导数综合讲义(教师版).pdf
- 格式:doc
- 大小:238.50 KB
- 文档页数:7
(1)若a =0,求f (x )的单调区间;
(2)若当x ≥0时,f (x )≥0,求a 的取值范围.
巩固作业
一、选择题
1.f (x )=5x 2-2x 的单调增区间是( )
A .(15
,+∞) B .(-∞,15) C .(-15
,+∞) D .(-∞,-15) 2.函数f (x )=x 3+3x 2+4x -a 的极值点的个数是( )
A .2
B .1
C .0
D .由a 确定 3.已知函数f (x )的导数为f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得
极大值-5时,x 的值应为( )
A .-1
B .0
C .1
D .±1 4.若函数g (x )=x 3-ax 2+1在区间[1,2]上单调递减,则实数a 的取值范围是( )
A .a ≥3
B .a >3 C.32
<a <3 D.32≤a ≤3 5.设函数f (x )=ax 3+bx 2+cx +d ,f ′(x )为其导函数,如右图是函数y =x ·f ′(x )的图象的
一部分,则f (x )的极大值与极小值分别为( )
A .f (1)与f (-1)
B .f (-1)与f (1)
C .f (2)与f (-2)
D .f (-2)与f (2)
6.(2011·郑州第一次调研)设f (x )是定义在R 上的奇函数,g (x )是定义在R 上恒大于零的函数,且当
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。
导数的概念及运算【题集】1. 函数的平均变化率A. B. C. D.1.如图,函数在,两点间的平均变化率是( ).【答案】B 【解析】由图可知,,所以,所以函数在,两点间的平均变化率是.故选B .【标注】【知识点】求平均变化率(1)(2)2.求下列函数在区间和上的平均变化率...【答案】(1)(2)在区间和上的平均变化率均为.在区间上的平均变化率,在区间上的平均变化率.【解析】(1)(2)在区间上的平均变化率为,在区间上的平均变化率为.在区间上的平均变化率为,在区间上的平均变化率为.【标注】【知识点】函数的平均变化率、瞬时速度与瞬时变化率【素养】数学运算A.B.C.D.3.在函数的图象上取一点及邻近一点,则等于().【答案】C【解析】,.【标注】【知识点】求平均变化率A. B. C. D.4.函数的图象如图,则函数在下列区间上平均变化率最大的是().【答案】C【解析】函数在区间上的平均变化率为,由函数图象可得,在区间上,,即函数在区间上的平均变化率小于;在区间、、上时,且相同,由图象可知函数在区间上的最大,所以函数在区间上的平均变化率最大.故选:.【标注】【知识点】求平均变化率2. 瞬时变化率与导数(1)(2)5.利用导数的定义求下列函数的导数...【答案】(1)(2)..【解析】(1)(2).从而,当时,,∴.∵∴,∴当时,,∴.【标注】【知识点】导数的定义A.B.C.D.6.若,则( ).【答案】D 【解析】.故选:.【标注】【知识点】导数的定义A. B. C. D.7.设是可导函数,且,则().【答案】C【解析】,故选 C.【标注】【知识点】导数的定义;导数的几何意义的实际应用;函数的极限A. B.C. D.8.若函数在区间内可导,且,则的值为().【答案】C【解析】因为在可导,所以,.【标注】【知识点】导数的定义;函数的平均变化率、瞬时速度与瞬时变化率3. 基本初等函数的导数A.B.C.D.9.下列求导数运算正确的是().【答案】C【解析】根据导数的四则运算以及基本初等函数运算法则,故有选项,故错误.选项,故错误.选项,故正确.选项,故错误.故选.【标注】【素养】数学运算【知识点】利用公式和四则运算法则求导A.B.C.D.10.下列导数运算错误的是( ).【答案】C 【解析】选项:.故选.【标注】【知识点】利用公式和四则运算法则求导11.如果函数,那么 .【答案】【解析】由题意可知,∴,,∴.故答案为:.【标注】【知识点】利用公式和四则运算法则求导;计算任意角的三角函数值A. B.C.D.12.已知,则的值为( ).【答案】A 【解析】,【标注】【知识点】复合函数的求导法则4.导数的四则运算13.函数的导数是 .【答案】【解析】,.【标注】【知识点】利用公式和四则运算法则求导A.B.C.D.14.函数在处的导数等于( ).【答案】A 【解析】∵,∴.【标注】【知识点】利用公式和四则运算法则求导15.的导数 .【答案】【标注】【知识点】利用公式和四则运算法则求导(1)16.求下列函数的导数:.(2)(3)(4)(5)(6)(7)......【答案】(1)(2)(3)(4)(5)(6)(7)......【解析】(1)(2)(3)(4)(5)(6)(7)....先使用三角公式进行化简.∴.【标注】【素养】数学运算A. B. C. D.17.已知函数的导数为,且满足,则().【答案】C【解析】由函数,∴,∴当时,则有,解得.故选:.【标注】【知识点】利用公式和四则运算法则求导A. B. C. D.18.已知,则().【答案】B【解析】∵,∴,∴,∴,∴.故选.【标注】【知识点】利用公式和四则运算法则求导A. B.C. D.19.已知函数的导函数为且满足,则().【答案】B【解析】,.故选.【标注】【知识点】利用公式和四则运算法则求导A. B. C. D.20.已知函数的导函数为,且满足,则().【答案】B 【解析】,令,即,解得.【标注】【知识点】利用公式和四则运算法则求导5. 复合函数求导法则(1)(2)(3)(4)(5)(6)21.求下列函数的导数.......【答案】(1)(2)(3)(4)(5)(6)......【标注】【知识点】复合函数的求导法则;利用公式和四则运算法则求导(1)(2)(3)(4)(5)(6)(7)(8)22.求下列函数的导数.........(9)(10)..【答案】(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)..........【解析】(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)略.略.略.略.略.略.略.略.略.略.【标注】【知识点】复合函数的求导法则;利用公式和四则运算法则求导23.已知函数,且,则的值为.【答案】【解析】,.【标注】【知识点】复合函数的求导法则A.B.C. D.24.已知函数,是函数的导函数,则函数的部分图象是( ).【答案】D 【解析】因为,所以,可知为奇函数,故排除,;又因为,,排除选,故选.【标注】【知识点】函数图象的识别问题;根据奇偶性确定图象;利用公式和四则运算法则求导6. 导数的几何意义A. B.C.D.25.曲线在点处的切线的斜率为( ).【答案】B【解析】∵,∴,∴.故选.【标注】【知识点】导数的几何意义A.B.C.D.26.设曲线在点处的切线斜率为,则点的坐标为( ).【答案】B【标注】【知识点】导数的几何意义;导数的几何意义的实际应用(1)(2)(3)27.导数等于切线斜率.如图,直线是曲线在处的切线,则.如图,曲线在点处的切线方程是, .设是偶函数.若曲线在点处的切线的斜率为,则该曲线在点处的切线的斜率为 .【答案】(1)(2)(3)【解析】(1)(2)(3)直线的斜率为,所以.时,,∵的斜率为,故,∴.由偶函数的图象关于轴对称知,在对称点处的切线也关于轴对称,故所求切线的斜率为.也可由特殊函数得到此题答案.【标注】【知识点】导数的几何意义的实际应用;已知切线方程求参数;导数的几何意义;斜率计算28.若曲线上点处的切线平行于直线,则点的坐标是.【答案】【解析】函数的定义域为,函数的导数为,直线的斜率,∵曲线上点处的切线平行与直线,∴,即,解得,此时,故点的坐标是,故答案为:.【标注】【知识点】求在某点处的切线方程;导数的几何意义29.曲线在点处的切线方程为.【答案】【解析】因为,所以,所以该切线方程为,即.故答案为:.