哈工大天线原理实验报告
- 格式:docx
- 大小:103.33 KB
- 文档页数:9
实验报告课程名称:天线技术院系:电子于信息工程学院班级:姓名:学号:指导教师:授课教师:试验时间:2012年6月演示实验一超宽带天线的测试一、实验目的1、了解超宽带天线的概念及特点2、了解现代天线测试系统的组成3、了解现代天线测试仪器设备及其使用方法4、了解超宽带天线的测试方法二、实验原理超宽带天线是一种具有极宽阻抗带宽的天线,其比带宽一般可以达到2:1 以上,现代超宽带天线的阻抗带宽可以达到30:1 以上,可以覆盖多个波段,能够实现传统的多个天线的功能,所以受到了研究者的广泛关注。
超宽带天线不仅需要具有极宽的阻抗带宽,即它的阻抗要在极宽的频带内保持在一个范围内,还需要具有极宽的方向图带宽、增益带宽以及极化带宽。
现代的超宽带天线还需要具有稳定的相位中心,即可以不失真地辐射时域脉冲信号。
根据以上对超宽带天线的要求,可以结合所学习的天线原理进行如下天线测试的内容:(1)天线阻抗带宽的测试:测试天线的反射系数(S11),需要用到公式(1-1):根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z0(匹配),在天线工程上,Z0 通常被规定为75Ω 或者50Ω,本实验中取Z0=50Ω。
天线工程中通常使用电压驻波比(VSWR)ρ 以及回波损耗(Return Loss,RL)来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1 中。
(2)主极化方向图的测试方向图的测试需要测试天线在阻抗带宽内的各个频点的远场的方向图,一般最少要测试3 个频点,即下限频点f1、上限频点f2 和中心频点f0,对于更宽的频带,要根据具体情况多测试一些频点的方向图,以便全面了解天线的参数。
在工程上,一般不需要远场的三维方向图,而只需要测试两个主平面的方向图曲线,对于线极化天线来说,这两个主平面为E 面和H 面。
(精编)哈工大通信原理实验报告H a r b i n I n s t i t u t e o f T e c h n o l o g y通信原理实验报告课程名称:通信原理院系:电子与信息工程学院班级:姓名:学号:指导教师:倪洁实验时间:2015年12月哈尔滨工业大学实验二帧同步信号提取实验一、实验目的1.了解帧同步的提取过程。
2.了解同步保护原理。
3.掌握假同步,漏同步,捕捉动态和维持态的概念。
二、实验原理时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。
本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。
第9至24比特传输两路数据脉冲。
帧结构为:X11100101010101011001100,首位为无定义位。
本实验模块由信号源,巴克码识别器和帧同步保护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。
其余部分完成同步保护功能。
三、实验内容1.观察帧同步码无错误时帧同步器的维持状态。
2.观察帧同步码有一位错误时帧同步器的维持态和捕捉态3.观察帧同步器假同步现象和同步保护器。
四、实验步骤1.开关K301接2.3脚。
K302接1.2脚。
2.接通电源,按下按键K1,K2,K300,使电路工作。
3.观察同步器的同步状态将信号源中的SW001,SW002,SW003设置为11110010,10101010,11001100(其中第2-8位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302,TP304,TP305,TP306,观察上述信号波形,使帧同步码(SW001的2-8位)措一位,重新做上述观察,此时除了TP303外,个点波形不变,说明同步状态仍在维持。
4.观察同步器的失步状态。
关闭电源,断开K302,在开电源(三个发光二极管全亮)。
第一章1-1 试用对偶原理,由电基本振子场强式(1-5)和式(1-7),写出磁基本振子的场表示式。
