运筹学中的建模与算法分析
- 格式:docx
- 大小:37.19 KB
- 文档页数:2
1第二章、运筹学建模方法综述2定义问题和收集数据 数学建模模型求解 检验模型 准备应用模型 实施3运筹学研究小组首先要做的是研究相关系统,并使被研究的问题得到明确的说明。
包括确定合适的目标、实际的限制条件、研究领域和组织的其他领域间的相互关系、可选择的行动路线、制定决策的时间限制等。
2.1定义问题和收集数据4针对美国企业的大量调查发现,管理层趋向于采取满意利润目标和其他目标相结合的方式代替长期收益最大化。
典型地,其他目标包括维持稳定收益、增加市场份额、实现产品多样化、维持稳定价格、提高员工士气、维持企业的家族控制以及提高企业声望。
另外,存在包含与盈利动机不相吻合的社会责任的其他考虑。
2.1定义问题和收集数据5商业企业一般涉及以下五个方面所用者(股东等),追求盈利员工,期望合理工资水平上的稳定雇佣 客户,期望以合理的价格获得可靠的产品 供应商,期望声誉以及产品的合理出售价格政府以及国家,期望公正的税收和考虑国家利益6例:在为旧金山警察局所开展的运筹学研究中,建立了一个优化调度和配置巡警的计算机系统。
这个新系统每年为警察局节约1100万美元,同时增加了300万美元的交通管理收入,并且将反映时间减少了20%。
在评估该项研究的合适目标时,确定了三个基本目标:(1). 维持高水平的居民安全(2). 维持高水平的警员士气(3). 最小化运作成本7收集数据通常,研究小组会花费大量的时间收集问题的数据。
大部分数据既用于获得对问题的充分理解,又为下一阶段研究建立的数学模型提供所需的输入。
82.2 数学建模商业问题的数学模型,是描述问题实质的方程和相关数学表达式的系统。
n 个相关的可量化的决策,称为决策变量(decision variables)(x 1, x 2, …x n )绩效(如收益)的合理度量被表示成这些决策变量的数学函数(例如,P =3x 1+2x 2+…+5x n ),这个函数称为目标函数(objective function)9 任何对决策变量值的约束也能够被数学表示,通常是通过等式或不等式(例如:x 1+3x 1x 2+2x 2≤10),这些用于限制的数学表达式称为约束(constraints)。
运筹学的原理与方法1. 引言运筹学是一门研究决策的科学,通过数学模型和优化方法来解决实际问题。
它的应用领域非常广泛,包括生产调度、物流管理、资源优化等。
本文将介绍运筹学的基本原理和常用方法。
2. 运筹学的基本原理运筹学的基本原理是建立数学模型,通过对模型的分析和优化来求解最优解。
它包括以下几个要素:2.1 目标函数目标函数是衡量决策结果好坏的指标,通常是需要最小化或最大化的量。
在数学模型中,目标函数通常用代数符号表示,可以是线性函数、非线性函数等。
2.2 约束条件约束条件是限制决策结果的条件,它们是问题中的限制规定。
约束条件可以是等式约束或不等式约束,也可以是逻辑约束。
2.3 决策变量决策变量是决策问题中需要确定的变量,它们的取值将影响决策结果。
在建立数学模型时,需要明确决策变量的定义和取值范围。
2.4 最优解最优解是指在给定的约束条件下,使目标函数取得最优值的决策变量取值。
寻找最优解是运筹学的核心任务。
3. 运筹学的常用方法运筹学的方法包括数学规划、动态规划、网络优化等。
下面将详细介绍几种常用的方法。
3.1 数学规划数学规划是运筹学中最常用的方法之一,它基于数学模型,通过数学方法求解最优解。
数学规划包括线性规划、整数规划、非线性规划等。
其中,线性规划是最简单也是最常见的一种形式,它的目标函数和约束条件都是线性的。
3.2 动态规划动态规划是一种通过将问题分解为子问题,并通过求解子问题的最优解来求解原始问题的方法。
动态规划适用于具有重叠子问题和最优子结构性质的问题。
在运筹学中,动态规划常用于求解具有时序关系的决策问题。
3.3 网络优化网络优化是一种从图论角度来研究决策问题的方法。
它通过将决策问题建模为网络,利用图论中的算法求解最优解。
网络优化适用于具有节点和边的决策问题,例如最短路径问题、最小生成树问题等。
3.4 模拟优化模拟优化是一种通过模拟仿真的方式来求解优化问题的方法。
