filtered information is recommended to user. User expresses own emotional preference to the information through the explicit feedback method that chooses emotional words, such as like, unconcern, dislike etc. we take own tendentious weight of emotional feature words into account by calculating the weight, user’s emotional model is rebuilt by user’s emotional requirement and text categorization based on emotional tendency is performed. Finally, the information filtering is achieved and the good information is recommended to user. Experiments show that the algorithm is more effective on information recommendation.In Section 2, we discuss the process of filtering the original texts based on content for the first time according to user’s interest model. In Section 3, we compute the tendentious weight of emotional words.express user emotional model and text feature. In Section 4, we discuss the emphasis of this recommendation algorithm based on emotional model and describe the algorithm details. In Section 5, we set up the experiment and discuss experiment results. Finally, we summarize and prospect this paper.2Initial information filtering based on contentThe method of content-based filtering is a mostly means in information recommendation systems [2] and now these systems have Clairnews,Syskill & Webert [3],CiteSeer,Personal Web Watcher and so on, they filter information according to the similarity of the texts and user profile. The method is adopted to filter original texts for the first time base on user interest model and recommend the initial information to user in this paper. Figure 1 show the basic framework.Figure 1: The basic framework of initial content-based filtering2.1Building o f user interest mo delUser model is a important part of information filtering systems, the capacity of expressing user model and collecting user’s interest preference that decide to the superiority or inferiority of filtering quality. First, the set of feature keywords are extracted which reflect user’s interest by collecting user registration information on the site and dealing with user historical data, then, user’s interest vector space model is built based on those features which have high weight in feature keywords.2.2Initia l filtering o f info rma t ionIn order to set up feature vector of the user interest, user’s historical information texts must be trained, after building feature vectors, pretreatment of the text content also is performed, first, we carry on theThe text categorization is performed by adopting Naive Bayes algorithm, where assuming the texts that is based on Unigram model of words. According to Bayes theorem, we have the following formula of Bayes discriminant as the text categorization method.)1()'|Pr()'Pr()'|Pr()Pr()|Pr(max arg )'('d w C C w j C j C w d H C C F w C C j ∈∈∈∑∑=The formula can estimate the probability of this text category by using the united probability of text and words, where is the feature vector, is the attribute value of feature vector, j C belongs to the F w j c th − category ,is the testing text that need be classified, d ′)|Pr(d w ′ is the posterior probability of testing text , is the prior probability of , is the posterior probability of .d ′)Pr(j C j C )|Pr(j C w j C The user initial recommendation Set is obtained by information classifier and filtering based on content[4]. This process affords reasonable grounds for user evaluating the recommendation topic information at emotional angle.3 The expression of the text and user emotional modelProfessor Picard was the first person to put forward the influential concept of Affective computing[1]. At present, some domestic and overseas scholars have done a lot of research in the domain of emotional classification and expression, such as Ortony.A, Clore.GL & Collins.A, Lazarus etc. Information recommendation based on user emotional tendency computing in this paper which is also a relative research of emotional classification, to emotional classification, the text feature is the biggest difference between it and the text categorization based on topic, therefore, the selection of emotional feature in the text and the expression of user emotional model are important in this course.3.1 Expression of the text and user model based on emotio nal pref erenceIn order to compare with the text and user emotional tendency, we assume the expression of the two things which is of the same way. Because the expression method based on vector space model can reflect well the important degree of user model at different respect, this building model method is adopted in here.Up to now, we recommend the initial filtered information for user, when user read the information, they can express their emotional preference to the information with the explicit feedback method that choose emotional words which such as very like ,like, unconcern, dislike etc. We can extract some related emotional words as a feature vector based on this user feature. A vector of emotional words can express the user emotional