对偶原理的对应关系为:E e ——H m H e ——-E m J ——J m ρ——ρm μ——ε ε——μ 另外,由于ωεω=k ,所以有k ——k式(1-5)为⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+===-jkrr e jkr r Idl j H H H 11sin 200θλϕθ式(1-7)为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=--0111sin 211cos 22200002ϕθθεμλθεμπE e r k jkr r Idl j E e jkr r Idl E jkr jkrr 因此,式(1-5)的对偶式为⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+=-=-=--jkrmr e jkr r dl I j E E E 11sin 200θλϕθ式(1-7)的对偶式为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=--0111sin 211cos 22200002ϕθθμελθμεπH e r k jkr r dl I j H e jkr r dl I H jkr m jkrm r 结合I m dl =jωμ0IS有磁基本振子的场表示式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+===-jkrr e jkr r IS E E E 11sin 2000θλωμϕθ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+=--0111sin 211cos 2220000020ϕθθμελωμθμεπωμH e r k jkr r IS H e jkr r IS j H jkr jkrr 可以就此结束,也可以继续整理为⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+===-jkrr e jkr r IS E E E 11sin 00002θεμλπϕθ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+=--0111sin 11cos 2222ϕθθλπθλH e r k jkr r IS H e jkr r ISj H jkr jkr r 1-3 若已知电基本振子辐射电场强度大小θηλθsin 20r IlE =,天线辐射功率可按穿过以源为球心处于远区的封闭球面的功率密度的总和计算,即sS d r P S⋅=⎰∑),,(ϕθ,ϕθθd d r ds sin 2=为面积元。
实验报告课程名称:天线技术院系:电子于信息工程学院班级:姓名:学号:指导教师:授课教师:试验时间:2012年6月演示实验一超宽带天线的测试一、实验目的1、了解超宽带天线的概念及特点2、了解现代天线测试系统的组成3、了解现代天线测试仪器设备及其使用方法4、了解超宽带天线的测试方法二、实验原理超宽带天线是一种具有极宽阻抗带宽的天线,其比带宽一般可以达到2:1 以上,现代超宽带天线的阻抗带宽可以达到30:1 以上,可以覆盖多个波段,能够实现传统的多个天线的功能,所以受到了研究者的广泛关注。
超宽带天线不仅需要具有极宽的阻抗带宽,即它的阻抗要在极宽的频带内保持在一个范围内,还需要具有极宽的方向图带宽、增益带宽以及极化带宽。
现代的超宽带天线还需要具有稳定的相位中心,即可以不失真地辐射时域脉冲信号。
根据以上对超宽带天线的要求,可以结合所学习的天线原理进行如下天线测试的内容:(1)天线阻抗带宽的测试:测试天线的反射系数(S11),需要用到公式(1-1):根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z0(匹配),在天线工程上,Z0 通常被规定为75Ω 或者50Ω,本实验中取Z0=50Ω。
天线工程中通常使用电压驻波比(VSWR)ρ 以及回波损耗(Return Loss,RL)来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1 中。
(2)主极化方向图的测试方向图的测试需要测试天线在阻抗带宽内的各个频点的远场的方向图,一般最少要测试3 个频点,即下限频点f1、上限频点f2 和中心频点f0,对于更宽的频带,要根据具体情况多测试一些频点的方向图,以便全面了解天线的参数。
在工程上,一般不需要远场的三维方向图,而只需要测试两个主平面的方向图曲线,对于线极化天线来说,这两个主平面为E 面和H 面。