它通过建立系统模型,运行多次模拟实验,通过对实验结果的分析来确定最优解。
运筹学的工作步骤运筹学是一门综合性的学科,旨在研究在资源有限的情况下如何做出最优决策。
它将数学、统计学、计算机科学和经济学等多个学科的知识融合在一起,以量化的方式解决实际问题。
运筹学的工作步骤可以大致分为问题建模、模型求解和方案实施三个阶段。
第一阶段:问题建模问题建模是运筹学研究的第一步,它涉及收集和分析问题相关的背景信息,并将问题抽象为一个数学模型。
在这个阶段,需要明确问题的目标、约束和变量,并确定适当的数学模型。
问题建模需要准确理解问题的本质和目标,辨别问题中的关键因素,并确定适当的数学模型来描述问题。
问题建模的主要步骤如下:1.确定问题的目标:明确问题要达到的目标,比如最小化成本、最大化效益等。
2.收集相关数据:收集和整理与问题相关的数据,包括资源的可用量、需求量、成本和效益等指标。
3.确定约束条件:确定问题的约束条件,比如资源的限制、技术要求和市场需求等。
4.建立数学模型:根据问题的特点和目标,选择合适的数学方法和技术,建立适当的数学模型来描述问题。
5.验证模型:对建立的数学模型进行验证和检验,确保模型的准确性和可靠性。
第二阶段:模型求解模型求解是运筹学研究的核心内容,它涉及利用数学方法和工具对建立的数学模型进行求解,得出最优决策方案。
在模型求解阶段,需要选择合适的求解方法,进行计算和优化。
常用的求解方法包括线性规划、整数规划、动态规划、图论等。
模型求解的主要步骤如下:1.转化为数学问题:将建立的数学模型转化为相应的数学问题,比如线性规划问题、整数规划问题等。
2.选择求解方法:根据具体的数学问题和模型特点,选择合适的求解方法和算法。
3.数据输入和计算:将问题相关的数据输入模型,利用计算机工具进行计算和求解。
4.求解优化:根据求解结果,分析和优化方案,得到最优决策。
第三阶段:方案实施方案实施是运筹学研究的最后一步,它涉及将求解得到的最优方案转化为实际操作,并跟踪和评估方案实施的效果。
在方案实施阶段,需要考虑实际操作的可行性、风险和效果,并进行相应的调整和优化。
运筹学研究的特点运筹学是一门研究如何高效地做出决策和优化资源配置的学科,它的核心目标是通过运用数学、统计学和计算机科学的方法,解决现实生活中的各种问题。
运筹学研究的特点主要体现在以下几个方面。
1. 数学建模:运筹学强调问题的形式化表达和数学建模。
将实际问题抽象为数学模型,利用数学语言和数学方法对问题进行描述和分析,从而使问题可计算、可优化。
通过建立数学模型,运筹学可以将复杂的实际问题简化为数学问题,从而提供了解决问题的方法和工具。
2. 多学科交叉:运筹学是一门综合性学科,涉及数学、统计学、计算机科学、经济学、管理学等多个学科的知识和方法。
它不仅借鉴了各个学科的理论和方法,还将这些理论和方法进行整合和应用,以解决实际问题。
因此,运筹学的研究需要具备跨学科的综合能力。
3. 优化决策:运筹学的核心是优化问题的研究。
优化是指在给定的约束条件下,寻找最优解或最优决策。
运筹学通过建立数学模型,利用数学方法和计算机算法,找到问题的最优解或接近最优解的解决方案。
优化问题是运筹学研究的重点和难点,也是运筹学在实际应用中发挥作用的核心。
4. 系统分析:运筹学注重对问题的系统分析。
它不仅考虑问题的局部优化,还关注问题的整体效益。
通过系统分析,可以深入理解问题的本质和内在联系,找到问题的关键因素和影响因素,从而制定合理的解决方案。
系统分析能够帮助运筹学研究者从宏观和整体的角度把握问题,提高问题解决的效果。
5. 实践应用:运筹学是一门应用性很强的学科,其研究成果主要应用于现实生活中的各种问题。
运筹学可以应用于生产调度、物流配送、资源优化、供应链管理、市场营销等领域,为企业和组织提供决策支持和优化方案。
运筹学的研究成果可以直接应用于实际问题,对提高效率、降低成本、优化资源配置等方面有重要意义。
运筹学研究的特点包括数学建模、多学科交叉、优化决策、系统分析和实践应用。
这些特点使运筹学成为一门重要的学科,为解决实际问题提供了理论和方法支持,对提高决策效果和资源利用效率有重要意义。
运筹学优化问题和决策分析的方法运筹学是一门应用数学学科,旨在通过建立数学模型来解决决策问题,并运用优化算法寻找最优解。