model, where is the appearance times of the i-th emotional word, where is vector dimension.12(,......)i n u kw kw kw kw =i i k w n We pay close attention to change in the user preference and regular update the user emotional model by tracking continuously user’s browse behavior and feedback.To building emotional vector space model in this paper, comptuing of emotional tendency to the text feature and extraction of emotional feature to the text that are rather difficult questions. We will discuss individually these two key problems as following.3.2 C om p ut i n g of e mo t io na l t en d e n cy t o t h e t ext f eat u r eSo far, computing methods of emotional tendency to the text words have artificial tagging method, HM algorithm ,SO-PMI algorithm and SO-LSA algorithm etc [4]. For the consideration of calculation precision, we select artificial tagging method to determine emotional tendentious weight of the words, but we also spent much time in doing this thing.Table 1: Chinese emotional words be classifiedCLASSIFICATION NOUNVERB ADJECTIVE Positive真理,祖国 爱慕,信赖 美丽,精彩 Neutral差异,疑问吃惊,沉浸多情,深入 Negative悲剧,罪恶 背叛,灭亡 凄凉,无能According to modern Chinese emotional assessing table of adjective ,verb and noun which be compiled by two professors Luo Yuejia and Wang Yiniu , we set down the weight of emotional tendency for being extracted every words which are distributed values between -1 and +1, where represent theweight to every word, the values between 0 and +1 that belong to positive emotional tendency and the values between -1 and 0 that represent negative weight, where greater absolute value show more i kw intense emotional tendency . Especially, we assume the values between 0 and 0.5 that belong to the average positive weight of emotional tendency, moreover, according to this rule, the positive words are divided into two kinds that are called very positive and average positive.3.3 T h e e xt r a ct i o n of t h e t e xt f e at u re The text feature is a basic part of the expression of text, to text categorization [6], the selection of text feature is also an important problem. First, the noise of feature vector and lacking expressive force words in the training texts are removed by the text segmentation. The text feature is extracted through determining the important degree of the feature, where the important degree of feature is determined based on combining the weight of emotional tendency i kw with statistics method of term frequency (TF) and inverse document frequency(IDF). In this paper, these selected emotional feature as the feature space of text vector, when calculating the weight of text vector in every dimension, we take own tendentious weight of these emotional words into account. Formula (3) show this way which calculate the weight of text feature, where is the emotional tendentious weight of the i-th feature. i kw (2)i w =According to this method, the text feature is extracted and the feature vector space model is built by expressing precisely the emotional feature vector of text. 4 Information recommendation algorithm based on emotional model User emotional feature vector is built by training the texts which user has evaluated information and the expression of text feature is created by a pretreatment of text which such as text segmentation etc, and then, the related texts are classified by similarity calculation between text feature and user emotional feature and those unrelated information are filtered in this method.To vector space model, the traditional method of similarity calculation is calculating the cosine similarity between two vectors. In this paper, we adopt formula (3) to calculate the similarity degree between user u and the text das following.*(,)(3)ii d kw sim d kw =∑ Where is the feature vector of training text and user, is the unprocessed texts,is the weight of the i-th word in , where , is the frequency of i-th word in .kw d i d d 1log i d t i =+i tf f d After similarity be calculated, we can predetermine initial threshold by testing and experts’ experience, because we only recommend the information which can be thought that user like or very like, predetermine initial threshold is based on text feature of the two categories, moreover, threshold need be adjusted continually based on testing text and according to the precision of text classification. Finally, the unprocessed information can be filtered by this method of text classification. When similarity of the text is greater than or equal to threshold, this text is regarded as the text of positive category, especially, when the similarity of the text is far more than threshold, we regard this text as very positive category and give priority to recommend the kind of information.4.2 Description of filtering algori thm ba sed o n emotio na l mo delThe basic framework of recommendation algorithm based on emotional model can be obtained from the above analysis, where include two stages of training and categorizaton. The goal of training stage is that initial user’s emotional