实验一 半波振子天线的制作与测试一、实验目的1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。
2、掌握半波振子天线的制作方法。
3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。
4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。
二、实验原理(1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1):)ex p(||011θj Z Z Z Z S A A Γ=+-=(1-1)根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。
天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:||1||1Γ-Γ+=ρ(1-2)|)lg(|20Γ-=RL [dB](1-3)对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。
表1-1 工程上对天线的不同要求(供参考)天线带宽驻波系数ρ的要求 反射系数|Γ|的要求 反射损耗RL 的要求 窄带(相对带宽5%以下)ρ≤1.2或1.5|Γ|≤0.09或0.2 ≥21dB 或14dB 宽带(相对带宽20%以下) ρ≤1.5或2 |Γ|≤0.2或0.33≥14dB 或10dB 超宽带ρ≤2或2.5,甚至更大 |Γ|≤0.33或0.43≥10dB(2)同轴电缆的特性阻抗本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。
其特性阻抗计算公式如下:060ln r b Z a ε⎛⎫=⎪⎝⎭(1-4)式中 a ——内芯直径; b ——外皮内直径。
三、实验仪器(1)Anritsu S331D天馈线测试仪图1-1 Anritsu S331D天馈线测试仪表1-2 Anritsu S331D天馈线测试仪主要性能指标参数名称参数值频率范围25MHz-4000MHz频率分辨率100kHz输出功率< 0dBm回波损耗范围0.00-54.00dB(分辨率:0.01dB)驻波比范围0.00-65.00 (分辨率:0.01)(2)50欧姆同轴电缆、SMA连接器、热塑管、直径2.5mm和0.5mm铜丝、泡沫(用于支撑和固定天线)和酒精棉等。
H a r b i n I n s t i t u t e o f T e c h n o l o g y通信原理实验报告课程名称:通信原理院系:电子与信息工程学院班级:姓名:学号:指导教师:倪洁实验时间: 2015年 12月哈尔滨工业大学实验二帧同步信号提取实验一、实验目的1.了解帧同步的提取过程。
2.了解同步保护原理。
3.掌握假同步,漏同步,捕捉动态和维持态的概念。
二、实验原理时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。
本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。
第9至24比特传输两路数据脉冲。
帧结构为:X11100101010101011001100,首位为无定义位。
本实验模块由信号源,巴克码识别器和帧同步保护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。
其余部分完成同步保护功能。
三、实验内容1.观察帧同步码无错误时帧同步器的维持状态。
2.观察帧同步码有一位错误时帧同步器的维持态和捕捉态3.观察帧同步器假同步现象和同步保护器。
四、实验步骤1.开关K301接2.3脚。
K302接1.2脚。
2.接通电源,按下按键K1,K2,K300,使电路工作。
3.观察同步器的同步状态将信号源中的SW001,SW002,SW003设置为11110010,10101010,11001100(其中第2-8位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302,TP304, TP305,TP306,观察上述信号波形,使帧同步码(SW001的2-8位)措一位,重新做上述观察,此时除了TP303外,个点波形不变,说明同步状态仍在维持。
4.观察同步器的失步状态。
关闭电源,断开K302,在开电源(三个发光二极管全亮)。
