02 第二章 激光干涉测量技术(上)
- 格式:ppt
- 大小:3.78 MB
- 文档页数:64
激光测量技术
作者:孙长库
出版年: 2001年
本书系统地介绍了激光测量的基本原理、方法及应用,主要内容包括:激光的基本原理与技术、激光干涉测量技术、激光衍射测量技术、激光准直及多自由度测量技术、激光三维视觉测量技术等。
第一章激光原理及技术
第一节辐射理论概要
第二节激光产生的原理及条件
第三节激光的基本物理性质
第四节高斯光束
第五节稳频技术
第六节激光调制技术
第七节半导体激光器
第二章激光干涉测量技术
第一节激光干涉测量长度和位移
第二节激光小角度干涉仪
第三节激光外差干涉测量技术
第四节激光全息干涉测量技术
第五节激光散斑干涉测量技术
第六节激光光纤干涉测量技术
第七节激光多波长干涉测长技术
第三章激光衍射测量技术
第一节激光衍射测量原理
第二节激光衍射测量方法
第三节激光衍射测量的应用
第四章激光准直及多自由度测量
第一节激光准直测量原理
第二节激光准直仪的组成
第三节大气扰动及激光束漂移
第四节激光准直测量的应用
第五节激光多自由度测量技术
第五章激光视觉三维测量技术
第一节激光三角法测量原理
第二节激光视觉测量的基本原理
第三节激光视觉三维测量技术的应用第六章激光的其他测量技术
第一节激光多普勒(Doppler)测速技术第二节激光扫描测径技术
第三节激光测距技术。
激光测量技术第一章 激光原理与技术1、简并度:同一能级对应的不同的电子运动状态的数目;简并能级:电子可以有两个或两个以上的不同运动状态具有相同的能级,这样的能级叫 简并能级2、泵浦方式:光泵浦,电泵浦,化学泵浦,热泵浦3、激光产生三要素:泵浦,增益介质,谐振腔阀值条件:光在谐振腔来回往返一次所获得光增益必须大于或者等于所遭受的各种 损耗之和.4、He-Ne 激光器的三种结构:【主要结构:激光管(放电管,电极,光学谐振腔)+电源+光学元件】 1)内腔式;2)外腔式;3)半内腔式5、激光器分类:1)工作波段:远红外、红外激光器;可见光激光器;紫外、真空紫外激光器;X 光激光器2)运转方式:连续激光器;脉冲激光器;超短脉冲激光器6、激光的基本物理性质:1)激光的方向性。
不同类型激光器的方向性差别很大,与增益介质的方向性及均匀性、谐振腔的类型及腔长和激光器的工作状态有关。
气体激光器的增益介质有良好的均匀性,且腔长大,方向性 ,最好!例1:对于直径3mm 腔镜的632.8nmHe-Ne 激光器输出光束,近衍射极限光束发散角为2)激光的高亮度。
3)单色性。
激光的频率受以下条件影响:能级分裂;腔长变化←泵浦、温度、振动4)相干性:时间相干性(同地异时):同一光源的光经过不同的路径到达同一位置,尚能发生干涉,其经过的时间差τc 称为相干时间。
相干长度: 例 : He-Ne laser 的线宽和波长比值为10-7求Michelson 干涉仪的最大测量长度是多少? 解: ,最大测量长度为Lmax=Lc/2=3.164m 。
空间相干性(同时异地):同一时间,由空间不同的点发出的光波的相干性。
7、相邻两个纵模频率的间隔为谐振腔的作用:(1)提供正反馈;(2)选择激光的方向性;(3)提高激光的单色性。
例 设He-Ne 激光器腔长L 分别为0.30m 、1.0m,气体折射率n~1,试求纵模频率间隔各为多少?8、激光的横模:光场在横向不同的稳定分布,激光模式一般用TEMmnq 表示原因:激活介质的不均匀性,或谐振腔内插入元件(如布儒斯特窗)破坏了腔的旋转对称性。
激光干涉测量xxxxxxxxxxxxxxx 摘要:干涉测量技术是以光波干涉原理为基础进行测量的一门技术。
20世纪60年代以来,由于激光的出现、隔振条件的改善及电子与计算机技术的成熟,使干涉测量技术得到长足发展。
本文介绍了激光干涉的基本原理。
关键词:激光干涉测量双频激光干涉仪由于科学技术的进步,干涉测量技术已经得到相当广泛的应用。
