二极管、三极管最通俗的解释
- 格式:doc
- 大小:17.00 KB
- 文档页数:2
二极管图三极管工作(gōngzuò)原理三极管是电流放大器件,有三个极,分别(fēnbié)叫做集电极C,基极B,发射极E。
分成NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流(diànliú)放大下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够(nénggòu)提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化(biànhuà)被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib 的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。
这有几个原因。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。
但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
三极管的概念
三极管的概念:
三极管,也称为双极型晶体管或晶体三极管,是一种控制电流的半导体器件。
其主要功能是将微弱信号放大成幅度值较大的电信号,同时也用于实现无触点的开关操作。
三极管通常由一个N型半导体和一个P型半导体组成的两个PN结构成,这两个PN结将半导体基片分割成三个区域:基区、发射区和集电区。
基区位于中间,两侧分别为发射区和集电区。
三极管的结构包括三个端子,分别是基极(用字母b表示)、集电极(用字母c表示)和发射极(用字母e表示)。
这些端子允许电流从一个区域流向另一个区域,从而实现了信号的放大和切换功能。
三极管的工作状态可以是放大状态,此时它起到放大作用;也可以是饱和状态,这时它可以作为开关使用。
三极管是电子电路的核心元件,广泛应用于各种电子设备中,包括放大器、振荡器、开关电路以及稳压器等。
此外,根据三极管的类型不同,可以分为NPN型和PNP型。
在使用三极管时,可以通过对其电流放大系数的测量来确定其好坏,这个系数通常用符号β表示。
总结来说,三极管是一种能够控制电流的半导体设备,主要用于信号放大和开关应用,它是电子学中最基本的组件之一。
电子元器件知识:二极管、三极管与场效应管。
一、半导体二极管2、半导体二极管的分类分类:a 按材质分:硅二极管和锗二极管;b按用途分:整流二极管,检波二极管,稳压二极管,发光二极管,光电二极管,变容二极管。
3、半导体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的半导体二极管。
4、半导体二极管的导通电压是:a;硅二极管在两极加上电压,并且电压大于0.6V时才能导通,导通后电压保持在0.6-0.8V之间.B;锗二极管在两极加上电压,并且电压大于0.2V时才能导通,导通后电压保持在0.2-0.3V之间.5、半导体二极管主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
6、半导体二极管可分为整流、检波、发光、光电、变容等作用。
7、半导体二极管的识别方法:a;目视法判断半导体二极管的极性:一般在实物的电路图中可以通过眼睛直接看出半导体二极管的正负极.在实物中如果看到一端有颜色标示的是负极,另外一端是正极.b;用万用表(指针表)判断半导体二极管的极性:通常选用万用表的欧姆档(R﹡100或R﹡1K),然后分别用万用表的两表笔分别出接到二极管的两个极上出,当二极管导通,测的阻值较小(一般几十欧姆至几千欧姆之间),这时黑表笔接的是二极管的正极,红表笔接的是二极管的负极.当测的阻值很大(一般为几百至几千欧姆),这时黑表笔接的是二极管的负极,红表笔接的是二极管的正极.c;测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。
8、变容二极管是根据普通二极管内部“PN结”的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管。
变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。
在工作状态,变容二极管调制电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化。
二极管、三极管、MOS管之间有什么联系和区别?二极管、三极管、MOS管都是常见的电子元器件二极管、三极管、MOS管都是由PN结组成,但它们的功能是不同的,应用于不同的电路设计中去二极管二极管由一个PN结组成,且有单向导通的特性。
给二极管施加正向电压,二极管导通;给二极管施加反向电压,二极管截止。