天线实验报告误差分析一、引言天线是无线通信系统中非常重要的组成部分,其性能直接影响到通信质量。
在天线设计和测试过程中,误差是无法避免的。
本文将对天线实验报告中的误差进行分析,并探讨其对天线性能的影响。
二、误差来源及分类在天线实验中,误差可以来源于多个方面,主要包括以下几个方面:1. 天线制造误差天线的制造过程中存在一定的误差,如天线的制造材料、加工工艺等都会对天线性能产生影响。
这类误差通常表现为天线的频率响应不符合理论值,天线增益不稳定等。
2. 环境误差天线实验通常在室外进行,而室外环境是非常复杂和多变的。
大气条件、地物遮挡等因素都会对天线的测试结果产生影响。
这类误差通常表现为天线增益与距离的关系不符合理论预期,信号传输的可靠性下降等。
3. 测量误差天线测试是一个精密的过程,通常需要使用专业的测试设备进行测量。
测量设备的精度、稳定性等都会对测量结果产生误差。
同时,测量过程中也存在人为误差,如操作不规范、测量方式选择不当等。
三、误差分析及影响误差的存在会直接影响到天线的性能和功能。
下面将针对不同的误差来源进行分析:1. 天线制造误差天线制造误差是由于制造过程中的不完美造成的。
例如天线的外形尺寸、材料参数等与设计要求的差异都会使得天线的实际性能与理论值产生误差。
这会导致天线的频率响应不合理,增益不稳定等问题。
对于需要高精度的天线应用,天线制造误差可能导致性能无法达到要求,需要进行更加精确的制造工艺。
2. 环境误差环境误差是由于实验环境的不完善造成的。
例如天线测试时的大气条件、地物遮挡等因素都会对测量结果产生影响。
这会导致天线增益与距离关系不合理,信号传输的可靠性下降等问题。
在实际应用中,我们需要对环境误差进行适当的修正和补偿,以尽可能减小其对天线性能的影响。
3. 测量误差测量误差是由于测量设备和操作过程中的不完美造成的。
例如测量设备的精度、稳定性等都会对测量结果产生误差。
同时,操作者的不规范操作也会导致测量误差,比如测量位置选择不当、测量参数设置错误等。
哈工大电磁场实验报告电磁波波动特性的实验研究1.实验目的无线电的使用频率在不断提高,微波(超高频),由于它的波长短、频率高、方向性强,所以广泛的应用在雷达、遥控、电视、射电天文学、接力通讯和卫星通讯等方面。
微波通常指分米波、毫米波的电磁波,它的频率极高,一般在300~300000兆赫,所以有关微波的产生、放大、发射、接收、测量、传输等和一般的无线电波不尽相同。
在微波技术中,需要微波电子管、晶体管、波导、同轴线和一些诸如衰减器,谐振腔等特殊元件。
从电磁波的本质来说,微波也具有波动的共同特点,如反射、折射、衍射、干涉、偏振等。
我们根据它们的这种共同的通性,以及微波波长接近光波波长的特点,模仿光学实验的方法,来做电磁波波动特性的实验。
我们的实验目的是,以微波作波源,用模拟光学实验的方法,来研究电磁波所具有的传递能量和波动的特性。
2.微波实验主要仪器简介1)三厘米固态信号源三厘米固态信号源结构简单、体积小、重量轻、输出功率大、性能稳定、携带使用方便。
主要技术指标:工作频率范围:9370±50MHz 在工作频率范围内,输出功率≥20mW工作模式:等幅波、方波输入电源:220V±10%2)微波分度计其总体结构如图1-1所示,可分为三个部分。
1、发射部分它是由固定臂及臂上的发射喇叭和可变衰减器组成,其微波信号是由三厘米固态信号发生器经同轴电缆馈电送至发射天线。
2、接收部分它由可绕中心轴转动的悬臂和臂上端的接收喇叭,检波器组成。
3、在两喇叭之间的中心轴自由转动的圆形小平台,平台被均分为360等分。
图1-1(一)电磁波的反射实验1、实验目的任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。
本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。
2、实验原理电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。
天线振动实验报告总结
根据对天线振动实验的观察与总结,我们可以得出以下结论:
1. 实验目的:通过观察天线在电磁波作用下的振动情况,探究电磁波对天线的影响,以及天线振动与电磁波之间的关系。
2. 实验步骤:首先,我们准备了一根天线,并将其固定在一个实验装置上;然后,我们给天线连接电源,产生一定频率的电磁波;接着,我们观察和记录了天线在电磁波作用下的振动情况,并进行了多组实验,以得到可靠的数据。