feature vector is created by training given data, the goal of categorization stage is that text categorization can be achieved well and information filtering can be finished well through judging the similarity between texts and user’s feature vectors, finally, the right information is recommended to user, the detail process shown in Figure 2.Figure 2.the framework of the algorithmThe processing steps of the recommendation the algorithm based on emotional model are shown as following.Step1. Filter original text for the first time base on user interest model and recommend the initial filtered information to user.Step3. User’s historical data is trained to build feature vectors and the expression of text feature is obtained by text pretreatment.Step4. Similarity calculation and text is diveided into positive category and irrelevant category, the second filteing of information is achieved.Step5. When similarity of the text is far more than threshold, the text of positive category is divided into average positive category and very positive category, meanwhile, giving priority to recommend the information of very positive category.Step6. recommending the right information and regular updating the user emotional model by user feedback.5ExperimentsIn this section, the experimental setup and source of data set are introduced, the evaluative standard of experiment is given and experimental result is analyzed.5.1Experiment al SetupThe experiment data originates in the tourism web site () which be developed in our laboratory center. Original texts are relative to tourist news and information,according to the tourism topics on the site, we divide the texts into three categories, in order to test the performance of the algorithm, we collect 450 texts altogether as experiment data based on every category be selected 150 texts.Emotional tendency words of experiment are obtained by text segmentation program from Chinese Academy of Sciences and their tendentious weight be marked by manual estimation, and then, we filter text by text categorization and recommend to user.5.2Ev a lua t iv e s t an da r d of ex p e r im en t sWe adopt precision and recall which is widely applied in the information processing domain as the evaluative standard of experiments.We extract 50 texts from every category as test set and the rest 300 texts as training set. The result of experiment is shown in table 3.Table 2: Result set of experimentTOPIC CATEGORY TEST TEXT RIGHT INFO BERECOMMENDEDP R皇家园林50 35 92.1%89.7%人文景观 50 38 92.6% 90.4%大众娱乐 50 37 90.2%88.1%5.3Ex p e r im e nt a l A na ly s isWe can see that the precision and recall of the recommendation algorithm based on emotional model is ideal by experiment analysis. there is a mainly reason that the recommendation algorithm widen requirement of user in emotion aspects and rebuild user emotional model, meanwhile, filtering again the text after initial filtering text based on user interest.Therefore, this algorithm is more effective on meeting user’s personalized requirement and has better performance.In this paper, some questions of a personalized service based on user model are researched. A recommendation algorithm of multilayer filtering based on emotional tendency computing is introduced. Experiments show that the algorithm has high average accuracy and filtered speed. On other side, the user emotional preference model is rebuilt on the basis of user interest model; the integrated model is more effective on describing user’s personalized requirement. However, user’s requirements is described from comprehensive and correct viewpoints which is still very flexuous course and emotional tendency computing of the whole text still have many problems, the aspects of these problems should be discussed and researched further.A ck no wledg ment sThis paper is supported by the Research Center of Intelligence Science and Technology of BUPT, especially, I appreciate my teachers ,the supervisor Xuyan Tu and the professor Cong Wang, who give me great help to create this paper.meanwhile,the paper is Support by Research Fund for the Doctoral Program of Ministry of Education (20060013007) and Research Fund for Natural Science of Beijing (4073037).References[1] Picard R W. (1997) Affective computing .Cambridge, MA: MIT Press.[2] Wu Li hua & Liu Lu. (2006) User Profiling for Personalized Recommending Systems.A Review Journal ofThe China Society for Technical Informatio n 25(1):55-62.[3] Pazrani.M, Mucamatsu.J ,Billsus.D, Syskill & Webert.(1996) Identfyiing Interesting Web Sites. InProceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 54-61. AAAI Press.[4] Peter D.Turney & Michael L.Littman. (2003) Inference of Semantic Orientation from Association.ACM Transactions on Information Systems, 21(4): 315-346.[5] Ye Yiqian, He Cundao & Liang Ningjian. (1997) General Psychology. Shanghai:East China NormalUniversity Press.[6] Hao Xiaoyan & Chang Xiaoming. (2006) Study of Chinese Text Categorization. Journal of TaiyuanUniversity of Technology, 37(6): 710-713.。