【标注】【知识点】导数的几何意义A.B. C. D.30.曲线在点处的切线方程是().【答案】A【解析】,故,所以曲线在处的切线斜率为,切线方程为,化简整理得,故选.【标注】【知识点】求在某点处的切线方程31.已知函数,求过点的切线方程.【答案】和.【解析】,因为点在曲线上.①若点为切点,则此时切线斜率为,则切线方程为,即;②若点不是切点,则设切点为,有,切线方程满足,(*)整理得,因为点满足方程(*),则是方程的一个根,即,即,所以或(舍,因为切点不为),即,,则此时切线的方程为,即,综上所述,过点的切线方程为和.【标注】【知识点】求过某点的切线方程;求在某点处的切线方程;导数的几何意义A. B.C.或D.或32.过点的切线方程是( ).【答案】C【解析】设切点坐标为,,切线斜率,则,解得或,∴所求切线方程为或.【标注】【知识点】求过某点的切线方程;导数的几何意义(1)(2)33.已知曲线.求曲线在点处的切线方程.求曲线过点的切线方程.【答案】(1)(2)或【解析】方法一:方法二:(1)(2)∵,∴在点处的切线的斜率,∴曲线在点处的切线方程为,即.∵点在曲线上,且,∴在点处的切线的斜率为,∴曲线在点处的切线方程为,即.设曲线与过点的切线相切于点,则切线的斜率为,∴切线方程为,即,∵点在切线上,∴,即,∴,即,∴,解得或,故所求的切线方程为或.【标注】【知识点】求在某点处的切线方程;导数的几何意义;求过某点的切线方程34.若直线是曲线的切线,也是曲线的切线,则.【答案】【解析】方法一:方法二:设直线与曲线和曲线的切点分别为和.由导数的几何意义可得,即,由切点也在各自的曲线上,可得,解得,从而,则.由,得,由,得.设直线与曲线相切于点,则①,②,设直线与曲线相切于点,则③,④,由①得,代入②得,即⑤,由③得,代入④得,即⑥,⑤⑥得,,代入⑤得,故答案为.【标注】【知识点】求过某点的切线方程;导数的几何意义的实际应用;导数的几何意义35.若直线是曲线的切线,也是曲线的切线,则.【答案】【解析】设与曲线的切线,曲线的切点分别为,,∵,曲线,∴,,∴,①切线方程分别为,即为,或,即为,解得,②由①②解得,,可得:,则有,.故答案为:.【标注】【知识点】求过某点的切线方程;导数的几何意义。
高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。
要求层次重难点导数的应用与微积分 导数在研究函数中的应用利用导数研究函数的单调性(其中多项式函数不超过三次) C 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 会利用导数解决某些实际问题.函数的极值、最值(其中多项式函数不超过三次)C利用导数解决某些实际问题 B定积分与微积分基本定理定积分的概念 A 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 了解微积分基本定理的含义.微积分基本定理A板块四:导数与其它知识综合知识内容1.导数与函数的性质、基本初等函数的结合,这是导数的最主要的考查内容; 常常涉及到函数与方程的知识,有时需要结合函数图象求解; 2.导数与数列的结合,要注意数列作为函数的特殊性;3.导数与三角函数的结合;4.导数在不等式的证明中的运用,经常需要构造函数,利用导数去求单调性,证明不等式.典例分析: 导数与函数综合【题1】 若方程3320x ax -+=有三个不同实根,则实数a 的取值范围为( )A .0a >B .1a >C .13a <<D .01a <<【考点】导数与函数综合 【难度】3星 【题型】选择【关键词】【解析】 令3()32f x x ax =-+,22()333()f x x a x a '=-=-,要方程有三个不同实根,必须0a >(否则()0f x '≥,()f x 单调增长,最多只有一根). 例题精讲高考要求导数的综合与微积分此时()f x在(,-∞上单调增加,在(,上单调减少,在,)+∞上单调增加. 要()0f x =有三个零点,当且仅法(0f >,且0f <. 解得1a >.【答案】B【题2】 设函数()32()f x x bx cx x =++∈R ,已知()()()g x f x f x '=-是奇函数.⑴求b 、c 的值.⑵求()g x 的单调区间与极值.⑶若()g x m =有三个不同的实根,求m 的取值范围.【考点】导数与函数综合 【难度】3星 【题型】解答【关键词】2006,安徽,高考【解析】 ⑴∵()32f x x bx cx =++,∴()232f x x bx c '=++.从而322()()()(32)g x f x f x x bx cx x bx c '=-=++-++32(3)(2)x b x c b x c =+-+--是一个奇函数,故30300b b c c -==⎧⎧⇒⎨⎨-==⎩⎩;⑵由⑴知3()6g x x x =-,从而2()36g x x '=-,由此可知,(-∞,和)+∞是函数()g x的单调递增区间;(是函数()g x 的单调递减区间;()g x在x =极大值为()g x在x =时取得极小值,极小值为- ⑶当x →-∞时,()g x →-∞;当x →+∞时,()g x →+∞,故当(m ∈-时,()g x m =有三个不同的实根. 【答案】⑴3,0b c ==;⑵(-∞-,和)+∞是函数()g x的单调递增区间;(是函数()g x 的单调递减区间;()g x在x =()g x在x =-⑶(m ∈-.【题3】 已知函数32()4f x ax bx x =++的极小值为8-,其导函数()y f x '=的图象经过点(20)-,,如图所示.⑴ 求()f x 的解析式;⑵ 若函数()y f x k =-在区间[32]-,上有两个不同的零点,求实数k 的取值范围.【难度】3星 【题型】解答【关键词】2009-2010,海淀,高三,第一学期,期中测试【解析】 ⑴ 2()324f x ax bx '=++,且()y f x '=的图象过点(20)-,,所以2-为23240ax bx ++=的根,代入得:310a b -+= ……① 由图象可知,()f x 在2x =-时取得极小值, 即(2)8f -=-,得2b a =……………………②由①②解得12a b =-=-,. ∴32()24f x x x x =--+.⑵ 由题意,方程()f x k =在区间[32]-,上有两个不等实根, 即方程3224x x x k --+=在区间[32]-,上有两个不等实根.2()344f x x x '=--+,令()0f x '=,解得2x =-或23x =.可列表:由表可知,当8k =-或327k -<<时,方程3224x x x k --+=在区间[32]-,上有两个不等实根,即函数()y f x k =-在区间[32]-,上有两个不同的零点. 【答案】⑴32()24f x x x x =--+;⑵8k =-或40327k -<<.【题4】 已知函数()f x 3213x ax b =-+在2x =-处有极值.⑴ 求函数()f x 的单调区间;⑵ 若函数()f x 在区间[]3,3-上有且仅有一个零点,求b 的取值范围.【考点】导数与函数综合【难度】3星 【题型】解答【关键词】2010,丰台,二模,题19【解析】 ⑴ ()22f x x ax '=-由题意知: (2)440f a '-=+=,得1a =-,∴()22f x x x '=+, 令()0f x '>,得2x <-或0x >;令()0f x '<,得20x -<<,∴()f x 的单调递增区间是(),2-∞-和()0,+∞,单调递减区间是()2,0-.⑵ 由⑴ 知,()3213f x x x b =++,()423f b -=+为函数()f x 极大值,()0f b =为极小值.∵函数()f x 在区间[]3,3-上有且仅有一个零点,∴()()3000f f ⎧-⎪⎨>⎪⎩≤或()()3020f f ⎧⎪⎨-<⎪⎩≥或()()3030f f ⎧->⎪⎨<⎪⎩或()()2030f f ⎧-=⎪⎨<⎪⎩或()()3000f f ⎧->⎪⎨=⎪⎩,即180403b b +⎧⎪⎨+<⎪⎩≥,∴4183b -<-≤,即b 的取值范围是418,3⎡⎫--⎪⎢⎣⎭.