3. 实验结果:通过多组实验数据的分析,我们发现天线的振动情况与电磁波的频率密切相关。
当电磁波的频率与天线的固有频率相同时,天线将会出现共振现象,振动幅度明显增大;而当电磁波的频率偏离天线的固有频率时,天线的振动幅度逐渐减小。
4. 实验结论:从实验结果可以得出结论,电磁波的频率对天线的振动情况有明显的影响,而天线的振动也会对电磁波的传播产生一定影响。
通过实验观察发现,当电磁波与天线的固有频率相同时,能够产生共振现象,增强电磁波的能量传输效果;而当电磁波的频率偏离天线的固有频率时,天线的振动幅度减小,电磁波的传输效果减弱。
5. 实验拓展:除了探究电磁波对天线的振动影响外,我们可以进一步拓展实验,研究天线参数(如长度、形状、材料等)对天线振动的影响。
这样可以更深入地理解天线振动的原理及其
在通信领域的应用。
总之,通过天线振动实验,我们探究了电磁波与天线之间的关系,发现电磁波的频率会显著影响天线的振动情况。
这些研究对于电磁学和通信工程领域具有一定的理论和实践意义。
天线实验报告(DOC)实验一 半波振子天线的制作与测试一、实验目的1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。
2、掌握半波振子天线的制作方法。
3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。
4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。
二、实验原理(1)天线阻抗带宽的测试测试天线的反射系数(S 11),需要用到公式(1-1): )ex p(||0011θj Z Z Z Z S A A Γ=+-= (1-1)根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。
天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:||1||1Γ-Γ+=ρ (1-2) |)lg(|20Γ-=RL [dB](1-3) 对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。
表1-1 工程上对天线的不同要求(供参考)(2)同轴电缆的特性阻抗本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数2.2r ε=)。
其特性阻抗计算公式如下:0b Z a ⎛⎫= ⎪⎝⎭ (1-4)式中 a ——内芯直径;b ——外皮内直径。
三、实验仪器(1)Anritsu S331D 天馈线测试仪图1-1 Anritsu S331D天馈线测试仪表1-2 Anritsu S331D天馈线测试仪主要性能指标参数名称参数值频率范围25MHz-4000MHz频率分辨率100kHz输出功率< 0dBm回波损耗范围0.00-54.00dB(分辨率:0.01dB)驻波比范围0.00-65.00 (分辨率:0.01)(2)50欧姆同轴电缆、SMA连接器、热塑管、直径2.5mm和0.5mm铜丝、泡沫(用于支撑和固定天线)和酒精棉等。
H a r b i n I n s t i t u t e o f T e c h n o l o g y通信原理实验报告课程名称:通信原理院系:电子与信息工程学院班级:姓名:学号:指导教师:倪洁实验时间: 2015年 12月哈尔滨工业大学实验二帧同步信号提取实验一、实验目的1.了解帧同步的提取过程。
2.了解同步保护原理。
3.掌握假同步,漏同步,捕捉动态和维持态的概念。
二、实验原理时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。
本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。
第9至24比特传输两路数据脉冲。
帧结构为:X11100101010101011001100,首位为无定义位。
本实验模块由信号源,巴克码识别器和帧同步保护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。
其余部分完成同步保护功能。
三、实验内容1.观察帧同步码无错误时帧同步器的维持状态。
2.观察帧同步码有一位错误时帧同步器的维持态和捕捉态3.观察帧同步器假同步现象和同步保护器。