一方面因为微电子、微机械、微光学和现代工业提出了愈来愈高的精度和更大的量程,其它方法难以胜任;另一方面因为当代干涉测量技术本身具有灵敏度高、量程大、可以适应恶劣环境、光波和米定义联系而容易溯源等特点,因而在现代工业中应用非常广泛。
激光的出现在世界计量史上具有重大的意义。
用稳频的氦氖激光器作为光源,由于它的相干长度很大,干涉仪的测量范围可以大大的扩展;而且由于它的光束发散角小,能量集中,因而它产生的干涉条纹可以用光电接收器接收,变为电讯号,并由计数器一个不漏的记录下来,从而提高了测量速度和测量精度,比如说我国自行设计与制造的以氦氖激光器作为光源的光电光波比长仪,可以在20分钟之内把1米线纹尺上1001条刻线依次自动鉴定完毕,精度达到±0.2μm,这就是激光干涉仪的成功例证。
一、激光干涉仪的介绍激光干涉仪,以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,有单频的和双频的两种。
1、单频激光干涉仪从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。
当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N 为电脉冲总数),算出可动反射镜的位移量L。
使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。
2、双频激光干涉仪双频激光干涉仪是在单频激光干涉仪的基础上发展的一种外差式干涉仪,,双频激光干涉仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等,也可以在普通车间内为大型机床的刻度进行标定,既可以对几十米的大量程进行精密测量,也可以对手表零件等微小运动进行精密测量,既可以对几何量如长度、角度.直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。
激光干涉测量物体形状与运动的技术要点激光干涉测量技术是一种非接触式的测量方法,通过测量激光光束与物体表面的干涉现象,可以实现对物体形状和运动的精确测量。
在工业制造、医学影像、地质勘探等领域中,激光干涉测量技术被广泛应用。
本文将介绍激光干涉测量物体形状与运动的技术要点。
一、激光干涉测量原理激光干涉测量原理基于光的干涉现象,通过测量光程差来计算物体的形状和运动。
当激光光束照射到物体表面时,一部分光被反射回来,与原始光束发生干涉。
干涉产生的光强分布与物体表面的形状和运动状态有关。
通过分析干涉光强分布的变化,可以得到物体的形状和运动信息。
二、激光干涉测量的关键技术1. 激光光源的选择激光光源是激光干涉测量的关键组成部分。
常用的激光光源有氦氖激光器、二极管激光器等。
选择合适的激光光源要考虑到测量的精度、测量距离和成本等因素。
同时,激光光源的波长也会影响测量的精度,需要根据具体应用需求进行选择。
2. 干涉图像的获取干涉图像的获取是激光干涉测量的关键步骤。
传统的方法是使用像素平面干涉仪进行图像的获取,但这种方法需要较长的曝光时间,不适用于快速运动的物体。
近年来,高速相机和图像处理技术的发展使得实时获取干涉图像成为可能,大大提高了测量的效率和精度。
3. 相位解析与计算干涉图像中的光强分布与物体表面的形状和运动状态有关,通过分析图像中的相位信息可以得到物体的形状和运动信息。
相位解析与计算是激光干涉测量的核心技术之一。
常用的相位解析方法有空间相位解析法、频率调制法等。
相位计算的过程中需要考虑到相位的非线性变化和噪声的影响,采用合适的算法可以提高测量的精度。
4. 测量误差的分析与校正激光干涉测量中存在着各种误差,如光源的不稳定性、环境震动等。
对测量误差的分析与校正是保证测量精度的重要环节。
常用的误差分析方法有误差传递法、误差补偿法等。
通过合理的误差校正方法,可以提高测量的准确性和稳定性。
三、激光干涉测量技术的应用激光干涉测量技术在工业制造、医学影像、地质勘探等领域中有着广泛的应用。