【答案】⑴()f x 的单调递增区间是(),2-∞-和()0,+∞,单调递减区间是()2,0-.⑵418,3⎡⎫--⎪⎢⎣⎭.【题5】 已知函数()()32f x x ax b a b =-++∈R ,.⑴若1a =,函数()f x 的图象能否总在直线y b =的下方?说明理由? ⑵若函数()f x 在()02,上是增函数,求a 的取值范围.⑶设123x x x ,,为方程()0f x =的三个根,且()110x ∈-,,()201x ∈,,()()311x ∈-∞-+∞U ,,,求证:1a >.【考点】导数与函数综合 【难度】4星 【题型】解答【关键词】2009,西城,一模,题20【解析】 ⑴当1a =时,()32f x x x b =-++,因为()12f b b -=+>,所以,函数()f x 的图象不能总在直线y b =的下方. ⑵由题意,得()232f x x ax '=-+,令()0f x '=,解得0x =或23x a =,当0a <时,由()0f x '>,解得203a x <<,所以()f x 只在203a ⎛⎫ ⎪⎝⎭,上是增函数,与题意不符,舍去; 当0a =时,由()230f x x '=-≤,与题意不符,舍去;当0a >时,由()0f x '>,解得203x a <<,所以()f x 在203a ⎛⎫ ⎪⎝⎭,上是增函数,又()f x 在()02,上是增函数,所以223a ≥,解得3a ≥,综上,a 的取值范围为[)3+∞,.⑶因为方程()320f x x ax b =-++=最多只有3个根, 由题意,得在区间()10-,内仅有一根, 所以()()()1010f f b a b -⋅=++<, ① 同理()()()0110f f b a b ⋅=-++<, ② 当0b >时,由①得10a b ++<,即1a b <--, 由②得10a b -++<,即1a b <-+,因为11b b --<-+,所以11a b <--<-,即1a <-; 当0b <时,由①得10a b ++>,即1a b >--, 由②得10a b -++>,即1a b >-+,因为11b b --<-+,所以11a b >-+>,即1a >.当0b =时,因为()00f =,所以()0f x =有一根0,这与题意不符. 综上,1a >.注:在第⑶问中,得到①、②后,可以在坐标平面aOb 内,用线性规划方法解.【答案】⑴略;⑵[)3a ∈+∞,;⑶略.【题6】 已知函数32()f x x x ax b =+++.⑴ 当1a =-时,求函数()f x 的单调区间;⑵ 若函数()f x 的图象与直线y ax =只有一个公共点,求实数b 的取值范围.【考点】导数与函数综合【难度】3星【题型】解答【关键词】2009-2010,海淀,高三,第一学期,期中测试【解析】 ⑴ 2()321(31)(1)f x x x x x '=+-=-+令()0f x '>,解得13x >或1x <-;令()0f x '<,解得113x -<<.所以()f x 的单调递增区间为1(1)()3-∞-+∞,,,,()f x 的单调递减区间为1(1)3-,.⑵ 因为函数()f x 的图象与直线y ax =只有一个公共点,所以方程320x x ax b ax +++-=只有一个解,即320x x b ++=只有一个解. 令32()g x x x b =++,则其图象和x 轴只有一个交点,2()32g x x x '=+,令2()320g x x x '=+=,所以12203x x ==-,,所以,()g x 在10x =处取得极小值b ,在23x =-取得极大值27b +,要使32()g x x x b =++的其图象和x 轴只有一个交点,只要04027b b >⎧⎪⎨+>⎪⎩或04027b b <⎧⎪⎨+<⎪⎩,解得0b >或427b <-.【答案】⑴()f x 的单调递增区间为1(1)()3-∞-+∞,,,,单调递减区间为1(1)3-,.⑵0b >或427b <-.【题7】 32()3(1)3(2)1f x mx m x m x =-++++,其中m ∈R .⑴若0m <,求()f x 的单调区间;⑵在⑴的条件下,当[]11x ∈-,时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围;⑶设32()(32)34ln 1g x mx m x mx x m =-+++++,问是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有两个不同的交点?若存在,求出m 的值;若不存在,说明理由.【考点】导数与函数综合 【难度】3星 【题型】解答【关键词】【解析】 ⑴2()36(1)36f x mx m x m '=-+++23(1)1m x x m ⎡⎤⎛⎫=--+ ⎪⎢⎥⎝⎭⎣⎦,当0m <时,有211m>+,当x 变化时,()f x 与()f x '的变化如下表:故有上表知,当0m <时,()f x 在1m ⎛⎫-∞+ ⎪⎝⎭,单调递减,在11m ⎛⎫+ ⎪⎝⎭,单调递增,在(1)+∞,上单调递减.⑵由已知得()3f x m '>,即22(1)20mx m x -++>,又0m <,所以222(1)0x m x m m -++<([]11x ∈-,) ① 设212()21h x x x m m⎛⎫=-++ ⎪⎝⎭,其函数开口向上,由题意知①式恒成立, ∴22(1)0120(1)010h m mh ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩, 解之得43m >-,又0m <,所以m 的取值范围为403⎛⎫- ⎪⎝⎭,;⑶令()()()x g x f x ϕ=-,则2()64ln x x x x m ϕ=-++因为0x >,要使函数()f x 与函数()g x 有且仅有2个不同的交点,则函数2()64ln x x x x m ϕ=-++的图象与x 轴的正半轴有且只有两个不同的交点∴242642(1)(2)()26(0)x x x x x x x x x xϕ-+--'=-+==>当(0,1)x ∈时,()0x ϕ'>,()x ϕ是增函数; 当(1,2)x ∈时,()0x ϕ'<,()x ϕ是减函数; 当(2,)x ∈+∞时,()0x ϕ'>,()x ϕ是增函数;∴()x ϕ有极大值(1)5m ϕ=-;()x ϕ有极小值(2)4ln 28m ϕ=+-. 又因为当x 充分接近0时,()0x ϕ<;当x 充分大时,()0x ϕ>所以要使()0x ϕ=有且仅有两个不同的正根,必须且只须(1)0ϕ=或(2)0ϕ=, 即50m -=或4ln280m +-=,∴5m =或84ln2m =-.∴当5m =或84ln2m =-时,函数()f x 与()g x 的图象有且只有两个不同交点.【答案】⑴()f x 在21m ⎛⎫-∞+ ⎪⎝⎭,单调递减,在211m ⎛⎫+ ⎪⎝⎭,单调递增,在(1)+∞,上单调递减. ⑵403⎛⎫- ⎪⎝⎭,; ⑶存在,5m =或84ln2m =-.【题8】 已知函数2()8()6ln f x x x g x x m =-+=+,. ⑴求()f x 在区间[]1t t +,上的最大值()h t ; ⑵是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.【考点】导数与函数综合 【难度】3星 【题型】解答【关键词】2006,福建,高考【解析】 ⑴22()8(4)16f x x x x =-+=--+.当14t +<,即3t <时,()f x 在[]1t t +,上单调递增, 22()(1)(1)8(1)67h t f t t t t t =+=-+++=-++;当41t t +≤≤,即34t ≤≤时,()(4)16h t f ==;当4t >时,()f x 在[]1t t +,上单调递减,2()()8h t f t t t ==-+. 