彩色图像处理数字图像处理
- 格式:ppt
- 大小:520.00 KB
- 文档页数:49
数字图像处理技术一.数字图像处理概述数字图像处理是指人们为了获得一定的预期结果和相关数据利用计算机处理系统对获得的数字图像进展一系列有目的性的技术操作。
数字图像处理技术最早出现在上个世纪中期,伴随着计算机的开展,数字图像处理技术也慢慢地开展起来。
数字图像处理首次获得成功的应用是在航空航天领域,即1964年使用计算机对几千月球照片使用了图像处理技术,并成功的绘制了月球外表地图,取得了数字图像处理应用中里程碑式的成功。
最近几十年来,科学技术的不断开展使数字图像处理在各领域都得到了更加广泛的应用和关注。
许多学者在图像处理的技术中投入了大量的研究并且取得了丰硕的成果,使数字图像处理技术到达了新的高度,并且开展迅猛。
二.数字图象处理研究的容一般的数字图像处理的主要目的集中在图像的存储和传输,提高图像的质量,改善图像的视觉效果,图像理解以及模式识别等方面。
新世纪以来,信息技术取得了长足的开展和进步,小波理论、神经元理论、数字形态学以及模糊理论都与数字处理技术相结合,产生了新的图像处理方法和理论。
比方,数学形态学与神经网络相结合用于图像去噪。
这些新的方法和理论都以传统的数字图像处理技术为依托,在其理论根底上开展而来的。
数字图像处理技术主要包括:⑴图像增强图像增强是数字图像处理过程中经常采用的一种方法。
其目的是改善视觉效果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或加强特征的措施就称为图像增强。
⑵图像恢复图像恢复也称为图像复原,其目的是尽可能的减少或者去除数字图像在获取过程中的降质,恢复被退化图像的本来面貌,从而改善图像质量,以提高视觉观察效果。
从这个意义上看,图像恢复和图像增强的目的是一样的,不同的是图像恢复后的图像可看成时图像逆退化过程的结果,而图像增强不用考虑处理后的图像是否失真,适应人眼视觉和心理即可。
⑶图像变换图像变换就是把图像从空域转换到频域,就是对原图像函数寻找一个适宜变换的数学问题,每个图像变换方法都存在自己的正交变换集,正是由于各种正交换集的不同而形成不同的变换。
rgb=cat(3,rgb_R,rgb_G,rgb_B);figure,imshow(rgb),title('RGB彩色图像');截图:(2)编写MATLAB程序,将一彩色图像从RGB空间转换为HIS空间,并观察其效果。
如例9.2所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);g=rgb1(:,:,2);b=rgb1(:,:,3);I=(r+g+b)/3figure,imshow(I);tmp1=min(min(r,g),b);tmp2=r+g+b;tmp2(tmp2==0)=eps;S=1-3.*tmp1./tmp2;figure,imshow(S);tmp1=0.5*((r-g)+(r-b));tmp2=sqrt((r-g).^2+(r-b).*(g-b));theta=acos(tmp1./(tmp2+eps));H=theta;H(b>g)=2*pi-H(b>g);H=H/(2*pi);H(S==0)=0;figure,imshow(H);截图:(3)编写MATLAB程序,将一彩色图像在RGB空间进行彩色分割,并观察其效果。
如例9.11所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);figure,imshow(r);g=rgb1(:,:,2);figure,imshow(g);b=rgb1(:,:,3);figure,imshow(b);r1=r;r1_u=mean(mean(r1(:)));[m,n]=size(r1);sd1=0.0;for i=1:mfor j=1:nsd1= sd1+(r1(i,j)-r1_u)*(r1(i,j)-r1_u);endendr1_d=sqrt(sd1/(m*n));r2=zeros(size(rgb1,1),size(rgb1,2));ind=find((r>r1_u-1.25*r1_d)&(r<r1_u+1.25*r1_d));r2(ind)=1;figure,imshow(r2);截图:(4)编写MATLAB程序,将一彩色图像在向量空间进行边缘检测,并观察其效果。
数字图像处理实验实验八:彩色图像处理学院:信息工程学院姓名:学号:专业及班级:指导教师:一、实验目的使用MatLab 软件对图像进行彩色处理。
使学生通过实验熟悉使用MatLab软件进行图像彩色处理的有关方法,并体会到图像彩色处理技术以及对图像处理的效果。
二、实验内容要求学生能够完成彩色图像的分析,能正确讨论彩色图像的亮度、色调等性质;会对彩色图像进行直方图均衡,并能正确解释均衡处理后的结果;能够对单色图像进行伪彩色处理、利用多波长图像进行假彩色合成、进行单色图像的彩色变换。