在现代社会中,运筹学的应用已经渗透到各个领域,包括供应链管理、物流规划、生产调度等。
本文将介绍运筹学中的优化问题和决策分析的方法。
一、优化问题的基本概念在运筹学中,优化问题是指在一定的约束条件下,寻找某个指标的最优解。
优化问题可以分为线性优化问题和非线性优化问题。
线性优化问题的目标函数和约束条件都是线性的,而非线性优化问题的目标函数和约束条件涉及非线性关系。
在解决优化问题时,通常会使用数学建模的方法。
首先,将实际问题抽象为数学模型,然后建立数学模型的目标函数和约束条件。
接下来,运用优化算法求解模型,得到最优解。
二、常用的优化算法1. 线性规划线性规划是指优化问题的目标函数和约束条件都是线性的情况。
线性规划常常可以用单纯形法来求解,该方法通过迭代计算,逐步逼近最优解。
2. 非线性规划非线性规划是指优化问题的目标函数和约束条件涉及非线性关系的情况。
在求解非线性规划问题时,可以使用梯度下降法、牛顿法等方法。
3. 整数规划整数规划是指优化问题的变量需要取整数值的情况。
整数规划问题通常更加复杂,可以使用分支定界法、割平面法等算法求解。
三、决策分析的方法决策分析是指运用数学建模和分析方法来帮助决策者做出最佳决策。
决策分析的方法包括多属性决策分析、决策树分析、动态规划等。
1. 多属性决策分析多属性决策分析是指在考虑多个决策指标的情况下,综合分析各个指标的权重和价值,从而做出最佳决策。
常用的多属性决策分析方法包括层次分析法、模糊综合评判法等。
2. 决策树分析决策树分析是一种通过构建决策树来辅助决策的方法。
决策树是一种具有树状结构的决策模型,通过分析各个决策路径上的概率和收益来进行决策。
3. 动态规划动态规划是一种递推和状态转移的方法,常用于求解多阶段决策问题。
动态规划将决策问题分解为一系列子问题,并通过逐步求解子问题来求解原问题的最优解。
运筹学的基本概念与应用运筹学是一门应用数学科学,主要涉及决策问题的建模和求解。
它的核心目标是通过数学方法来优化决策,以便在资源有限的情况下取得最优的结果。
运筹学的应用领域广泛,包括物流管理、供应链优化、生产计划、交通调度等等。
一、运筹学的基本概念1.1 问题建模在运筹学中,问题建模是解决问题的第一步。
它涉及将实际问题抽象化为数学模型,以便使用运筹学方法进行求解。
常用的建模方法包括线性规划、整数规划、图论等。
1.2 数学优化方法数学优化方法是解决运筹学问题的主要手段。
其中最常用的方法是线性规划和整数规划。
线性规划主要用于解决连续变量的优化问题,而整数规划则考虑了变量的整数限制。
除此之外,还有许多其他的数学优化方法,如非线性规划、动态规划等。
1.3 求解技术为了求解运筹学问题,需要使用相应的求解技术。
最常用的求解技术有单纯形法、分支定界法、模拟退火算法等。
这些求解技术可以帮助我们找到问题的最优解或近似最优解。
二、运筹学的应用2.1 物流管理物流管理是运筹学的典型应用领域之一。
通过合理的路径规划、运输调度和仓储管理,可以最大程度地降低物流成本,提高配送效率。
运筹学方法可以帮助企业优化物流网络、车辆调度和库存管理,从而提升物流管理的效果。
2.2 供应链优化供应链是企业和客户之间的交互系统,优化供应链可以带来许多益处。
运筹学可以帮助企业优化供应链的结构和运作方式,从而实现更高效的生产和配送。
通过运筹学方法,可以降低库存成本、提高客户满意度,并且减少供应链中的风险。
2.3 生产计划在生产过程中,需要合理地安排生产计划,以便最大化生产效率、最小化生产成本。
运筹学可以通过合理的订单批量规划、生产调度和生产线优化来提供支持。
通过运筹学方法,可以降低生产时间、提高资源利用率,并最大程度地满足客户需求。
2.4 交通调度交通调度是城市交通管理的重要组成部分,也是一个复杂的优化问题。
运筹学方法可以帮助交通管理部门优化交通信号、路线规划和公交车辆调度,以降低交通拥堵和提高交通效率。
运筹学的基本概念探究运筹学是管理科学的一个重要分支,研究如何在资源有限的情况下,做出最优决策,以达到最佳的效益。
它的应用范围非常广泛,涉及到生产、供应链管理、运输、市场营销等各个领域。
运筹学的基本概念主要包括决策分析、数学建模、线性规划、整数规划、动态规划等。