二极管是最早发明的电子元件之一,应用非常广泛。
不同的种类的二极管有着不同的作用,广泛应用用于整流、检波、限幅、钳位等电路中去。
二极管整流是最经典的应用之一三极管三极管由两个PN结组成,可以排列成NPN型,也可以排列成PNP型,有三个引脚:基极(B)、集电极(C)、发射极(E)。
三极管有三个工作区:截止区、放大区、饱和导通区。
三极管是电流控制型器件,Ic=β*Ib。
NPN三极管:控制电流Ib从基极(B)流入,驱动电流Ic从集电极(C)流入。
PNP三极管:控制电流Ib从基极(B)流出,驱动电流Ic从集电极(C)流出。
让三极管工作在放大区,可以用于电流、电压信号放大。
控制三极管工作在截止区和饱和导通区,可以设计为“电子开关”,用于驱动小功率的直流负载,比如:LED、直流电机、继电器、蜂鸣器等等MOS管MOS管的功能和三极管有类似的地方,但也是不同的电子元器件。
MOS管是电压控制型的元件。
MOS管也有三个引脚:栅极(G)、漏极(D)、源极(S)。
可以排列成N沟道MOS管或者P沟道MOS管N沟道场效应管:当Vgs>0时场效应管开始导通,电流可以从漏极(D)源极(S),也可以从源极(S)漏极(D),当然Vgs要达到一定的开启电压才可以稳定的导通。
P沟道场效应管:当Vgs<0时场效应管开始导通,电流可以从漏极(D)源极(S),也可以从源极(S)漏极(D),当然Vgs要达到一定的开启电压才可以稳定的导通。
MOS管也可以用于设计电流、电压信号放大电路MOS管导通后内阻非常小,基本没有压降,所以驱动负载的能力比三极管大很多。
二极管图三极管工作原理三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。
分成NPN和PNP 两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流放大下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
二、偏置电路三极管在实际的放大电路中使用时,还需要加适宜的偏置电路。
这有几个原因。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。
但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一个适宜的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
晶体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的二极管。
1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。
电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。
2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。
发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。
3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。
晶体三极管在电路中常用“Q”加数字表示,如:Q17表示编号为17的三极管。
1、特点:晶体三极管(简称三极管)是内部含有2个PN结,并且具有放大能力的特殊器件。
它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补,所谓OTL电路中的对管就是由PNP型和NPN型配对使用。
电话机中常用的PNP型三极管有:A92、9015等型号;NPN型三极管有:A42、9014、9018、9013、9012等型号。
2、晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。
为了便于比较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。
名称共发射极电路共集电极电路(射极输出器)共基极电路输入阻抗中(几百欧~几千欧)大(几十千欧以上)小(几欧~几十欧)输出阻抗中(几千欧~几十千欧)小(几欧~几十欧)大(几十千欧~几百千欧)电压放大倍数大小(小于1并接近于1)大电流放大倍数大(几十)大(几十)小(小于1并接近于1)功率放大倍数大(约30~40分贝)小(约10分贝)中(约15~20分贝)三极管的导通条件:三极管的导通条件是:发射结加正向电压,集电结加反向电压。
电子元器件有哪些?内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.电子元器件是电子元件和电小型的机器、仪器的组成部分,其本身常由若干零件构成,可以在同类产品中通用;常指电器、无线电、仪表等工业的某些零件,如电容、晶体管、游丝、发条等子器件的总称。