利用MATLAB软件实现彩色图像处理的程序:rgb_image=imread('flower1.tif'); %读取图像flower1.tiffR=rgb_image(:,:,1); %获取图像的红色分量fG=rgb_image(:,:,2); %获取图像的绿色分量fB=rgb_image(:,:,3); %获取图像的蓝色分量figure(1),imshow(fR) %分别显示图像figure(2),imshow(fG)figure(3),imshow(fB)%实现rgb图像转化为NTSC彩色空间的图像yiq_image=rgb2ntsc(rgb_image);fY=yiq_image(:,:,1); %图像flower1.tif的亮度fI=yiq_image(:,:,2); %图像flower1.tif的色调fQ=yiq_image(:,:,3); %图像flower1.tif的饱和度figure(4),imshow(fY)figure(5),imshow(fI)figure(6),imshow(fQ)fR=histeq(fR,256); %对彩色图像的分量进行直方图均衡化fG=histeq(fG,256);fB=histeq(fB,256);RGB_image=cat(3,fR,fG,fB); %将直方图均衡化后的彩色图像合并figure,imshow(RGB_image) %观察处理后的彩色图色度,亮度参照前面f1=imread('v1_red.jpg');f2=imread('v1_green.jpg');f3=imread('v1_blue.jpg');f4=imread('infer_near.jpg');ture_color=cat(3,f1,f2,f3);figure,imshow(ture_color) %显示由红、绿、蓝三幅图合成的彩色图false_color=cat(3,f4,f2,f3); %用近红外图像代替R分量figure,imshow(false_color) %显示由近红外、绿、蓝三幅图合成的假彩色图f=imread('head.jpg');cut_1=imadjust(f,[0.0925 0.5],[0.0925 0.5]);%提取灰度在16-128之间的像素cut_2=imadjust(f,[0.5 1],[0.5 1]); %提取灰度在128-256之间的像素figure,imshow(cut_1),colormap(hot) %显示图像cut_1,并使用hot模型彩色化figure,imshow(cut_2),colormap(cool) %显示图像cut_2,并使用cool模型彩色化三、实验具体实现(1) 彩色图像的分析调入并显示彩色图像flower1.tif ;拆分这幅图像,并分别显示其R,G,B分量;根据各个分量图像的情况讨论该彩色图像的亮度、色调等性质。
[数字图像处理](⼀)彩⾊图像转灰度图像的三种⽅式与效果分析图像处理(⼀)彩⾊图⽚转灰度图⽚三种实现⽅式最⼤值法imMax=max(im(i,j,1),im(i,j,2),im(i,j,3))平均法imEva=im(i,j,1)3+im(i,j,2)3+im(i,j,3)3加权平均值法imKeyEva=0.2989×im(i,j,1)+0.5870×im(i,j,2)+0.1140×im(i,j,3)matlba实现clc;close all;clear all;% 相对路径读⼊图⽚(和代码在同⼀⽂件夹下)im = imread('p2.jpg');%---查看图⽚,检测是否成功读⼊% 对显⽰的图⽚进⾏排版subplot(2,3,4);imshow(im);% 对图⽚进⾏命名title('原图');[col,row,color] = size(im);%col为图⽚的⾏数,row为图⽚的列数,color对于彩⾊图⽚⼀般为3,每层对应RGB %利⽤matlab⾃带的函数进⾏ rgb_to_gray;im_matlab = rgb2gray(im);subplot(2,3,1);imshow(im_matlab);title('matlab⾃带rgb2gray');%--------------------------------------------------------%---⽤最⼤值法% 创建⼀个全为1的矩阵,长宽等同于原图的im_max = ones(col,row);for i = 1:1:colfor j = 1:1:rowim_max(i,j) = max( im(i,j,:) );endend% 将矩阵变为8byte⽆符号整型变量(不然⽆法显⽰图⽚)% 最好在计算操作结束后再变化,不然会有精度问题!!im_max = uint8(im_max);subplot(2,3,2);imshow(im_max);title('最⼤值法');%--------------------------------------------------------% 平均值法im_eva = ones(col,row);for i = 1:1:colfor j = 1:1:rowim_eva(i,j) = im(i,j,1)/3 + im(i,j,2)/3 + im(i,j,3)/3 ;% 两种的结果其实⼀样,但是如果先转换为uint8就会出现精度问题%sum1 = im(i,j,1)/3 + im(i,j,2)/3 + im(i,j,3)/3%sum2 = ( im(i,j,1) + im(i,j,2)+ im(i,j,3) )/3;%fprintf( " %.4f %.4f \n",sum1 ,sum2 ) ;endendim_eva = uint8(im_max);subplot(2,3,3);imshow(im_eva);title('平均值法');%--------------------------------------------------------% 加权平均法(rgb2gray所使⽤的权值)im_keyeva = ones(col,row);% 加权算法先转换为uint8计算效果更好im_keyeva = uint8(im_max);for i = 1:1:colfor j = 1:1:rowim_keyeva(i,j) = 0.2989*im(i,j,1) + 0.5870*im(i,j,2) + 0.1140*im(i,j,3) ;endendsubplot(2,3,5);imshow(im_keyeva);title('加权平均法');Processing math: 100%附matlab——rgb2gray源码function I = rgb2gray(X)%RGB2GRAY Convert RGB image or colormap to grayscale.