四、实验步骤1.开关K301接2.3脚。
K302接1.2脚。
2.接通电源,按下按键K1,K2,K300,使电路工作。
3.观察同步器的同步状态将信号源中的SW001,SW002,SW003设置为11110010,10101010,11001100(其中第2-8位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302,TP304, TP305,TP306,观察上述信号波形,使帧同步码(SW001的2-8位)措一位,重新做上述观察,此时除了TP303外,个点波形不变,说明同步状态仍在维持。
4.观察同步器的失步状态。
关闭电源,断开K302,在开电源(三个发光二极管全亮)。
课程名称电磁场与电磁波学院通信工程年级 2010 级专业通信班姓名 X X X学号 X X X时间 X X X一、实验目的:1、熟悉HFSS软件设计天线的基本方法;2、利用HFSS软件仿真设计以了解天线的结构和工作原理;3、通过仿真设计掌握天线的基本参数:频率、方向图、增益等。
二、实验仪器:1、HFSS软件三、实验原理:1、天线是用金属导线、金属面或其他介质材料构成一定形状,架设在一定空间,将从发射机馈给的视频电能转换为向空间辐射的电磁波能,或者把空间传播的电磁波能转化为射频电能并输送到接收机的装置。
2、天线能把传输线上传播的导行波变换成在无界媒介中传播的电磁波,或者进行相反的变变换。
在无线电设备中用来发射或接收电磁波的部件。
无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。
此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。
一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。
同一天线作为发射或接收的基本特性参数是相同的。
这就是天线的互易定理。
四、 实验步骤:1、根据个人在班级的序号N ,设计一个工作频率为()[]GHz N f 102.020-⨯+=的41波长单极子天线,所用导线的直径为mm R 10=,长度为mm L 0的天线。
2、以频率上的长度0L 为基准,讨论当天线长度为()mm L 20±时,天线的谐振频率、带宽和方向图的变化。
3、在频率0f 上,讨论当天线直径0R 为mm 2和mm 3时,天线的谐振频率、带宽和方向图的变化。
4、结合工作生活实际,谈谈对天线的认识。
5、仿真图形如下:五、实验过程原始记录(数据、图表、计算等):1、频率为2.44GHz,L=L0,R0=1mm①谐振频率:②三维方向图:③二维方向:2、频率为2.44GHz,L=(L0-2)mm,R0=1mm①谐振频率:②二维方向:3、频率为2.44GHz,L= (L0+2) mm,R0=1mm①谐振频率:②二维方向:4、频率为2.44GHz,L=L0,R0=2mm①谐振频率:②二维方向:六、实验结果及分析:由频率为2.44GHz,R0=1mm,L分别为L0、L0-2)mm、(L0+2) mm时的谐振频率曲线可以看出:①当天线长度小于初始长度L时,带宽的上下限截止频率都有所变大,但是带宽的大小无太大变化。
天线参数实验报告结论1. 研究背景天线是通信系统中十分重要的组成部分,它负责将电磁波转化为无线电信号或将无线电信号转化为电磁波。
天线参数的调整和优化对系统的性能至关重要。
2. 实验目的本实验的目的是研究不同天线参数对通信系统性能的影响,通过实际测量和对比分析,得出合理的结论。
3. 实验步骤和结果3.1 实验步骤实验主要包括以下几个步骤:1. 设置实验平台和测量仪器。
2. 将不同类型的天线放置在相同的位置上,保证实验条件一致。
3. 测量天线的增益、辐射特性、频率响应等参数。
4. 分析和比较不同天线参数的实验结果。
5. 总结和得出结论。
3.2 实验结果根据实验数据的测量和分析,我们得出了以下结论:1. 天线增益与发射距离成正相关关系,增加天线增益可以提高通信系统的传输距离。
2. 天线辐射特性与传输方向有关,不同天线的辐射角度和辐射范围不同,需要根据具体情况选择合适的天线类型。
3. 天线频率响应与系统的工作频率有关,选择与系统要求匹配的天线频率可以提高通信质量。
4. 天线参数的调整和优化需要考虑各种因素的综合影响,包括通信距离、传输方向、工作频率、天线成本等。