综上,22673()163484t t t h t t t t t ⎧-++<⎪=⎨⎪-+>⎩ ≤≤ ; ⑵函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数()()()x g x f x φ=- 的图象与x 轴的正半轴有且只有三个不同的交点.∵2()86ln x x x x m φ=-++,∴262862(1)(3)()28(0)x x x x x x x x x xφ-+--'=-+==>,当(01)x ∈,时,()0x φ'>,()x φ是增函数;当(13)x ∈,时,()0x φ'<,()x φ是减函数; 当(3)x ∈+∞,时,()0x φ'>,()x φ是增函数;当1x =或3x =时,()0x φ'=.∴()(1)7()(3)6ln315x m x m φφφφ==-==+-极大值极小值,. ∵当x 充分接近0时,()0x φ<;当x 充分大时,()0x φ>. ∴要使()x φ的图象与x 轴正半轴有三个不同的交点,必须且只须()70()6ln 3150x m x m φφ=->⎧⎪⎨=+-<⎪⎩最大值最小值,即7156ln3m <<-.所以存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m 的取值范围为(7156ln3)-,.【答案】⑴22673()163484t t t h t t t t t ⎧-++<⎪=⎨⎪-+>⎩ ≤≤ ;⑵存在,m 的取值范围为(7156ln3)-,.【题9】 已知二次函数()y g x =的图象经过原点(00)O ,、点1(0)P m ,和点2(11)P m m ++,(0m ≠,且1m ≠-). ⑴求函数()y g x =的解析式;⑵设()()()f x x n g x =-(0m n >>),若()()0f a f b ''==,b a <,求证:b n a m <<<. ⑶在例题⑵的条件下,若m n +=()y f x =相切的两条直线能否互相垂直?若能,请给出证明;若不能,请说明理由.【考点】导数与函数综合 【难度】3星 【题型】解答【关键词】【解析】 ⑴设2()(0)g x px qx r p =++≠,依题意得2200(1)(1)1r pm qm r p m q m r m =⎧⎪++=⎨⎪++++=+⎩,解得10p q m r =⎧⎪=-⎨⎪=⎩.∴2()g x x mx =-.⑵()()()f x x x n x m =--32()x m n x mnx =-++,∴2()32()f x x m n x mn '=-++, 依题意得a b ,是方程()0f x '=的两个实数根,又(0)0f mn '=>,()()0f n n m n '=-<,()()0f m m m n '=->,故两根a b ,分布在区间(0)n ,、()n m ,内,又b a <,∴b n a m <<<成立; ⑶设()f x 的过原点的切线对应切点的横坐标为0x ,则切线方程为20000()[32()]()y f x x m n x mn x x -=-++-, 若此切线过原点,则有2000000()()[32()]()x x m x n x m n x mn x ---=-++-, 解得00x =或02m nx +=.故()f x 有两条过原点的切线,设对应的切点的横坐标分别为12x x ,,且12x x <,则1202m nx x +==,, 从而两切线的斜率分别为2121()4k mn k m n mn ==-++,,若两切线互相垂直,则121k k =-,∴1m n mn ⎧+=⎪⎨=⎪⎩11m n ⎧=⎪⎨⎪⎩,∴存在过原点且与曲线相切的两条互相垂直的直线.【答案】⑴2()g x x mx =-;⑵略;⑶能,证明略.导数与不等式综合【题10】 当0x ≠时,有不等式( )A .e 1x x <+B .当0x >时,e 1x x <+;当0x <时,e 1x x >+C .e 1x x >+D .当0x <时,e 1x x <+;当0x >时,e 1x x >+【考点】函数与不等式综合 【难度】2星 【题型】选择【关键词】【解析】 令()e 1x f x x =--,则(0)0f =,()e 1x f x '=-,在0x >时,()0f x '>,故()f x 在(0)+∞,上单调递增,从而()(0)0f x f >=,即e 1x x >+;在0x <时,()0f x '<,故()f x 在(0)-∞,上单调递减,从而()(0)0f x f >=,即e 1x x >+.本题也可用特殊值法得出答案.【答案】C【题11】 已知函数(1)()ln 1a x f x x x -=-+. ⑴若函数()f x 在(0,)+∞上为单调增函数,求a 的取值范围;⑵设,m n +∈R ,且m n ≠,求证:ln ln 2m n m nm n -+<-. 【考点】函数与不等式综合 【难度】4星 【题型】解答【关键词】2010,东城,二模,题20【解析】 ⑴222221(1)(1)(1)2(22)1()(1)(1)(1)a x a x x ax x a x f x x x x x x x +--+-+-+'=-==+++.因为()f x 在(0,)+∞上为单调增函数,所以()0f x '≥在(0,)+∞上恒成立. 即2(22)10x a x +-+≥在(0,)+∞上恒成立,当(0,)x ∈+∞时,由2(22)10x a x +-+≥,得122a x x-+≤,设1(),(0,)g x x x x=+∈+∞,1()2g x x x =+=≥所以当且仅当1x x=即1x =时,()g x 有最小值2.故222a -≤,2a ≤. 所以a 的取值范围是(,2]-∞.⑵不妨设0m n >>,则1mn>.要证ln ln 2m n m n m n -+<-,只需证112ln m m n n m n-+<, 即证2(1)ln 1m m n m n n ->+,只需证2(1)ln 01m mn m n n -->+.设2(1)()ln 1x h x x x -=-+,由⑴知()h x 在(1,)+∞上是单调增函数,又1m n >,所以(1)0m h h n ⎛⎫>= ⎪⎝⎭,即2(1)ln 01m m n m n n -->+成立.所以ln ln 2m n m n m n -+<-. 【答案】⑴a 的取值范围是(,2]-∞.⑵略.【题12】 已知函数()(0)bf x ax c a x=++>的图象在点(1(1))f ,处的切线方程为1y x =-. ⑴用a 表示出b ,c ;⑵若()ln f x x >在[]1∞,上恒成立,求a 的取值范围; ⑶证明:11111ln(1)()232(1)n n n n n ++++>+++L ≥. 【考点】函数与不等式综合 【难度】4星 【题型】解答【关键词】2010,湖北,高考21【解析】 ⑴2()bf x a x '=-,则有(1)0(1)1f a b c f a b =++=⎧⎨'=-=⎩,,解得112b a c a =-⎧⎨=-⎩; ⑵由⑴知,1()12a f x ax a x -=++-,令1()()ln 12ln a g x f x x ax a x x-=-=++--,[)1x ∈+∞,,则(1)0g =,22221(1)11(1)()a a x x a ax x a a g x a x x x x -⎛⎫-- ⎪----⎝⎭'=--==, ①当102a <<时,11aa ->.若11ax a-<<,则()0g x '<,()g x 是减函数,所以()(1)0g x g <=,即()ln f x x <,故ln ()x f x ≥在[)1+∞,上不恒成立.