% RGB2GRAY converts RGB images to grayscale by eliminating the% hue and saturation information while retaining the% luminance.%% I = RGB2GRAY(RGB) converts the truecolor image RGB to the% grayscale intensity image I.%% NEWMAP = RGB2GRAY(MAP) returns a grayscale colormap% equivalent to MAP.%% Class Support% -------------% If the input is an RGB image, it can be of any numeric type. The output% image I has the same class as the input image. If the input is a% colormap, the input and output colormaps are both of class double.%% Notes% -----% RGB2GRAY converts RGB values to grayscale values by forming a weighted % sum of the R, G, and B components:%% 0.2989 * R + 0.5870 * G + 0.1140 * B%% The coefficients used to calculate grayscale values in RGB2GRAY are% identical to those used to calculate luminance (E'y) in% Rec.ITU-R BT.601-7 after rounding to 3 decimal places.%% Rec.ITU-R BT.601-7 calculates E'y using the following formula:%% 0.299 * R + 0.587 * G + 0.114 * B%% Example% -------% I = imread('example.tif');%% J = rgb2gray(I);% figure, imshow(I), figure, imshow(J);%% indImage = load('clown');% gmap = rgb2gray(indImage.map);% figure, imshow(indImage.X,indImage.map), figure, imshow(indImage.X,gmap);%% See also RGB2IND, RGB2LIGHTNESS.% Copyright 1992-2020 The MathWorks, Inc.narginchk(1,1);isRGB = parse_inputs(X);if isRGBI = matlab.images.internal.rgb2gray(X);else% Color map% Calculate transformation matrixT = inv([1.0 0.956 0.621; 1.0 -0.272 -0.647; 1.0 -1.106 1.703]);coef = T(1,:);I = X * coef';I = min(max(I,0),1);I = repmat(I, [1 3]);end%--------------------------------------------------------------------------function is3D = parse_inputs(X)is3D = (ndims(X) == 3);if is3D% RGBif (size(X,3) ~= 3)error(message('MATLAB:images:rgb2gray:invalidInputSizeRGB'))end% RGB can be single, double, int8, uint8,% int16, uint16, int32, uint32, int64 or uint64validateattributes(X, {'numeric'}, {}, mfilename, 'RGB');elseif ismatrix(X)% MAPif (size(X,2) ~= 3 || size(X,1) < 1)error(message('MATLAB:images:rgb2gray:invalidSizeForColormap'))end% MAP must be doubleif ~isa(X,'double')error(message('MATLAB:images:rgb2gray:notAValidColormap'))endelseerror(message('MATLAB:images:rgb2gray:invalidInputSize'))end总结通过上⾯的代码结合实际的测试,果然,matlab⾃带的rgb2gray也就是加权平均的⽅法,对光线明暗的处理是最好的。
数字图像1 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。