4. 结论和建议基于以上实验结果和分析,我们得出以下结论和建议:1. 在需要提高通信距离的情况下,可以选择增加天线增益的方法来改善信号传输质量。
2. 在需要控制信号辐射范围的情况下,可以选择具有较窄辐射角度的天线来提高系统的抗干扰能力。
3. 在需要适应不同工作频率的情况下,可以选择具备宽频带的天线来满足多样化的通信需求。
4. 在实际应用中,需要综合考虑天线成本、可靠性和维护成本等因素,在性能和经济效益之间做出合理的权衡。
5. 结果的局限性和未来的改进方向本实验结果的局限性在于实验条件的限制和采样数据的有限性。
为了得到更加准确的实验结果,可以考虑增加样本数量、扩大实验范围,并进一步研究影响天线性能的其他因素。
6. 参考资料待补充。
7. 致谢感谢实验指导老师的悉心指导和同组同学的配合。
第一章1-1试用对偶原理,由电基本振子场强式(1-5)和式(1-7),写出磁基本振子的场表示式。
对偶原理的对应关系为:E e H mmH e-E mJ — J mP -P□££另外, 由于k..,所以有k — —k结合 I m dl=j 3 0S 有磁基本振子的场表示式为:式(1-5)H r HIdljkrjkr式(1-7)E rIdl 2 0cos2 r 2i ojkrjkre因此,式(1-5)的对偶式为1 jkrjkreE rE 0E.I m dl . j sin 2 r1jkr e kr1 jkrjkr1 k 2r 2jkrsinjkreH r式(1-7)的对偶式为H11可以就此结束,也可以继续整理为E r 0 E 0 1 jkrIS sin 1 丄亠 e jkr r jkr k rE r 0 E 0sin1 jkr—e jkrH roIS2 r 2cos 11 jkr jkre1 jkr1 k 2r 2jkrejkrH rj-IS 2cos 1丄 e jkrjkrE1-3若已知电基本振子辐射电场强度大小II 0S1 n2 r,天线辐射功率可按穿过以源为球心处于远区的封闭球面的功率密度的总和计算,即 S(r, , ) ds Sdsr 2sin d d 为面积元。
试计算该电基本振子的辐射功率和辐射电阻。
【解】首先求辐射功率oIS 2 rsin 1E sin求其方向性系数。
【解】方向性系数的定义为:在相同辐射功率、相同距离条件下,天线在某辐射方向上的 功率密度S max (或场强E max 的平方),与无方向性天线在该方向上的功率密度S o (或场强E o 的平方)之比。
首先求辐射功率Eor240 其中E o 是无方向性天线的辐射场强。
因此,可以求得E o 2 24oo1-6设小电流环电流为I ,环面积S o 求小电流环天线的辐射功率和辐射电阻表 示式。
若1m 长导线绕成小圆环,波源频率为 1MHz ,求其辐射电阻值。
实验一 半波振子天线的制作与测试一、实验目的1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。
2、掌握半波振子天线的制作方法。
3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。
4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。
二、实验原理(1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1):)ex p(||011θj Z Z Z Z S A A Γ=+-=(1-1)根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。
天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:||1||1Γ-Γ+=ρ(1-2)|)lg(|20Γ-=RL [dB](1-3)对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。
表1-1 工程上对天线的不同要求(供参考)(2)同轴电缆的特性阻抗本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。
其特性阻抗计算公式如下:0b Z a ⎛⎫=⎪⎝⎭(1-4)式中 a ——内芯直径; b ——外皮内直径。