首先,决策分析是运筹学的基本概念之一。
决策分析是指通过对不同的决策方案进行评估和分析,选择最佳的决策方案。
在运筹学中,决策分析的目的是使得在资源有限的情况下,做出最优的决策,以达到最佳的效益。
其次,数学建模是运筹学的核心概念之一。
数学建模是指将实际问题转化为数学形式的过程。
通过数学建模,可以将复杂的问题简化为数学模型,进而进行分析和求解。
运筹学中的数学建模常常涉及到线性规划、整数规划、动态规划等方法。
线性规划是运筹学中常用的一种数学工具,用于解决线性约束条件下的最优化问题。
线性规划通过确定目标函数和约束条件,使得目标函数在约束条件下达到最大或最小。
整数规划是线性规划的扩展,它在约束条件中允许变量为整数。
整数规划通常应用于需要做出离散决策的问题,如资源分配、生产调度等。
动态规划是一种通过递推关系式求解最优化问题的方法。
通过将问题分解为子问题,并通过递归的方法求解子问题,最终得到最优解。
动态规划通常应用于需要考虑过去决策对当前决策产生影响的问题,如投资决策、项目管理等。
除了上述的基本概念之外,运筹学还涉及到诸如排队论、网络流、模拟等领域。
排队论研究的是在资源有限的情况下,如何合理安排和管理队列,以达到最佳的效益。
网络流研究的是在网络系统中,如何通过合理调配流量,使得整个系统达到最优状态。
模拟则是用实验方法模拟复杂系统,通过大量实验数据进行验证和分析,以指导决策。
总而言之,运筹学是一门研究如何在资源有限的情况下做出最优决策的学科。
它通过决策分析、数学建模、线性规划、整数规划、动态规划等方法,帮助决策者在复杂的环境中做出科学合理的决策。
运筹学的研究成果广泛应用于企业管理、供应链管理、交通运输等各个领域,对提高资源利用效率、降低成本、提升竞争力起到了重要作用。
谈谈对运筹学的理解
运筹学是一门应用科学,主要运用数学和逻辑方法,研究各种系统的优化和改进,为决策者提供科学依据和决策支持。
运筹学的主要目标是通过对特定系统的研究和优化,提高系统的效率和效益,实现系统的最佳目标。
运筹学的主要特点是强调应用和实践,它涉及的领域非常广泛,包括工业、交通、军事、金融、医疗等各个领域。
运筹学的研究对象是各种系统,包括自然系统、社会系统、经济系统、工程系统等,通过对这些系统的研究,可以找到更好的解决方案,提高系统的效率和效益。
运筹学的主要研究内容包括以下几个方面:
1. 数学建模:通过对特定系统的观察和分析,建立数学模型,用数学方法描述系统的性能和行为,预测系统的未来发展趋势和趋势。
2. 优化算法:通过研究各种优化算法,寻找更好的解决方案,包括线性规划、非线性规划、动态规划等。
3. 数据分析:通过对数据的分析和处理,提取有价值的信息和知识,为决策提供支持。
4. 仿真模拟:通过对系统的仿真模拟,研究系统的性能和行为,验证方案的可行性和有效性。
5. 决策分析:通过对决策问题的分析和研究,提供科学依据和决策支持,包括风险分析、决策树等。
运筹学在现代化管理和决策中具有重要的作用,它可以提供科学的决策方法和工具,帮助企业和管理者做出更明智的决策。
同时,运筹学也可以促进跨学科的合作和研究,推动科学技术的发展和应用。
然而,运筹学也存在一些挑战和限制,例如数据的可得性和质量、模型的准确性和适用性、优化的复杂性和可解释性等问题。
因此,在实际应用中需要谨慎使用运筹学的方法和技术,同时需要不断发展和完善运筹学的理论和方法,以更好地适应实际需求和挑战。
运筹学的原理和方法是什么运筹学是一种研究在各种决策环境中如何做出最佳决策的方法和原理。
它是一门跨学科的科学,涵盖了数学、统计学、计算机科学、经济学和工程学等领域的知识和技术。
运筹学的主要目标是通过优化方法和模型来解决实际问题,以最低的成本或最高的效益达到理想的结果。
运筹学的核心原理是优化。
优化是运筹学的基本概念,它通过在给定的约束条件下,寻找一个最佳解决方案来解决问题。
优化方法包括线性规划、整数规划、动态规划等。
运筹学将实际问题抽象为数学模型,并根据模型中的目标函数和约束条件进行计算,从而得到最佳解。
这种方法可以应用于各个领域的问题,如生产计划、交通规划、资源配置等。
运筹学的方法包括建模、求解和优化。
首先,建模是将实际问题转化为数学模型的过程。
建模涉及问题的定义、目标的确定和约束条件的制定。
