彩色图像处理数字图像处理共50页
- 格式:ppt
- 大小:3.71 MB
- 文档页数:50
rgb=cat(3,rgb_R,rgb_G,rgb_B);figure,imshow(rgb),title('RGB彩色图像');截图:(2)编写MATLAB程序,将一彩色图像从RGB空间转换为HIS空间,并观察其效果。
如例9.2所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);g=rgb1(:,:,2);b=rgb1(:,:,3);I=(r+g+b)/3figure,imshow(I);tmp1=min(min(r,g),b);tmp2=r+g+b;tmp2(tmp2==0)=eps;S=1-3.*tmp1./tmp2;figure,imshow(S);tmp1=0.5*((r-g)+(r-b));tmp2=sqrt((r-g).^2+(r-b).*(g-b));theta=acos(tmp1./(tmp2+eps));H=theta;H(b>g)=2*pi-H(b>g);H=H/(2*pi);H(S==0)=0;figure,imshow(H);截图:(3)编写MATLAB程序,将一彩色图像在RGB空间进行彩色分割,并观察其效果。
如例9.11所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);figure,imshow(r);g=rgb1(:,:,2);figure,imshow(g);b=rgb1(:,:,3);figure,imshow(b);r1=r;r1_u=mean(mean(r1(:)));[m,n]=size(r1);sd1=0.0;for i=1:mfor j=1:nsd1= sd1+(r1(i,j)-r1_u)*(r1(i,j)-r1_u);endendr1_d=sqrt(sd1/(m*n));r2=zeros(size(rgb1,1),size(rgb1,2));ind=find((r>r1_u-1.25*r1_d)&(r<r1_u+1.25*r1_d));r2(ind)=1;figure,imshow(r2);截图:(4)编写MATLAB程序,将一彩色图像在向量空间进行边缘检测,并观察其效果。
数字图像处理Ch05. 彩色图像处理Outline•概述•颜色理论–彩色视觉•颜色模型–工业模型–色度学模型–视觉模型•彩色图像处理–伪彩色图像处理–真彩色图像处理•为了简单起见,数字图像处理中的很多方法主要在灰度图像上做示例和推演。
•但是,在实际应用中,我们遇到更多的是彩色图像•彩色图像比灰度图像包含了更多的信息•对色彩进行感知也是人类视觉系统的一项固有的本领。
•随着电子技术、计算机技术的发展,彩色图像的记录设备和输出设备技术都非常成熟•彩色图像在印刷、多媒体、互联网等方面都已经称为主流。
•支持彩色图像处理的物质条件已经成熟,彩色图像处理技术的需求日益高涨。
•和灰度图像相比,彩色图像处理的首要问题是如何表达描述图像的颜色,即建立彩色模型。
•彩色图像处理技术:–伪彩色图像处理:•人对灰度辨别只有几十个级,却可辨别上千种色彩;•将灰度图转化为彩色图像可以提高人们对图像内容的观察效率–真彩色图像处理:•待处理的图像本身是用全彩传感器获得的•彩色图像对场景的描述能力更强,更复杂•彩色图像处理覆盖数字图像处理的各个方面:增强、滤波、分割、识别、压缩、水印。
颜色理论基础•光线没有颜色,只是某种功率频谱分布最早发现光的颜色秘密的是牛顿。
通过棱镜分光实验,牛顿发现白光是由不同颜色的光混合而成颜色理论•视觉的本领:将不同频率的电磁波感知为不同的颜色;•人的眼睛可以分辨几十种亮度,却可以分辨上千种颜色•除了光的颜色,人眼对物体的颜色的感知取决于物体反射光的特性。
如果物体对某些光谱反射比较多,则物体就呈现对应的颜色。
如果物体反射各种光的能力比较均衡,则物体呈白色颜色理论基础•彩色视觉:–物理成像过程–复杂的生理过程•人眼结构:–晶状体:强大的自动调焦能力–视网膜:人眼感知图像信号的窗口,分布着无数的感光细胞,其中可分为柱状细胞和锥状细胞•锥细胞:约6~7百万个–对颜色敏感,适应于强照度–又分为三种,分别对蓝色、红色、绿色敏感–细节分辨能力强,亮视觉•柱细胞:约7千万~1.5亿个–对颜色不敏感,适应于低照度–不能分辨色彩,只能分辨形状–响应快,角度宽–暗视觉•人眼有着非常大的亮度适应范围(10-19~110 lx):–仅仅靠瞳孔调节是远远不够的(瞳孔调节可以使光通量改变约20倍)–还需要靠两类细胞的转换来实现,大约需要30分钟完全适应。
数字图像处理----彩色图像处理杨淑莹教授天津理工大学计算机与通信工程学院彩色图像处理彩色图像的灰度化处理 彩色图像马赛克处理 彩色图像的浮雕处理彩色图像的灰度化处理1. 理论分析(1) BMP位图文件类型(2) 24位真彩色图像文件结构(3) 彩色图像的灰度化处理方法2. 理论验证(1)UltraEdit软件对真彩色文件数据剖析(2) 教学软件验证3. 实现步骤4. 编程代码(1) CDib类库的建立(2) CDib派生类的建立----彩色图像处理(3) 灰度化处理代码1.24位真彩色图像(1)每一像素由RGB三个分量组成。
