第五章 对流换热解析
- 格式:ppt
- 大小:2.87 MB
- 文档页数:121
wton’s law of cooling:−=W/m 2dxdtq λ−=Contents第一节对流换热概述Analysis on Convection第二节对流换热微分方程组The Convection Heat Transfer Equations第三节边界层换热微分方程组Convection Differential Equations of Boundary Layer 第四节边界层换热积分方程(自学)第五节动量传递和热量传递的类比(自学)第六节相似理论基础Basis of similarity theoryConvection is the mode of energy transfer between a solid surface and the adjacent liquid or gas that is in motion, and it involves the combined effects of conduction and fluid motion.(流体与固体壁直接接触时所发生的热量传递过程,称为对流换热)The faster the fluid motion, the greater the convection heat transfer.We will study how to calculate the convection heat-transfer coefficient h in Chapter 5 and Chapter 6.5-1 Analysis on Convection(对流换热概述) Convection transfer problemHeat exchangers Tubes in steamboiler (蒸汽锅炉的管束)Tube-shell heat exchanger (管壳式换热器)Condenser ofrefrigerator Tubes withfins (翅片管束)图5-1几种常见的换热设备示意图Factors influencing convection heat transfer :Flow causes of fluid (流体流动的起因)、flow states ( 流动状态)、properties of fluid (流体物性)、change of phase of fluid (流体物相变化)、geometry parameters (壁面的几何参数),and so on 。
第五章对流换热思考题1、在对流换热过程中,紧靠壁面处总存在一个不动的流体层,利用该层就可以计算出交换的热量,这完全是一个导热问题,但为什么又说对流换热是导热与对流综合作用的结果。
答:流体流过静止的壁面时,由于流体的粘性作用,在紧贴壁面处流体的流速等于零,壁面与流体之间的热量传递必然穿过这层静止的流体层。
在静止流体中热量的传递只有导热机理,因此对流换热量就等于贴壁流体的导热量,其大小取决于热边界层的厚薄,而它却受到壁面流体流动状态,即流动边界层的强烈影响,故层流底层受流动影响,层流底层越薄,导热热阻越小,对流换热系数h也就增加。
所以说对流换热是导热与对流综合作用的结果。
2、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。
答:依据对流换热热阻主要集中在热边界层区域的导热热阻。
层流边界层的热阻为整个边界层的导热热阻。
紊流边界层的热阻为层流底层的导热热阻。
导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。
3、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。
试判断这种说法的正确性?答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。
因此表面传热系数必与流体速度场有关。
4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。
答:依据对流换热热阻主要集中在热边界层区域的导热热阻。
层流边界层的热阻为整个边界层的导热热阻。
紊流边界层的热阻为层流底层的导热热阻。
导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。
5、对管内强制对流换热,为何采用短管和弯管可以强化流体的换热?答:采用短管,主要是利用流体在管内换热处于入口段温度边界层较薄,因而换热强的特点,即所谓的“入口效应”,从而强化换热。
第五章对流换热分析通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。
5.1 内容提要及要求5.1.1 对流换热概述1.定义及特性对流换热指流体与固体壁直接接触时所发生的热量传递过程。
在对流换热过程中,流体内部的导热与对流同时起作用。
牛顿冷却公式q h(t w t f ) 是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。
研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。
2.影响对流换热的因素(1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。
(2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。
(3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。
(4)流体的相变:冷凝和沸腾是两种最常见的相变换热。
(5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。
综上所述,可知表面传热系数是如下参数的函数h f u, t w , t f , , c p , ,,, l这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。
3.分析求解对流换热问题分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。
同时,分析求解的前提是给出正确地描述问题的数学模型。
在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数由上式可有h xtt x yW/(m 2 K)w,x其中为过余温度,h xxyW/(m 2 K)w,x对流换热问题的边界条件有两类,第一类为壁温边界条件,即壁温分布为已知,待求的是流体的壁面法向温度梯度;第二类为热流边界条件,即已知壁面热流密度,待求的是壁温。