三、实验仪器(1)Anritsu S331D天馈线测试仪图1-1 Anritsu S331D天馈线测试仪表1-2 Anritsu S331D天馈线测试仪主要性能指标参数名称参数值频率范围25MHz-4000MHz频率分辨率100kHz输出功率< 0dBm回波损耗范围0.00-54.00dB(分辨率:0.01dB)驻波比范围0.00-65.00 (分辨率:0.01)撑和固定天线)和酒精棉等。
(3)工具,主要包括:裁纸刀、尖嘴钳子、斜口钳子、砂纸、挫、尺和电烙铁等。
哈工大天线原理马汉炎习题答案第一章1-1试用对偶原理,由电基本振子场强式(1-5)和式(1-7),写出磁基本振子的场表示式。
对偶原理的对应关系为:Ee——HmHe——-EmJ——Jmρ——ρmμ——εε——μ另外,由于,所以有k——k式(1-5)为式(1-7)为因此,式(1-5)的对偶式为式(1-7)的对偶式为结合Imdl=jωμ0IS有磁基本振子的场表示式为:可以就此结束,也可以继续整理为1-3若已知电基本振子辐射电场强度大小,天线辐射功率可按穿过以源为球心处于远区的封闭球面的功率密度的总和计算,即,为面积元。
试计算该电基本振子的辐射功率和辐射电阻。
【解】首先求辐射功率辐射电阻为注意:此题应用到了1-5若已知电基本振子辐射场公式,试利用方向性系数的定义求其方向性系数。
【解】方向性系数的定义为:在相同辐射功率、相同距离条件下,天线在某辐射方向上的功率密度Smax(或场强Emax的平方),与无方向性天线在该方向上的功率密度S0(或场强E0的平方)之比。
首先求辐射功率令该辐射功率为其中E0是无方向性天线的辐射场强。
因此,可以求得所以方向性系数1-6设小电流环电流为I,环面积S。
求小电流环天线的辐射功率和辐射电阻表示式。
若1m长导线绕成小圆环,波源频率为1MHz,求其辐射电阻值。
电小环的辐射场幅度为:首先求辐射功率辐射电阻为当圆环周长为1m时,其面积为,波源频率为1MHz时,波长为λ=300m。
所以,辐射电阻为RΣ=2.4×10-8Ω。
1-7试证明电基本振子远区辐射场幅值Eθ与辐射功率PΣ之间的关系为【证明】电基本振子远区辐射场幅值根据题目1-3可知电基本振子辐射功率为,所以代入到Eθ表达式中可以得到:所以有:1-9试求证方向性系数的另一种定义:在最大辐射方向上远区同一点具有相同电场强度的条件下,无方向天线的辐射功率比有方向性天线辐射功率增大的倍数,记为【证明】方向性系数的定义为:相同辐射功率、相同距离条件下,天线在某辐射方向上的功率密度Smax(或场强Emax的平方),与无方向性天线在该方向上的功率密度S0(或场强E0的平方)之比。
天线实验报告天线实验报告引言:天线是无线通信系统中不可或缺的重要组成部分,它起着收发信号的关键作用。
在本次实验中,我们将对不同类型的天线进行测试和比较,以评估它们的性能和适用范围。
通过实验数据的分析,我们可以更好地了解天线的特性和优劣,为无线通信系统的设计和优化提供有益的参考。
一、天线类型1.1 定向天线定向天线是一种具有较高增益的天线,它能够将信号的主要能量定向发送或接收到特定的方向。
在实验中,我们使用了一款定向天线进行测试,并记录了其接收到的信号强度和方向。
通过比较不同方向上的信号强度,我们可以确定定向天线的辐射方向和覆盖范围。
1.2 环形天线环形天线是一种常用于无线通信系统的全向天线,它具有较为均匀的辐射特性。
在实验中,我们测试了环形天线的辐射图案和信号覆盖范围。
通过测量不同方向上的信号强度,我们可以评估环形天线的全向性能和辐射效果。
二、实验过程2.1 实验设备我们使用了一台信号发生器、一台功率计、一台频谱分析仪和一台天线测试仪作为实验设备。
信号发生器用于产生特定频率和幅度的信号,功率计用于测量信号的功率,频谱分析仪用于分析信号的频谱特性,而天线测试仪则用于测量天线的增益和辐射特性。
2.2 测试步骤首先,我们将信号发生器连接到天线测试仪,设置特定的频率和功率。
然后,将天线与天线测试仪相连,并将其放置在指定的位置。
接下来,我们使用功率计和频谱分析仪分别测量信号的功率和频谱特性。
通过调整天线的方向和位置,我们记录了不同条件下的信号强度和辐射图案。
三、实验结果3.1 定向天线测试结果通过实验数据的分析,我们发现定向天线在特定方向上的信号强度明显高于其他方向。
这表明定向天线具有较好的定向性能,适用于需要远距离传输和高增益的场景。
然而,在非指向性需求较强的应用中,定向天线的使用可能会受到限制。
3.2 环形天线测试结果与定向天线相比,环形天线在不同方向上的信号强度相对均匀。
这使得环形天线适用于需要全向覆盖和较小增益要求的场景,例如室内无线通信系统。