(2)每个分量各占8位,取值范围为0~255,每个像素24位。
(207,137,130) (220,179,163) (215,169,161) (210,179,172) (210,179,172) (207,154,146) (217,124,121) (215,169,161) (216,179,170) (216,179,170) (207,137,120) (159, 51, 71) (213,142,135) (216,179,170) (221,184,170) (190, 89, 89) (204,109,113) (204,115,118) (216,179,170) (220,188,176) (190, 77, 84) (206, 95, 97) (217,113,113) (189, 85, 97) (222,192,179) (150, 54, 71) (177, 65, 73) (145, 39, 65) (150, 47, 67) (112, 20, 56)(136, 38, 65) (112, 20, 56) (112, 20, 56) (109, 30, 65) (112, 20, 56) ( 95, 19, 64)(136, 38, 65) ( 91, 11, 56) (113, 25, 60) (103, 19, 59) ( 81, 12, 59) (126, 62, 94)(138, 46, 71) (103, 19, 59) (158, 65, 83) (124, 40, 70) (145, 62, 79) (130, 46, 73)2.理论分析--24位真彩色图像文件结构位图像素数据位图信息头结构BITMAPINFOHEADER 位图文件头结构BITMAPFILEHEADER 位图像素数据颜色表位图信息头结构BITMAPINFOHEADER位图文件头结构BITMAPFILEHEADER8位位图文件结构24位位图文件结构1)BMP文件头结构typedef struct tagBITMAPFILEHEADER{WORD bfType; // BM,2byteDWORD bfSize;// 文件大小,4byteWORD bfReserved1;// 0WORD bfReserved2;// 0DWORD bfOffBits; // 位图数据的起始位置,}TMAPFILEHEADER;//(14byte)2)位图信息头结构typedef struct tagBITMAPINFOHEADER{DWORD biSize; // biSize=40byteLONG biWidth;LONG biHeight;WORD biPlanes; // 1WORD biBitCount;// 每个像素所需的位数,24 DWORD biCompression; // 位图压缩类型,0DWORD biSizeImage; // 位图的大小,LONG biXPelsPerMeter; // 0LONG biYPelsPerMeter; // 0DWORD biClrUsed; // 颜色数0DWORD biClrImportant; // 重要的颜色数0} BITMAPINFOHEADER;3)位图像素数据(207,137,130) (220,179,163) (215,169,161) (210,179,172) (210,179,172) (207,154,146) (217,124,121) (215,169,161) (216,179,170) (216,179,170) (207,137,120) (159, 51, 71) (213,142,135) (216,179,170) (221,184,170) (190, 89, 89) (204,109,113) (204,115,118) (216,179,170) (220,188,176) (190, 77, 84) (206, 95, 97) (217,113,113) (189, 85, 97) (222,192,179) (150, 54, 71) (177, 65, 73) (145, 39, 65) (150, 47, 67) (112, 20, 56) (136, 38, 65) (112, 20, 56) (112, 20, 56) (109, 30, 65) (112, 20, 56) ( 95, 19, 64) (136, 38, 65) ( 91, 11, 56) (113, 25, 60) (103, 19, 59) ( 81, 12, 59) (126, 62, 94) (138, 46, 71) (103, 19, 59) (158, 65, 83) (124, 40, 70) (145, 62, 79) (130, 46, 73)1.理论分析--彩色图像的灰度化处理使颜色的R、G、B分量值相等。