②当12a ≥时,11aa-≤,若1x >,则()0g x '>,()g x 是增函数,所以()(1)0g x g >=, 即()ln f x x >,故当1x ≥时,ln ()x f x ≥,综上所述,所求a 的取值范围为12⎡⎫+∞⎪⎢⎣⎭,. ⑶解法一:取12a =,有()111122a f x ax a x x x -⎛⎫=++-=- ⎪⎝⎭,由⑵有当1x ≥时,()ln f x x ≥,即11ln 2x x x ⎛⎫- ⎪⎝⎭≥,也即12ln x x x->, 取11x k =+,则1111112ln11k k x x k k k k k+-=+-=+>++, 当1n =时,取1k =有112ln 22+>,也即11ln 24>+,命题成立;当2n ≥时,分别取1,2,,k n =L ,累加有()111122ln 121n n n ⎛⎫++++>+ ⎪+⎝⎭L整理即得1111ln(1)232(1)nn n n ++++>+++L综上,原命题成立. 解法二:当1n =时,左边1=,右边()()11ln 11ln 212114=++=+<+,命题成立;假设当n k =时,命题成立,则当1n k =+时,左边11111231k k =++++++L ()()1ln 1211k k k k >+++++()()2ln 121k k k +=+++ 右边()()1ln 222k k k +=+++现在只需要证明()()212ln21221k k k k k k +++->+++ 取12a =,21k x k +=+,由⑵有1212ln 2121k k k k k k +++⎛⎫-> ⎪+++⎝⎭,命题得证. 【答案】⑴112b a c a=-⎧⎨=-⎩;⑵a 的取值范围为12⎡⎫+∞⎪⎢⎣⎭,.⑶略.【题13】 已知函数1()ln f x a x x=-,a ∈R . ⑴若曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直,求a 的值;⑵求函数()f x 的单调区间;⑶当1a =,且2x ≥时,证明:(1)25f x x --≤.【考点】函数与不等式综合【难度】3星【题型】解答【关键词】2010,东城,一模,题18【解析】 ⑴函数()f x 的定义域为{}|0x x >,21()a f x x x '=+. 又曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直, 所以(1)12f a '=+=,即1a =.⑵由于21()ax f x x+'=.当0a ≥时,对于(0,)x ∈+∞,有()0f x '>在定义域上恒成立, 即()f x 在(0,)+∞上是增函数.当0a <时,由()0f x '=,得1(0,)x a=-∈+∞.当1(0,)x a ∈-时,()0f x '>,()f x 单调递增;当1(,)x a∈-+∞时,()0f x '<,()f x 单调递减.⑶当1a =时,1(1)ln(1)1f x x x -=---,[)2,x ∈+∞.令1()ln(1)251g x x x x =---+-.2211(21)(2)()21(1)(1)x x g x x x x --'=+-=----. 当2x >时,()0g x '<,()g x 在(2,)+∞单调递减. 又(2)0g =,所以()g x 在(2,)+∞恒为负. 所以当[2,)x ∈+∞时,()0g x ≤.即1ln(1)2501x x x ---+-≤.故当1a =,且2x ≥时,(1)25f x x --≤成立.【答案】⑴1a =;⑵当0a ≥时,()f x 在(0,)+∞上是增函数;当0a <时,()f x 在10,a⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;⑶略.【题14】 设()321252f x x x x =--+,当[]12x ∈-,时,()f x m <恒成立,则实数m 的取值范围为 .【考点】函数与不等式综合 【难度】3星 【题型】填空【关键词】2008-2009,北京,12中,高二,第二学期,期中测试【解析】 要使得()f x m <恒成立,先要求()f x 在[1,2]-上的最大值.2()32(1)(32)f x x x x x '=--=-+,故()f x 在21,3⎛⎫-- ⎪⎝⎭上单调递增,在2,13⎛⎫- ⎪⎝⎭上单调递减,在(1,2)上单调递增.最大值可能在23-或2处取到.(2)7f =,22257327f ⎛⎫-=+< ⎪⎝⎭,故()f x 的最大值为7.故7m >. 【答案】(7,)+∞【题15】 已知函数32()f x x ax bx c =+++在1x =-与2x =处都取得极值.⑴求,a b 的值及函数()f x 的单调区间;⑵若对[2,3]x ∈-,不等式23()2f x c c +<恒成立,求c 的取值范围.【考点】函数与不等式综合 【难度】3星 【题型】解答 【关键词】2010,崇文,二模,题18【解析】 ⑴2()32f x x ax b '=++,由题意:(1)0(2)0f f '-=⎧⎨'=⎩,即3201240a b a b -+=⎧⎨++=⎩,解得326a b ⎧=-⎪⎨⎪=-⎩∴323()62f x x x x c =--+,2()336f x x x '=--.令()0f x '<,解得12x -<<;令()0f x '>,解得1x <-或2x >,∴()f x 的单调减区间为(1,2)-;单调增区间为(,1),(2,)-∞-+∞. ⑵由⑴知,()f x 在(,1)-∞-上单调递增; 在(1,2)-上单调递减;在(2,)+∞上单调递增.∴[2,3]x ∈-时,()f x 的最大值即为(1)f -与(3)f 中的较大者.7(1)2f c -=+,9(3)2f c =-+,∴当1x =-时,()f x 取得最大值.要使23()2f x c c +<,只需23(1)2c f c >-+,即:2275c c >+解得:1c <-或72c >.∴c 的取值范围为7(,1),2⎛⎫-∞-+∞ ⎪⎝⎭U .【答案】⑴326a b ⎧=-⎪⎨⎪=-⎩,()f x 的单调减区间为(1,2)-;单调增区间为(,1),(2,)-∞-+∞.⑵c 的取值范围为7(,1),2⎛⎫-∞-+∞ ⎪⎝⎭U .【题16】 设函数22()21(0)f x tx t x t x t =++-∈>R ,.⑴求()f x 的最小值()h t ; ⑵若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围. 【考点】函数与不等式综合 【难度】3星 【题型】解答【关键词】2007,福建,高考【解析】 ⑴法一:∵23()()1(0)f x t x t t t x t =+-+-∈>R ,,∴当x t =-时,()f x 取最小值3()1f t t t -=-+-,即3()1h t t t =-+-. 法二:2()222()f x tx t t x t '=+=+,于是()f x 在()t -∞-,上单调递减,在()t -+∞,上单调递增. 故()f x 在x t =-时取到最小值3()1()f t t t h t -=-+-=. ⑵令3()()(2)31g t h t t m t t m =--+=-+--,由2()330g t t '=-+=得1t =,1t =-(不合题意,舍去). 当t 变化时g '∴()g t 在(02),内有最大值(1)1g m =-.()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,即等价于10m -<,所以m 的取值范围为1m >.【答案】⑴3()1h t t t =-+-;⑵(1,)+∞.【题17】 设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.⑴令()()F x xf x '=,讨论()F x 在(0)+∞,内的单调性并求极值;⑵求证:当1x >时,恒有2ln 2ln 1x x a x >-+.【考点】函数与不等式综合【难度】3星【题型】解答【关键词】2007,安徽,高考,题18【解析】 ⑴根据求导法则有2ln 2()10x af x x x x'=-+>,,故()()2ln 20F x xf x x x a x '==-+>,,于是22()10x F x x x x-'=-=>,, 列表如下:)故知()F x 在(02),(2)+,∞2x =处取得极小值(2)22ln 22F a =-+.