常见的有二极管等。
电子元器件包括:电阻、电容器、电位器、电子管、散热器、机电元件、连接器、半导体分立器件、电声器件、激光器件、电子显示器件、光电器件、传感器、电源、开关、微特电机、电子变压器、继电器、印制电路板、集成电路、各类电路、压电、晶体、石英、陶瓷磁性材料、印刷电路用基材基板、电子功能工艺专用材料、电子胶(带)制品、电子化学材料及部品等。
电子元器件在质量方面国际上有欧盟的CE认证,美国的UL认证,德国的VDE和TUV以及中国的CQC认证等国内外认证,来保证元器件的合格。
概述一、元件:工厂在加工时没改变原材料分子成分的产品可称为元件,元件属于不需电子元器件要能源的器件。
它包括:电阻、电容、电感。
(又称为被动元件Passive Components)元件分为:1、电路类元件:二极管,电阻器等等2、连接类元件:连接器,插座,连接电缆,印刷电路板(PCB)二、器件:工厂在生产加工时改变了原材料分子结构的产品称为器件器件分为:1、主动器件,它的主要特点是:(1)自身消耗电能(2)需要外界电源。
2、分立器件,分为(1)双极性晶体三极管(2)场效应晶体管(3)可控硅(4)半导体电阻电容电阻电阻在电路中用"R”加数字表示,如:R1表示编号为1的电阻.电阻在电路中的主要作用为:分流、限流、分压、偏置等.电容电容在电路中一般用"C"加数字表示(如C13表示编号为13的电容).电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件.电容的特性主要是隔直流通交流.电容的容量大小表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关.晶体二极管晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管.作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大.因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中.电感器电子元器件电感器在电子制作中虽然使用得不是很多,但它们在电路中同样重要。
详细介绍电阻、电容、电感、二极管、三极管、场效应管电路知识电阻1概念电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
导体的电阻通常用字母R表示,电阻的单位是欧姆(ohm),简称欧,符号是Ω(希腊字母,读作Omega),1Ω=1V/A。
比较大的单位有千欧(kΩ)、兆欧(MΩ)(兆=百万,即100万)。
1TΩ=1000GΩ;1GΩ=1000MΩ;1MΩ=1000KΩ;1KΩ=1000Ω(也就是一千进率)串联: R=R1+R2+...+Rn定义式:R=U/I电阻元件的电阻值大小一般与温度有关,还与导体长度、横截面积、材料有关。
衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
多数(金属)的电阻随温度的升高而升高,一些半导体却相反。
如:玻璃,碳在温度一定的情况下,有公式R=ρl/s其中的ρ就是电阻率,l为材料的长度,单位为m,s为面积,单位为平方米。
可以看出,材料的电阻大小正比于材料的长度,而反比于其面积。
2电阻应用电阻通常分为三大类:固定电阻,可变电阻,特种电阻。
RX型线绕电阻,近年来还广泛应用的片状电阻。
按照功率可以分为小功率电阻和大功率电阻。
大功率电阻通常是金属电阻,实际上应该是在金属外面加一个金属(铝材料)散热器,所以可以有10W以上的功率;在电子配套市场上专门卖电阻的市场上可以很容易地看到。
电阻在电路中起到限流、分压等作用。
通常1/8W电阻已经完全可以满足使用。
但是,在作为7段LED中,要考虑到LED的压降和供电电压之差,再考虑LED的最大电流,通常是20mA(超高亮度的LED),如果是2×6(2排6个串联),则电流是40mA。
电位器又分单圈和多圈电位器。
单圈的电位器通常为灰白色,面上有一个十字可调的旋纽,出厂前放在一个固定的位置上,不在2头;多圈电位器通常为蓝色,调节的旋纽为一字,一字小改锥可调;多圈电位器又分成顶调和侧调2种,主要是电路板调试起来方便。
二极管三极管
二极管:是一种双极型电子器件,有两个导通极。
这种电子器件具有很强的电流方向性,只有当正向电压作用在它上时,它才能导通;而当负向电压作用在它上时,它就不能导通。
用于控制、保护和调节电路中的电流,是电子系统中最重要的元件之一。
三极管:是一种三极型电子器件,有三个导通极。
它的特点是在三个极间形成一个可变的电阻,并且可以根据电压的大小而变化,使得电流大小和方向也有可能改变。
因此,三极管可以用来控制电流的大小和方向,是构成电子电路中最重要的元件之一。