其次,求解是通过数学方法解决建立的模型。
运筹学使用各种数学方法和技术,如线性规划、整数规划、动态规划、模拟等来求解问题。
最后,优化是指通过调整模型中的参数或约束条件,改变模型结构或使用不同的算法,使模型的性能进一步提高。
运筹学的方法还包括决策分析、模拟和最优化算法。
决策分析是指以决策者的思维过程为基础,通过对问题和解决方案的分析,帮助决策者做出最佳决策。
模拟是指通过建立模型并进行仿真,模拟系统的运行过程,以评估不同策略的效果和风险。
最优化算法是指针对不同类型的问题设计的优化算法,以找到问题的最优解或接近最优解。
运筹学的方法还包括多目标决策、风险分析和决策支持系统。
多目标决策是指考虑多个目标的情况下,通过设定权重或建立偏好函数,寻找最佳的解决方案。
风险分析是指分析不确定因素对决策结果的影响,并采取相应的措施来降低风险。
决策支持系统是指利用计算机和信息技术来辅助决策者进行决策的工具和方法。
总之,运筹学的原理和方法是通过建立数学模型,运用优化方法和技术来解决各种实际问题。
运筹学的核心原理是优化,方法包括建模、求解和优化。
运筹学的基本理论与方法运筹学(Operations Research)是一门应用数学学科,旨在通过量化建模和优化方法,解决实际问题和做出最优决策。
本文将介绍运筹学的基本理论与方法,包括问题建模、优化模型、经典算法等方面。
一、问题建模运筹学的第一步是把实际问题转化为数学模型,以便进行分析和求解。
问题建模通常涉及以下几个方面:1. 目标:明确问题的目标是什么,如最大化利润、最小化成本、优化资源利用率等。
2. 决策变量:确定可以控制或调整的变量,即决策变量,如生产数量、采购量、分配方案等。
3. 约束条件:考虑问题的限制条件,如资源限制、技术限制、时间限制等。
二、优化模型基于问题建模的基础上,可以建立相应的优化模型,常见的几种常用优化模型如下:1. 线性规划:线性规划是最经典的优化模型之一,目标函数和约束条件都是线性的。
线性规划可以通过诸如单纯形法、内点法等算法求解。
2. 整数规划:整数规划是线性规划的拓展,决策变量需要取整数值。
整数规划一般通过分支定界法、割平面法等算法求解。
3. 动态规划:动态规划适用于具有决策阶段和状态转移的问题,通过将问题分解为子问题,利用最优子结构性质,建立递推关系来求解。
4. 近似算法:对于复杂优化问题,精确求解往往是不可行的,此时可以采用近似算法,如启发式算法、模拟退火算法、遗传算法等。
三、经典算法运筹学中有一些经典的算法常用于求解各类优化问题,下面介绍几个典型的算法:1. 单纯形法:单纯形法是一种求解线性规划问题的经典算法,通过不断在可行域内移动以达到最优解。
2. 分支定界法:分支定界法通常用于解整数规划问题。
通过不断划分问题的可行域,并对每个子问题求解,最终得到整数规划的最优解。
3. 模拟退火算法:模拟退火算法是一种全局优化算法,通过模拟金属退火过程来避免陷入局部最优解。
4. 遗传算法:遗传算法是一种模拟生物进化过程的优化算法,通过选择、交叉、变异等操作来搜索最优解。
四、应用领域运筹学方法在各个领域都有广泛应用,包括但不限于以下几个方面:1. 生产与物流:优化生产计划、供应链管理、仓储布局等,以提高生产效率和降低成本。
运筹学的原理与方法运筹学是一门研究如何最优地组织、管理和规划资源,以实现目标的学科。
它涉及到各种领域,例如供应链管理、制造业、金融、交通、能源等等,被广泛应用于现代工业、商业和政府部门,并对社会和经济发展产生了广泛而深远的影响。
运筹学的原理是通过建立数学模型来描述实际问题,通过分析这些模型,可以找到最优解或者接近最优解的解法。
具体来说,运筹学的原理有以下几个方面:1.最优化问题最优化问题是运筹学的核心。
最优化问题通过建立假设条件和目标函数来描述问题,然后通过选择合适的算法来求解问题的最优解。
最优化问题可以分为线性规划、二次规划、整数规划、动态规划等不同类型。
2.模型建立建模是解决优化问题的第一步。
建立模型要考虑实际问题的特点和假设,在建立模型时需要选择适当的变量来描述问题,并根据问题设计适当的约束条件。
模型的建立需要专业知识和实际经验的支撑,并且需要考虑数据可用性和分析可行性等因素。