2 图像种类:二值图像(Binary Image): 图像中每个像素的亮度值(Intensity)仅可以取自0到1的图像。
灰度图像(Gray Scale Image),也称为灰阶图像: 图像中每个像素可以由0(黑)到255(白)的亮度值表示。
0-255之间表示不同的灰度级。
彩色图像(Color Image):每幅彩色图像是由三幅不同颜色的灰度图像组合而成,一个为红色,一个为绿色,另一个为蓝色。
伪彩色图像(false-color)multi-spectral thematic 立体图像(Stereo Image):立体图像是一物体由不同角度拍摄的一对图像,通常情况下我们可以用立体像计算出图像的深度信息。
三维图像(3D Image):三维图像是由一组堆栈的二位图像组成。
每一幅图像表示该物体的一个横截面。
数字图像也用于表示在一个三维空间分布点的数据,例如计算机断层扫描(:en:tomographic,CT)设备生成的图像,在这种情况下,每个数据都称作一个体素。
3 图像显示目前比较流行的图像格式包括光栅图像格式BMP、GIF、JPEG、PNG等,以及矢量图像格式WMF、SVG等。
大多数浏览器都支持GIF、JPG以及PNG图像的直接显示。
SVG格式作为W3C的标准格式在网络上的应用越来越广。
4 图像校准:数字图像与看到的现象之间关系的知识,也就是几何和光度学或者传感器校准。
图像的基本属性亮度:也称为灰度,它是颜色的明暗变化,常用0 %~100 %( 由黑到白) 表示。
对比度:是画面黑与白的比值,也就是从黑到白的渐变层次。
比值越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。
直方图:表示图像中具有每种灰度级的象素的个数,反映图像中每种灰度出现的频率。
图像在计算机中的存储形式,就像是有很多点组成一个矩阵,这些点按照行列整齐排列,每个点上的值就是图像的灰度值,直方图就是每种灰度在这个点矩阵中出现的次数。
数字图像处理算法原理
数字图像处理是指应用数字计算机对图像进行处理与分析的技术。
其中涉及到的算法原理包括:
1. 灰度变换算法:通过改变图像中像素的灰度级分布,实现对图像亮度、对比度、伽马校正等属性的调整。
常用的灰度变换算法有线性变换、逆变换、非线性自适应直方图均衡化等。
2. 图像滤波算法:用于平滑图像、强调图像细节或检测图像中的边缘。
常用的滤波算法包括均值滤波、中值滤波、高斯滤波、导向滤波等。
3. 图像增强算法:通过改善图像的质量和可视化效果,使图像更适合人眼观察和计算机分析。
常用的图像增强算法有直方图均衡化、局部对比度增强、锐化增强等。
4. 彩色图像处理算法:针对彩色图像的特点,进行颜色空间转换、亮度调整、色彩增强、色彩平衡等操作。
常用的彩色图像处理算法有RGB空间转换为HSV空间、色彩补偿、白平衡调整等。
5. 图像分割与边缘检测算法:将图像划分为不同的区域或提取图像中感兴趣的目标,常用的算法包括阈值分割、基于边缘的分割、基于区域的分割等。
6. 图像压缩与编解码算法:将图像数据经过压缩编码处理,以减少存储空间和传输带宽。
常用的压缩算法有无损压缩算法
(如RLE、Huffman编码)和有损压缩算法(如JPEG)。
除了以上算法原理外,还包括图像配准、图像恢复、形态学处理、基于特征的图像分析等其他算法。
这些算法原理的应用能够有效地处理数字图像,对于图像识别、图像搜索、医学图像分析等领域具有广泛的应用价值。
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。
数字图像处理实验(MATLAB版)数字图像处理(MATLAB版)实验指导书(试用版)湖北师范学院教育信息与技术学院2009年4月试行目录实验一、数字图像获取和格式转换 2 实验二、图像亮度变换和空间滤波 6 实验三、频域处理7 实验四、图像复原9 实验五、彩色图像处理101实验六、图像压缩11 实验七、图像分割13 教材与参考文献142《数字图像处理》实验指导书实验一、数字图像获取和格式转换一、实验目的1掌握使用扫描仪、数码相机、数码摄像级机、电脑摄像头等数字化设备以及计算机获取数字图像的方法;2修改图像的存储格式;并比较不同压缩格式图像的数据量的大小。
二、实验原理数字图像获取设备的主要性能指标有x、y方向的分辨率、色彩分辨率(色彩位数)、扫描幅面和接口方式等。
各类设备都标明了它的光学分辨率和最大分辨率。
分辨率的单位是dpi,dpi是英文Dot Per Inch的缩写,意思是每英寸的像素点数。
扫描仪扫描图像的步骤是:首先将欲扫描的原稿正面朝下铺在扫描仪的玻璃板上,原稿可以是文字稿件或者图纸照片;然后启3动扫描仪驱动程序后,安装在扫描仪内部的可移动光源开始扫描原稿。
为了均匀照亮稿件,扫描仪光源为长条形,并沿y方向扫过整个原稿;照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成沿x方向的光带,又经过一组反光镜,由光学透镜聚焦并进入分光镜,经过棱镜和红绿蓝三色滤色镜得到的RGB三条彩色光带分别照到各自的CCD 上,CCD将RGB光带转变为模拟电子信号,此信号又被A/D变换器转变为数字电子信号。
至此,反映原稿图像的光信号转变为计算机能够接受的二进制数字电子信号,最后通过串行或者并行等接口送至计算机。
扫描仪每扫一行就得到原稿x方向一行的图像信息,随着沿y方向的移动,在计算机内部逐步形成原稿的全图。
扫描仪工作原理见图1.1。
4图1.1扫描仪的工作原理在扫描仪的工作过程中,有两个元件起到了关键的作用。
一个是CCD,它将光信号转换成为电信号;另一个是A/D变换器,它将模拟电信号变为数字电信号。