三极管be并联二极管解释说明以及概述1. 引言1.1 概述在现代电子技术中,三极管和并联二极管是两种非常重要的电子元件。
它们在电路设计、信号放大和开关控制等方面发挥着关键作用。
本文将深入介绍和解释三极管和并联二极管的原理、结构特性以及它们之间的组合应用。
1.2 文章结构本文将按照以下顺序进行阐述:首先介绍三极管的原理,包括其工作原理以及内部结构与特性;接着详细讨论并联二极管的概述与原理,重点探讨其特性和性能指标;然后我们将重点关注三极管与并联二极管的组合应用,包括电路设计要点、工作原理解析以及实际应用范例分析;最后总结全文内容,并对未来发展进行展望。
1.3 目的本文旨在深入探究三极管和并联二极管这两种常见电子元件,并介绍它们各自的原理、特性以及在不同领域中的应用。
通过本文内容,读者将能够了解到如何正确选择和应用这些元件,从而提高电路设计的效率和可靠性。
同时,本文还将展望这些元件未来的发展趋势,为读者提供对未来技术发展方向的思考和参考。
2. 三极管2.1 原理介绍三极管是一种半导体器件,由三个不同掺杂类型的半导体材料组成。
它由一个发射区、一个基区和一个集电区组成。
其工作原理基于NPN或PNP型晶体管。
当在基极上施加适当的电压时,就会形成发射到基极的电流,并且通过外部电路控制,这将导致集电区产生相应的放大。
2.2 结构与特性三极管通常具有小体积和轻量化的特点,其结构由发射区、基区和集电区组成。
具体来说,发射区是由高掺杂(n型或p型)的材料组成;基区夹在两个发射区之间,中间掺有低掺杂(p型或n型)的材料;而集电区又位于两个基区之间。
三极管具有放大电流和功率的能力,并且能够以低功耗实现高频率操作。
此外,它还具备较高的输入阻抗和较低的输出阻抗,从而提供了良好的信号转换效果。
2.3 应用领域三极管被广泛应用于电子行业的不同领域。
其中最常见的应用是作为放大器,用于放大电信号。
此外,它还可以用作开关,通过对基极电压施加控制以实现开关状态的转换。
二极管:1 二极管就是P-N结加外壳。
P为阳极,N为阴极。
2 结构类型:点接触,面接触,平面型。
3 二极管的伏安特性使用muitisim 7 仿真:会发现,伏安特性近似为指数型。
(感兴趣的可以研究一下,电压<0.7V的曲线,甚至电压反向的曲线,会发现有很多以外的结论。
有条件,做做实物实验更好)。
温度上升时,该曲线会左移,其余部分,自己测。
4 二极管的主要参数:最大整流电流,最大反向工作电压,反向电流,最高工作频率。
5 二极管的等效电路,a 理想模型没有截止电压U0,b理想模型加一U0的电压源,c理想模型加电压源再加一电阻。
三者,a误差最大b最普遍c误差最小。
6 二极管的微变等效电路,利用高数上的导数分析,只看斜率。
用哲学上的话就是用运动的观点看问题。
当有振动的电压△U(或震动的电流△I)提供给二极管时,二极管会产生等效电阻Rd(称为动态电阻),此时求Rd有两种式子:A Rd= Ut / Id其中Ut 是温度的电压当量,常温下(300K)下Ut=26 mv,Id 是振动中心点(平衡点)时,流经二极管的点流量。
B Rd=△U / △I其中△U是振动的微小增量,△I也是振动的微小增量。
注意:微变等效电压是针对微小增量提出的,只能计算△I和△U,不能计算工作点出(平衡点)的Id和Ud。
7二极管的使用:A 利用二极管加反向电压时,在一定电流范围内,端电压几乎不变。
可以用她,稳压或限幅。
B 放光二极管的广泛使用。
三极管1 分类:小功率管,中功率管,大功率管。
结构类型:NPN 的基区,恨薄,掺杂浓度低,上层N区,发射极,掺杂浓度高,下层为集电极,面积大。
顾名思义,也知道什么是发射结,集电结。
2研究目标:放大作用,特性曲线,主要参数。
3放大作用:基本共射图分析,分清楚输入回路(基极-发射极回路),输出回路(集电极-发射极回路),两个回路均有直流电源。
放大区条件:发射结正向偏置,集电结反向偏置。
小的基极电流可以控制大的集电极电流。
电阻,电容,电感,二极管,三极管,在电路中的作用电阻定义:导体对电流的阻碍作用就叫导体的电阻。
电阻(Resistor)是所有电子电路中使用最多的元件。
电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生热能。
电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。
电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。
电阻的单位是欧姆,用符号“Ω”表示。
欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中有1安培的电流通过,则这个电阻器的阻值为1欧姆。
出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。
电阻器的电气性能指标通常有标称阻值,误差与额定功率等。