3.算法选择不同的算法适用于不同类型的优化问题。
运筹学需要选择适当的算法,以最快的速度找到最优解。
根据模型的特点,可以选择贪心算法、分支定界算法、随机算法、线性规划法、动态规划法等算法。
4.计算机技术计算机技术对于运筹学的发展发挥了至关重要的作用。
现代运筹学使用计算机来完成数学计算和分析,计算机技术是运筹学的核心。
计算机技术使得运筹学实践更加高效和有效,并且在应用领域的广泛推广和应用方面提供了重要支持。
在实际应用中,运筹学有以下一些方法:1.线性规划线性规划是最经典的运筹学方法之一,它适用于解决线性函数的优化问题,是许多实际问题的有效解决方案。
在制造业、金融、物流和供应链管理等领域中广泛应用。
2.生产调度生产调度是制造业最重要的应用之一,通过运筹学理论和方法提高生产效率和生产能力。
通过优化生产资源的配置和调度安排,可以显著提高生产效率和产品质量。
3.库存管理库存管理是物流和供应链管理中最重要的应用之一,通过优化库存决策来降低成本、提高效率和服务质量。
运筹学模型运筹学是研究决策问题的科字,它主要研究如何在有限的资源条件下获得最佳解。
它是个综合性的学科,是由多学科科学的知识、方法和经验结合而成的。
运筹学模型是用来分析决策问题的重要工具,它利用数学技术和计算机技术,根据具体情况构建模型,从而获得最优解。
运筹学模型的构建过程主要有三个步骤,即问题求解、模型开发和解算。
首先,根据实际环境和问题特征,正确描述和理解问题,将其表示为一个模型。
其次,根据模型的表示形式,采用恰当的运筹学方法,按照一定的程序进行求解。
最后,将求解的结果以图表、数据等形式呈现出来,供决策者参考;此外,还可对结果进行分析,以便做出更有效的管理决策。
运筹学模型主要应用于交通运输、医疗保健、人力资源、金融投资、能源管理、质量管理、生产调度、计划管理、物流管理等领域,有助于节约时间和资源,提高自动化决策的精度和效率。
运筹学模型的开发主要集中在模型构建、数值算法两个方面。
模型构建也就是建立模型的过程,这个过程需要根据实际问题一步步进行,确定模型的变量、约束条件以及目标函数,并要求解出最优解。
数值算法则是实现模型的过程,大多数模型只能通过迭代的方式近似求解,因此,对数值算法的选择也是重要的。
常见的运筹学方法有贪婪法、动态规划、整数规划等,它们都有一定的优缺点,可以根据问题的特性和实际情况,合理选择适当的算法,以求得最优解。
此外,为了更好地服务决策者,运筹学模型还需要系统化地进行建模和验证。
在建模时,必须结合实际环境,考虑问题的复杂性,全面准确地把握各个变量和约束条件;在验证时,需要采用合适的方法,测试模型的准确性,与实际环境相匹配,以保证模型的可用性。
总之,运筹学模型是决策问题分析的有效工具,它有助于节约时间与资源,提高决策的准确性。
运筹学模型的开发主要集中在模型构建和数值算法两个方面,要求在建模过程中考虑问题复杂性、全面把握各个变量,而在验证过程中,要采用合适的方法测试模型的准确性,与实际环境相匹配。
运筹学方法与模型运筹学是运用数学、统计学和计算机科学等专业知识和技术,以科学化的方法帮助人们做出最佳决策的学科。
运筹学研究的对象包括决策分析、优化算法、模拟系统、控制论以及信息论等多个方面。
方法。
1.数学方法:运筹学在问题解决中利用了大量数学原理和方法,如线性规划、非线性规划、统计分析、概率论等。
2.统计方法:运筹学在处理大量数据时应用的方法,如数据采集、整理、分析和解释等,让人们可以据此推断数据的趋势。
3.计算机方法:运筹学借助计算机技术,使用计算机建模和仿真技术,将复杂的问题转化为简单的研究对象,并求解其最优解。
4.运筹思想:运筹学旨在找到最优策略,其思想是在各种因素和条件的制约下,达到最佳结果的决策。
这是一个重要的应用范畴。
模型。
1.线性规划模型:这是一种基本的运筹学模型,它通过建立一系列线性等式或不等式来描述形式化问题。
通过优化算法求解,找到最优解。
2.整数规划模型:整数规划模型是在线性规划的基础上,加上整数限制条件的扩展。
为求解整数规划问题,需要使用各种启发式算法、分枝限界法等。
3.随机规划模型:随机规划模型是在考虑风险或不确定性因素的情况下,寻找最优策略的模型。
4.动态规划模型:动态规划模型是用于描述决策过程的数学模型。
