2014图论(1) 上传
- 格式:ppt
- 大小:1.35 MB
- 文档页数:35
图论图论图论是数学的⼀个分⽀。
它以图为研究对象。
图论中的图是由若⼲给定的点及连接两点的线所构成的图形,这种图形通常⽤来描述某些事物之间的某种特定关系,⽤点代表事物,⽤连接两点的线表⽰相应两个事物间具有这种关系。
欧拉回路定义边权:离散数学或数据结构中,图的每条边上带的⼀个数值,它代表的含义可以是长度等等,这个值就是边权欧拉路径:如果图中的⼀个路径包括每个边恰好⼀次,则该路径称为欧拉路径。
欧拉回路:⾸尾相接的欧拉路径称为欧拉回路。
dfs(深度优先搜索)深度优先搜索是⼀种在开发爬⾍早期使⽤较多的⽅法。
它的⽬的是要达到被搜索结构的叶结点(即那些不包含任何超链的HTML⽂件) 。
在⼀个HTML⽂件中,当⼀个超链被选择后,被链接的HTML⽂件将执⾏深度优先搜索,即在搜索其余的超链结果之前必须先完整地搜索单独的⼀条链。
深度优先搜索沿着HTML⽂件上的超链⾛到不能再深⼊为⽌,然后返回到某⼀个HTML⽂件,再继续选择该HTML⽂件中的其他超链。
当不再有其他超链可选择时,说明搜索已经结束。
判定由于每⼀条边都要经过恰好⼀次,因此对于除了起点和终点之外的任意⼀个节点,只要进来,⼀定要出去。
⼀个⽆向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图只有⼀个存在边的连通块。
⼀个⽆向图存在欧拉路径,当且仅当该图中奇点的数量为0或2,且该图只有⼀个存在边的连通块。
⼀个有向图存在欧拉回路,当且仅当所有点的⼊度等于出度。
⼀个混合图存在欧拉回路,当且仅当存在⼀个对所有⽆向边定向的⽅案,使得所有点的⼊度等于出度。
需要⽤⽹络流。
求法我们⽤ dfs(深度优先搜索)来求出⼀张图的欧拉回路。
我们给每⼀条边⼀个 vis数组代表是否访问过,接下来从⼀个点出发,遍历所有的边。
直接dfs并且记录的话会有⼀些问题。
为了解决这个问题,我们在记录答案的时候倒着记录,也就是当我们通过 (u, v) 这条边到达 v 的时候,先把 v dfs 完再加⼊ (v, u) 这条边。
数学中的图论基础图论作为数学中的一个重要分支,研究的是图这种数学结构。
图论不仅在数学理论中有着重要的地位,而且在计算机科学、运筹学、电路设计等领域也有着广泛的应用。
本文将介绍数学中的图论基础知识,包括图的基本概念、性质以及一些经典的应用。
1. 图的基本概念图由节点(顶点)和边组成,是图论研究的基本对象。
图可以分为有向图和无向图两种。
1.1 有向图有向图中的边是有方向的,即从一个节点指向另一个节点。
有向图用表示,其中为节点集合,为有向边的集合。
1.2 无向图无向图中的边是没有方向的,即连接两个节点的边不区分起点和终点。
无向图用表示,其中为节点集合,为无向边的集合。
2. 图的性质图论中有许多重要的性质和定理,这些性质对于研究图的结构和特点具有重要意义。
2.1 连通图在无向图中,如果任意两个节点之间都存在路径相连,则称该图是连通图。
连通图中任意两个节点都是连通的,不存在孤立的节点。
2.2 完全图完全图是一种特殊的图,任意两个节点之间都存在一条边相连。
完全图用表示,其中表示图中节点的个数。
2.3 欧拉图欧拉图是指一条路径经过图中每条边恰好一次的连通图。
欧拉图有一个著名的结论——存在欧拉回路的充要条件是该图所有节点度数为偶数。
2.4 哈密顿图对于一个图,如果存在一条路径经过图中每个节点恰好一次,则称该路径为哈密顿路径。
如果存在一条经过每个节点恰好一次的回路,则称该回路为哈密顿回路。
3. 图论的应用图论在现实生活和学术研究中有着广泛的应用。
以下介绍一些图论在实际问题中的应用场景。
3.1 网络路由在计算机网络中,路由器通过构建网络拓扑图并使用图论算法来选择最佳路径,实现数据的传输和通信。
3.2 交通规划交通规划中的交通流量分析、交通网络设计等问题可以通过图论模型进行建模和求解,帮助优化城市交通系统。
3.3 社交网络分析社交网络中的节点表示个体,边表示个体之间的关系。
通过图论分析社交网络的拓扑结构和节点之间的连接关系,可以帮助推荐系统、信息传播等问题。