它与其它元件一起构成一些功能电路,如RC电路等。
电阻是一个线性元件。
说它是线性元件,是因为通过实验发现,在一定条件下,流经一个电阻的电流与电阻两端的电压成正比——即它是符合欧姆定律:I=U/R常见的碳膜电阻或金属膜电阻器在温度恒定,且电压和电流值限制在额定条件之内时,可用线性电阻器来模拟。
如果电压或电流值超过规定值,电阻器将因过热而不遵从欧姆定律,甚至还会被烧毁。
线性电阻的工作电压与电流的关系如图1所示。
电阻的种类很多,通常分为碳膜电阻,金属电阻,线绕电阻等:它又包含固定电阻与可变电阻,光敏电阻,压敏电阻,热敏电阻等。
但不管电阻是什么种类,它都有一个基本的表示字母“R”。
电阻的单位用欧姆(Ω)表示。
它包括?Ω(欧姆),KΩ(千欧),MΩ(兆欧)。
其换算关系为:1MΩ=1000KΩ ,1KΩ=1000Ω。
电阻的阻值标法通常有色环法,数字法。
色环法在一般的的电阻上比较常见。
由于手机电路中的电阻一般比较小,很少被标上阻值,即使有,一般也采用数字法,即:101——表示100Ω的电阻;102——表示1KΩ的电阻;103——表示10KΩ的电阻;104——表示100KΩ的电阻;105——表示1MΩ的电阻;106——表示10MΩ的电阻。
二极管三级管发展历史
二极管和三极管是电子元件中常见的两种器件,它们在电子技
术领域发展历史上扮演了重要角色。
首先,我们来看二极管。
二极管最早是由德国物理学家费尔德·略维勒于1906年发明的。
在二极管发明之前,人们对半导体材
料的理解还比较有限。
费尔德·略维勒在研究金属和半导体接触时
发现了电流只能单向流动的现象,这就是后来被称为二极管的器件。
1926年,美国物理学家J. B. 约翰逊发现了硅和砷化镓等半导体材
料的整流特性,为二极管的发展奠定了基础。
二战期间,二极管得
到了大规模的发展和应用,成为无线电、电视、雷达等电子设备的
重要组成部分。
接下来,我们来看三极管。
三极管是由美国贝尔实验室的沃尔特·布拉坦和约翰·巴丁等人于1947年发明的。
三极管是在二极管
的基础上发展而来的,它具有放大作用,可以控制电流,因而被广
泛应用于放大、开关和稳压等电路中。
三极管的出现使得电子技术
得到了极大的发展,成为现代电子设备的核心组件之一。
总的来说,二极管和三极管的发展历史是电子技术发展历史中
不可或缺的一部分。
从最初的发现到如今的广泛应用,二极管和三极管在通信、计算机、电力等领域都发挥着重要作用,推动着整个电子科技的进步和发展。
二极管与三极管讲解
有些人在学习电子技术的时候对PN结、二极管、三极管不太了解,看书吧,讲的太深奥,不太明白,我用通俗的语言给大家讲一讲,希望能帮助大家,也许我讲的不怎么正确,但是我感觉基本思路是正确的,等你学的透彻以后再根据自己的见解纠正我的错误。
一、PN结
N型半导体:掺入少量杂质磷元素(或锑元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,磷原子外层的五个外层电子的其中四个与周围的半导体原子形成共价键,多出的一个电子几乎不受束缚,较为容易地成为自由电子。
于是,N型半导体就成为了含电子浓度较高的半导体,其导电性主要是因为自由电子导电。
P型半导体:掺入少量杂质硼元素(或铟元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,硼原子外层的三个外层电子与周围的半导体原子形成共价键的时候,会产生一个“空穴”,这个空穴可能吸引束缚电子来“填充”,使得硼原子成为带负电的离子。
这样,这类半导体由于含有较高浓度的“空穴”(“相当于”正电荷),成为能够导电的物质。
(空穴可以移动)二、扩散运动
PN结中间相接触的部分,P带负电,N带空穴(正点),相互结合,PN结中间部分中和成不带电,但是P为负离子,N为正离子,所以形成了内部电场,方向由N指向P促使漂移运动产生。
三、漂移运动
在内部电场的作用下,N型半导体与P型半导体不接触部分的空穴(N和P都不是绝对的只有空穴和电子,而是相对来说的。
空穴可以移动,带正电)在电场作用下向P运动,相反,P中的电子向N运
动,这就是漂移,因为N中的空穴很少,P中的电子很少,所以漂移运动不是很明显。
四、二极管
如果在PN结外部接一个正向电压,负极接N,正极接P,那么就加强了扩散运动,所以通过PN结的电流更容易,反之就为漂移运动,所以电流不能顺利通过,(反向截止),这样就产生了二极管。
五、二极管压降
压降的意思是:电压的损失,也就是通过二极管的时候,有电压损失,也就是正向偏置的时候,二极管可以看成一个小电阻。
在这个小电阻的两端就是二极管的压降。
六、三极管
;;;;;;;;
至于三极管、放大电路、整流、滤波、二极管的伏安特性曲线,三极管输入输出曲线等等,如果你感觉以上写的对你有帮助,就请加我QQ(912853255),我把你想要的部分用通俗的语言写出来。
然后发给你。