⑵证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>. 于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. 所以当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>. 故当1x >时,恒有2ln 2ln 1x x a x >-+.【答案】⑴()F x 在(02),内是减函数,在(2)+,∞内是增函数,在2x =处取得极小值(2)22ln 22F a =-+.⑵略.【题18】 已知函数()2ln pf x px x x=--. ⑴若2p =,求曲线()f x 在点(1,(1))f 处的切线方程;⑵若函数()f x 在其定义域内为增函数,求正实数p 的取值范围;⑶设函数2()eg x x=,若在[]1,e 上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围.【考点】函数与不等式综合【难度】4星【题型】解答【关键词】2010,石景山,一模,题20【解析】 ⑴当2p =时,函数2()22ln f x x x x=--,(1)222ln10f =--=.222()2f x x x'=+-,曲线()f x 在点(1,(1))f 处的切线的斜率为(1)2222f '=+-=.从而曲线()f x 在点(1,(1))f 处的切线方程为02(1)y x -=-,即22y x =-.⑵22222()p px x pf x p x x x -+'=+-=.令2()2h x px x p =-+,要使()f x 在定义域(0,)+∞内是增函数, 只需()0h x ≥在(0,)+∞内恒成立.由题意0p >,2()2h x px x p =-+的图象为开口向上的抛物线,对称轴方程为1(0,)x p=∈+∞,∴min 1()h x p p =-,只需10p p-≥,即1p ≥时,()0,()0h x f x '≥≥ ∴()f x 在(0,)+∞内为增函数,正实数p 的取值范围是[1,)+∞.⑶∵2()eg x x=在[]1,e 上是减函数,∴x e =时,min ()2g x =;1x =时,max ()2g x e =,即[]()2,2g x e ∈, ①当0p <时,2()2h x px x p =-+,其图象为开口向下的抛物线,对称轴1x p=在y 轴的左侧,且(0)0h <,所以()f x 在x ∈[]1,e 内是减函数.当0p =时,()2h x x =-,因为x ∈[]1,e ,所以()0h x <,22()0xf x x '=-<, 此时,()f x 在x ∈[]1,e 内是减函数.故当0p ≤时,()f x 在[]1,e 上单调递减max ()(1)02f x f ⇒==<,不合题意;②当01p <<时,由[]11,0x e x x∈⇒-≥,所以11()2ln 2ln f x p x x x x x x ⎛⎫=---- ⎪⎝⎭≤.又由⑵知当1p =时,()f x 在[]1,e 上是增函数,∴1112ln 2ln 22x x e e e x e e----=--<≤,不合题意;③当1p ≥时,由⑵知()f x 在[]1,e 上是增函数,(1)02f =<, 又()g x 在[]1,e 上是减函数,故只需max min ()()f x g x >,[]1,x e ∈, 而max 1()()2ln f x f e p e e e⎛⎫==-- ⎪⎝⎭,min ()2g x =,即12ln 2p e e e⎛⎫--> ⎪⎝⎭,解得241ep e >-, 所以实数p 的取值范围是24,1e e ⎛⎫+∞⎪-⎝⎭. 【答案】⑴22y x =-;⑵p 的取值范围是[1,)+∞;⑶p 的取值范围是24,1e e ⎛⎫+∞⎪-⎝⎭.导数与三角函数综合【题19】 设函数()32sin tan 3f x x θθ=+,其中5π012θ⎡⎤∈⎢⎥⎣⎦,, 则导数()1f '的取值范围是( )A .[]22-,B .C .2⎤⎦D .2⎤⎦【考点】导数与三角函数综合 【难度】2星【题型】选择【关键词】2009,安徽,高考,题9【解析】 2()sin f x x x θθ'=+,π(1)sin 2sin 3f θθθ⎛⎫'==+ ⎪⎝⎭.5π012θ⎡⎤∈⎢⎥⎣⎦,时,ππ3π334θ⎡⎤+∈⎢⎥⎣⎦,,πsin 13θ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦.从而(1)2]f '∈. 【答案】D【题20】 设函数223()cos 4sin3()2x f x x t t t x =++-∈R ,其中||1t ≤,将()f x 的最小值记为()g t ,则函数()g t 在下面哪个区间上单调递增( )A .1(,)(1,)3-∞-+∞UB .1[1,]3--C .1(,)3+∞D .1[,1]3【考点】导数与三角函数综合 【难度】3星 【题型】选择【关键词】【解析】 23231cos ()cos 43cos 2cos 2x f x x t t t x t x t t -=+⋅+-=-+-232(cos )x t t t t =-+--, ∵1t ≤,∴当cos x t =时,()f x 有最小值,故32()g t t t t =--,2()321(1)(31)g t t t t t '=--=-+, 令()0g t '>,解得函数()g t 的单调递增区间为1,3⎛⎫-∞- ⎪⎝⎭与(1,)+∞.但函数()g t 不在这两个区间的并集上单调递增,故选B .【答案】B【题21】 已知函数2cos ()3sin a x f x x -=在π02⎛⎫⎪⎝⎭,内是增函数,求a 的取值范围.【考点】导数与三角函数综合 【难度】3星 【题型】解答【关键词】【解析】 22212sin (2cos )cos 2cos ()3sin 3sin x a x x a xf x x x--⋅-'=⋅=. 因为()f x 在区间π02⎛⎫ ⎪⎝⎭,内是增函数,所以当π02x ⎛⎫∈ ⎪⎝⎭,时,22cos ()03sin a xf x x-'=≥, 即2cos 0a x -≥恒成立.π02x ⎛⎫∈ ⎪⎝⎭,时,0cos 1x <<,要使2cos 0a x -≥在π02x ⎛⎫∈ ⎪⎝⎭,恒成立,只要2cos a x ≤在π02x ⎛⎫∈ ⎪⎝⎭,恒成立. 故只要2a ≤即可,故a 的取值范围为(2]-∞,.【答案】(2]-∞,【题22】 已知:在函数3()f x mx x =-的图象上,以(1,)N n 为切点的切线的倾斜角为π4. ⑴求m ,n 的值;⑵是否存在最小的正整数k ,使得不等式()1994f x k -≤对于[1,3]x ∈-恒成立?如果存在,请求出最小的正整数k ;如果不存在,请说明理由.⑶求证:1|(sin )(cos )|22f x f x f t t ⎛⎫++ ⎪⎝⎭≤(x ∈R ,0t >).【考点】导数与三角函数综合 【难度】4星 【题型】解答【关键词】【解析】 ⑴2()31f x mx '=-,依题意,得π(1)tan4f '=,即311m -=,解得23m =. ∵(1)f n =,∴13n =-.⑵32()3f x x x =-,令2()210f x x '=-=,得x =.当12x -<<时,2()210f x x '=->;当22x <<时,2()210f x x '=-<;当3x <<时,2()210f x x '=->.从而()f x 在x =处取到极大值.又1(1)3f -=,f ⎛= ⎝⎭,(3)15f =. 因此,当[1,3]x ∈-时,()f x 的最大值为15.要使得不等式()1994f x k -≤对于[1,3]x ∈-恒成立,则1519942009k +=≥.