通过建立方程组,求解最优决策方案,它广泛应用于生产、库存、资源分配问题等领域。
总结。
运筹学作为一门独立的学科,旨在建立数学模型,找到最优决策方案。
在现代企业管理和科学研究中,它的应用越来越广泛。
运筹学所涉及的方法和模型丰富多样,它不断的激发着人们通过科学的手段来寻找最佳解决方案的创新思维。
数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。
运筹学知识点总结归纳运筹学知识点总结归纳一、引言运筹学是一门综合运用数学、统计学和优化理论等相关知识解决实际问题的学科。
它的一个核心目标是在给定的约束条件下,使系统达到最佳状态。
本文将对运筹学的一些基本概念、方法和应用进行总结归纳,以便读者对这门学科有更深入的了解。
二、线性规划线性规划是运筹学中最基本、最常见的数学模型之一。
在线性规划中,目标函数和约束条件都是线性的。
通过线性规划,我们可以最小化或最大化一个目标函数来寻找最优解。
常见的线性规划方法有单纯形法、对偶法和内点法等。
三、整数规划整数规划是线性规划的一种扩展形式。
在整数规划中,决策变量的取值限制为整数。
这种限制使问题更加复杂,通常需要使用分支定界法、割平面法等算法来求解。
整数规划在许多实际问题中有广泛的应用,如生产调度、路径优化等。
四、网络流问题网络流问题是运筹学中一个重要的研究方向。
在网络流问题中,节点和边表示物理或逻辑上的位置,流量沿边流动,目标是最大化总流量或最小化总成本。
常见的网络流问题有最小费用流问题、最大流问题等。
在实际应用中,网络流问题可以用于交通规划、供应链管理等领域。
五、排队论排队论是研究队列系统的数学理论。
队列是指一组按照某种顺序排列的实体,而排队论则是研究这些实体如何进入和离开队列的过程。
通过排队论,可以估计系统的性能指标,如平均等待时间、系统利用率等。
排队论在交通管理、生产调度等领域有广泛的应用。
六、决策分析决策分析是运筹学中的一个重要分支,旨在通过分析问题的数据和信息,寻找最优的决策方案。
决策分析中常用的工具包括决策树分析、多属性决策等。
通过决策分析,我们可以对风险进行评估,并为决策者提供有力的支持。
七、多目标规划多目标规划是一种同时优化多个目标函数的决策问题。
在多目标规划中,不同的目标可能相互冲突,无法简单地将其转化为单一目标。
解决多目标规划问题的方法有权重法、向量法等。
多目标规划在工程设计、投资组合等领域有广泛的应用。
运筹学运筹学的基本原理与优化问题解决方法运筹学是一门关于决策与优化的学科,通过运用数学模型、统计分析和优化技术,解决现实生活中的问题。
本文将介绍运筹学的基本原理和常见的优化问题解决方法。
一、运筹学的基本原理运筹学的基本原理主要包括数学建模、问题分析和决策优化三个方面。
1. 数学建模数学建模是运筹学的核心,其目的是将实际问题转化为数学形式,以便进行定量分析和求解。
在数学建模中,通过定义决策变量、目标函数和约束条件等元素,构建数学模型,从而描述问题的本质。
2. 问题分析问题分析是指对运筹学问题进行深入研究和理解,明确问题的特点和限制条件。
通过对问题的分析,可以确定问题类型、需求及其优化目标,并为后续的模型构建和求解提供基础。
3. 决策优化决策优化是指基于建立的数学模型,通过优化算法和技术,寻找最优解或近似最优解的过程。
决策优化是运筹学的核心任务,旨在为实际问题提供合理的行动方案和决策支持。
二、优化问题解决方法运筹学解决问题的核心方法是优化,下面将介绍常见的优化问题解决方法。
1. 线性规划(Linear Programming,简称LP)线性规划是一类常见且重要的优化问题,目标函数和约束条件都是线性的。
线性规划通过线性规划模型的构建和线性规划算法的求解,寻找使目标函数达到最小或最大值的最优解。
2. 整数规划(Integer Programming,简称IP)整数规划是线性规划的扩展,决策变量的取值限制为整数。
整数规划适用于存在离散选择和决策的问题,如货物装箱、旅行商问题等。
整数规划在求解过程中通常采用分支定界法等算法进行求解。
3. 非线性规划(Nonlinear Programming,简称NLP)非线性规划是目标函数和约束条件中存在非线性项的优化问题。