所以,存在最小的正整数2008k =,使得不等式()1993f x k -≤对于[1,3]x ∈-恒成立. ⑶|(sin )(cos )|f x f x +3322sin sin cos cos 33x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭332(sin cos )(sin cos )3x x x x =+-+222(sin cos )(sin sin cos cos )13x x x x x x ⎡⎤=+⋅-+-⎢⎥⎣⎦21|sin cos |sin cos 33x x x x =+⋅+31|sin cos |3x x =+3π4x ⎛⎫=+ ⎪⎝⎭.又∵0t >,∴12t t+,()f x 在)+∞上单调递增,f =.∴1222f t f t ⎛⎫+=⎪⎝⎭≥ 综上可得,1|(sin )(cos )|22f x f x f t t ⎛⎫++⎪⎝⎭≤(x ∈R ,0t >). 【答案】⑴23m =,13n =-;⑵存在,2008k =;⑶略.【题23】 设函数()sin ()f x x x x =∈R .⑴证明(2π)()2πsin f x k f x k x +-=,其中为k 为整数;⑵设0x 为()f x 的一个极值点,证明420020[()]1x f x x =+;⑶设()f x 在(0)+∞,内的全部极值点按从小到大的顺序排列12n a a a L L ,,,,, 证明:1ππ (12)2n n a a n +<-<=L ,, 【考点】导数与三角函数综合 【难度】5星 【题型】解答【关键词】2005,天津,高考【解析】 ⑴由函数()f x 的定义,对任意整数k ,有(2π)()(2π)sin(2π)sin (2π)sin sin 2πsin f x k f x x k x k x x x k x x x k x +-=++-=+-=.⑵函数()f x 在定义域R 上可导,()sin cos f x x x x '=+ ①令()0f x '=,得sin cos 0x x x +=.显然,对于满足上述方程的x 有cos 0x ≠,上述方程化简为tan x x =-,结合图象知此方程一定有解(tan y x =-与y x =的图象略).()f x 的极值点0x 一定满足00tan x x =-.由222222sin tan sin sin cos 1tan x x x x x x==++,得220020tan sin 1tan x x x =+. 因此,4222000020[()]sin 1x f x x x x ==+.⑶设00x >是()0f x '=的任意正实数根,即00tan x x =-,则存在一个非负整数k ,使0ππππ2x k k ⎛⎫∈++ ⎪⎝⎭,,即0x 在第二或第四象限内. 由①式,()cos (tan )f x x x x '=+在第二或第四象限中的符号可列表如下:()0f x =0x 都为()f x 的极值点.由题设条件,1a ,2a ,…,n a ,…为方程tan x x =-的全部正实数根且满足12n a a a <<<<L L , 那么对于12n =L ,,,1111(tan tan )(1tan tan )tan()n n n n n n n n a a a a a a a a ++++-=--=-+⋅-. ② 由于π(1)ππ(1)π2n n a n +-<<+-,1ππππ2n n a n ++<<+,则1π3π22n n a a +<-<, 由于1tan tan 0n n a a +⋅>,由②式知1tan()0n n a a +-<.由此可知1n n a a +-必在第二象限, 即1πn n a a +-<. 综上,1ππ2n n a a +<-<. 【答案】略.导数与数列综合【题24】 已知函数()sin f x x x =-,数列{}n a 满足:101a <<,1()n n a f a +=,123n =L ,,,.证明:⑴101n n a a +<<<; ⑵3116n n a a +<.【考点】导数与数列综合 【难度】3星 【题型】解答【关键词】2006,湖南,高考【解析】 ⑴先用数学归纳法证明01n a <<,123n =L ,,,①当1n =时,由已知显然结论成立. ②假设当n k =时结论成立,即01k a <<.∵01x <<时,()1cos 0f x x '=->,∴()f x 在(01),上是增函数. (0)()(1)k f f a f <<(()f x 在[01],上连续),即101sin11k a +<<-<. 故1n k =+时,结论成立.由①、②可知,01n a <<对一切正整数都成立.又因为01n a <<时,1sin sin 0n n n n n n a a a a a a +-=--=-<, 所以1n n a a +<,综上所述101n n a a +<<<.⑵设函数31()sin 6g x x x x =-+,01x <<.由⑴知,当01x <<时,sin x x <,从而22222()cos 12sin 2022222x x x x x g x x ⎛⎫'=-+=-+>-+= ⎪⎝⎭,所以()g x 在(01),上是增函数. 又(0)0g =(()g x 在[01],上连续),所以当01x <<时,()0g x >成立. 于是()0n g a >,即31sin 06n n n a a a -+>.故3116n na a +<. 【答案】略【题25】 已知数列{}n a 满足:3123n n n a a a +=-+,n +∈N ,且1(01)a ∈,,求证:01n a <<. 【考点】导数与数列综合 【难度】3星 【题型】解答【关键词】【解析】 构造辅助函数313()22f x x x =-+,则3()(1)(1)2f x x x '=--+.当(01)x ∈,时,()0f x '>,所以()f x 在(01),上是增函数.①因为1(01)a ∈,,即101a <<,故1n =时原不等式成立. ②设n k =时原不等式成立,即01k a <<,因为()f x 在(01),上是增函数,所以(0)()(1)k f f a f <<.又(0)0(1)1f f ==,,所以0()1k f a <<,即101k a +<<. 即1n k =+时,原不等式成立, 由①②知,n +∈N 时,01n a <<.【答案】略【题26】 已知a 是给定的实常数,设函数2()()()x f x x a x b e =-+,b ∈R ,x a =是()f x 的一个极大值点.⑴求b 的取值范围;⑵设1x ,2x ,3x 是()f x 的3个极值点,问是否存在实数b ,可找到4x ∈R ,使得1x ,2x ,3x ,4x 的某种排列1i x ,2i x ,3i x ,4i x (其中1234{}{1234}i i i i =,,,,,,)依次成等差数列?若存在,求所有的b 及相应的4x ;若不存在,说明理由.【考点】导数与函数综合 【难度】5星 【题型】解答【关键词】2010,浙江,高考22⑴2()()[(3)2]x f x e x a x a b x b ab a '=-+-++--, 令2()(3)2g x x a b x b ab a =+-++--,则22(3)4(2)(1)80.a b b ab a a b =-+---=+-+>△于是可设1x ,2x 是()0g x =的两实根,且1x <2x ,①当1x 或2x a =时,则x a =不是()f x 的极值点,此时不合题意;②当1x a ≠且2x a ≠时,由于x a =是()f x 的极大值点,故12x a x <<,即()0g a <. 即2(3)20a a b a b ab a +-++--<,所以b a <-,所以b 的取值范围是()a -∞-,; ⑵由⑴可知,假设存在b 及b x 满足题意,则: ①当21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--,即3b a =--.