非线性规划包括了许多实际问题,如非线性回归、函数拟合等。
非线性规划通常依靠迭代算法(如牛顿法)进行求解。
4. 动态规划(Dynamic Programming,简称DP)动态规划是一种解决多阶段决策问题的优化方法。
简述运筹学的工作步骤运筹学是一种通过数学、统计学、计算机科学等手段来优化决策过程、改善业务流程和提高效率的学科。
以下是运筹学的主要工作步骤:1. 定义问题:运筹学首先必须明确所解决的问题,即确定如何通过数学建模和优化算法来解决问题。
问题的表述需要清晰、具体、易于理解。
2. 建立模型:运筹学需要建立一个数学模型来描述问题,包括变量、约束条件、目标函数等。
模型的建立需要使用运筹学的相关工具和方法,例如线性规划、整数规划、决策树等。
3. 数据收集:运筹学需要收集与问题相关的数据,包括事实、统计、模拟等。
数据收集需要采用适当的方法,例如数据挖掘、模拟仿真等。
4. 预处理:运筹学需要进行数据预处理,包括数据清洗、特征选择、数据转换等。
这些步骤有助于建立更好的模型,提高算法的性能和准确度。
5. 算法设计:运筹学需要设计适合问题的算法,包括最优解算法、最劣解算法、迭代算法等。
算法的设计需要根据问题的特点选择适当的方法,例如遗传算法、模拟退火算法等。
6. 模型评估:运筹学需要对模型进行评估,包括模型的准确度、稳定性、鲁棒性等。
评估需要采用适当的方法,例如仿真实验、数据分析等。
7. 决策制定:运筹学需要根据模型的结果做出决策,包括最佳决策、最优决策等。
决策制定需要根据问题的特点选择适当的方法,例如模糊决策、决策树等。
拓展:运筹学的应用非常广泛,包括工业制造、供应链管理、金融、医疗、交通等领域。
运筹学的主要作用是优化决策过程、提高效率、改善业务流程,从而帮助企业实现目标。
运筹学的发展离不开数学、统计学、计算机科学等多个领域的交叉和融合。
随着人工智能技术的发展,运筹学也逐渐融合了机器学习、深度学习等技术,开发出更加智能、高效、准确的算法和模型。
运筹学中的建模与算法分析
导言
运筹学是数学的一门分支学科,用数学方法解决实际问题。
在实际应用中,如
何建立合适的模型,选择正确的算法,是运筹学的核心问题。
本文将针对运筹学中的建模与算法分析进行探讨。
一、建模
建模是运筹学中的重要环节,是运筹学方法成功应用于实际问题的基础。
运筹
学中的建模包括问题定义、问题分析、模型建立、模型求解等步骤。
1.1 问题定义
问题定义是指明问题的具体对象、目标和约束条件。
在问题定义时应注意问题
对象的特点、目标的明确性和约束条件的合理性。
1.2 问题分析
问题分析是通过对问题对象、目标和约束条件的分析,挖掘问题隐含的信息和
关联性,确定问题的劣化方向和变量的影响因素。
问题分析的结果将为模型的选取、变量的建立和参数的调整提供指导。
1.3 模型建立
模型建立是建立符合问题目标和约束条件的数学模型,将问题转化成可求解的
数学问题。
在模型建立中应注意模型表达式的简明性、变量的选择和约束条件的考虑。
1.4 模型求解
模型求解是运用数学方法对模型进行求解,得到最优解或次优解,为问题的解
决提供定量的支持。
在模型求解时应注意求解算法的可行性、准确性和求解效率。
二、算法分析
算法分析是指对求解问题的算法进行性能评价和优化调整的过程。
算法分析的
目的是全面、客观地评估求解算法的质量,为实际应用提供指导。
2.1 算法复杂度分析
算法复杂度分析是通过计算算法操作次数或时间开销,研究算法在不同数据规
模下的平均和最坏时间复杂度。
在实际应用中应选择时间复杂度低的算法,以提高求解效率。
2.2 算法改进与优化
算法改进与优化是在保持问题约束条件不变的前提下,对算法求解过程中的关
键环节进行改进和优化,以提高求解准确性和效率。
例如:改进模型求解策略、加速查询和排序操作等。
结论
建模和算法分析是实现运筹学方法成功应用于实际问题的重要环节。
正确的问
题定义、问题分析、模型建立和模型求解将为实际应用提供有效的支持;算法复杂度分析和算法改进与优化则将为求解过程提供优化和改进的方向。
运筹学在实际应用中有着广泛的应用,如石油、化工、交通、物流、金融、医疗等领域。
在未来,随着数据技术和计算机技术的不断发展,运筹学在实践中的应用将会更加深入广泛。