此时4223x x a a b a a =-=--=+或4123x x a a b a a =-=--=- ②当21x a a x -≠-时,则212()x a a x -=-或122()a x x a -=-,ⅰ)若212()x a a x -=-,则24a x x +=,于是1232a x x =+=3(3)a b -++于是1a b +-=,此时242(3)3(3)324a x a a b a b x b a ++---++===--=+. ⅱ)若122()a x x a -=-,则14a x x +=,于是2132a x x =+=3(3)a b =++.于是1a b +-此时142(3)3(3)324a x a a b a b x b a ++---++===--=. 综上所述,存在b 满足题意: 当3b a =--时,4x a =±;当b a =-时,4x a =b a =-时,4x a =. 【答案】⑴b 的取值范围是()a -∞-,;⑵存在b ,当3b a =--时,4x a =±;当b a =-时,4x a =b a =-时,4x a =.导数与其它知识综合【题27】 设函数321()(2)232af x x x b x =-+--有两个极值点,其中一个在区间(0,1)内,另一个在区间(1,2)内,则54b a --的取值范围是 . 【考点】导数与其它知识综合 【难度】3星 【题型】填空【关键词】【解析】 2()(2)f x x ax b '=-+-,由题意知()0f x '=的两根分别在区间(0,1)与(1,2)上,又()f x '的图象是开口向上的抛物线,故有(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩,即2030620b a b a b ->⎧⎪--<⎨⎪-->⎩,从而有2326b a b a b <⎧⎪+>⎨⎪+<⎩,它们表示的平面区域为下图的阴影部分所示(不包括边界):4a -(,)ab 与点(4,5)的连线的斜率,如图所求,当(,)a b 为(3,0)时,斜率取到最大值5,这个最大值取不到;当(,)a b 为(1,2)时,斜率取到最小值1,这个最小值也取不到,但中间的值都能取到,从而54b a --的取值范围为(1,5).【答案】(1,5)【题28】 已知a ≥0,函数2()f x x ax =+.设1,2a x ⎛⎫∈-∞- ⎪⎝⎭,记曲线()y f x =在点()11,()M x f x 处的切线为l ,l 与x 轴的交点是()2,0N x ,O 为坐标原点.⑴ 证明:21212x x x a=+;⑵ 若对于任意的1,2a x ⎛⎫∈-∞- ⎪⎝⎭,都有916a OM ON ⋅>u u u u r u u u r 成立,求a 的取值范围.【考点】导数与其它知识综合 【难度】3星 【题型】解答【关键词】2010,西城,二模,题18【解析】 ⑴ 对()f x 求导数,得()2f x x a '=+,故切线l 的斜率为12x a +,由此得切线l 的方程为21111()(2)()y x ax x a x x -+=+-.令0y =,得22111211122x ax x x x x a x a+=-+=++.⑵ 由()2111,M x x ax +,211,02x N x a ⎛⎫ ⎪+⎝⎭,得3112x OM ON x a ⋅=+u u u u r u u u r . 所以0a =符合题意,当0a >时,记3111()2x g x x a =+,1,2a x ⎛⎫∈-∞- ⎪⎝⎭.对1()g x 求导数,得()()()211121432x x a g x x a +'=+, 令1()0g x '=,得13,42a a x ⎛⎫=-∈-∞- ⎪⎝⎭. 当1,2a x ⎛⎫∈-∞- ⎪⎝⎭时,1()g x '的变化情况如下表:所以,函数1()g x 在3,4a ⎛⎫-∞-⎪⎝⎭上单调递减,在3,42aa ⎛⎫-- ⎪⎝⎭上单调递增, 从而函数1()g x 的最小值为2327432a g a ⎛⎫-= ⎪⎝⎭.依题意22793216a a >,解得23a >,即a 的取值范围是2,3⎛⎫+∞ ⎪⎝⎭. 综上,a 的取值范围是2{0},3⎛⎫+∞ ⎪⎝⎭U .【答案】⑴略;⑵a 的取值范围是2{0},3⎛⎫+∞⎪⎝⎭U .【题29】 已知函数322()(1)52f x x k k x x =--++-,22()1g x k x kx =++,其中k ∈R .⑴设函数()()()p x f x g x =+.若()p x 在区间(03),上不单调...,求k 的取值范围; ⑵设函数(),0()(),0g x x q x f x x ⎧=⎨<⎩≥,是否存在k ,对任意给定的非零实数1x ,存在惟一的非零实数221()x x x ≠,使得21()()q x q x ''=成立?若存在,求k 的值;若不存在,请说明理由.【考点】导数与其它知识综合 【难度】5星 【题型】解答【关键词】2009,浙江,高考,题22【解析】 ⑴32()()()(1)(5)1p x f x g x x k x k x =+=+-++-,()232(1)(5)p x x k x k '=+-++.因为()p x 在区间(03),上不单调,所以()0p x '=在(03),上有实数解,且无重根. 由()0p x '=,得2(21)(325)k x x x +=--+,即()2(325)391021214213x x k x x x -+⎡⎤=-=-++-⎢⎥++⎣⎦, 令21t x =+,有()17t ∈,,记9()h t t t=+,则()h t 在(]13,上单调递减,在[)37,上单调递增.所以,()[)610h t ∈,. 于是()[)92161021x x ++∈+,,得(]52k ∈--,. 而当2k =-时,有()0p x '=在()03,上有两个相等的实根1x =,故舍去. 所以()52k ∈--,; ⑵由题意,得当0x <时,()()2232(1)5q x f x x k k x ''==--++; 当0x >时,()()22q x g x k x k ''==+. 因为当0k =时不合题意,所以0k ≠, 下面讨论0k ≠的情形.记{}()|0A g x x '=>,{}()|0B f x x '=<, 则()A k =+∞,,(5)B =+∞,.(ⅰ)当10x >时,()q x '在(0)+∞,上单调递增, 所以要使21()()q x q x ''=成立,只能20x <,且A B ⊆, 因此5k ≥;(ⅱ)当10x <时,()q x '在(0)-∞,上单调递减,所以要使21()()q x q x ''=成立,只能20x >,且B A ⊆,因此5k ≤. 综合(ⅰ)(ⅱ),得5k =. 当5k =时,有A B =. 则10x ∀<,()q x B A '∈=,即20x ∃>,使得21()()q x q x ''=成立. 因为()q x '在(0)+∞,上单调递增, 所以2x 是惟一的.同理.10x ∀>,存在惟一的非零实数221()x x x ≠,使得22()()q x q x ''=成立. 所以5k =满足题意.【答案】⑴()52k ∈--,;⑵存在,5k =.板块五:微积分与定积分的应用知识内容1.函数定积分:设函数()y f x =定义在区间[,]a b 上.用分点0121n n a x x x x x b -=<<<<<=L ,把区间[,]a b 分为n 个小区间,其长度依次为10121i i i x x x i n +∆=-=-L ,,,,,.记λ为这些小区间长度的最大值,当λ趋近于0时,所有的小区间长度都趋近于0.在每个小区间内任取一点i ξ,作和式10()n n i i i I f x ξ-==∆∑.n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作()b af x dx ⎰,即10()lim ()n bi i ai f x dx f x λξ-→==∆∑⎰.其中()f x 叫做被积函数,a 叫积分下限,b 叫积分上限.()f x dx 叫做被积式.此时称函数()f x 在。