一元二次方程知识点总结
- 格式:doc
- 大小:127.00 KB
- 文档页数:22
一元二次方程知识点总结定义:两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.基本解法①直接开平方法:对于形如的方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。
②配方法:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.③公式法:(1)把一元二次方程化为一般式。
(2)确定a,b,c的值。
(3)代入中计算其值,判断方程是否有实数根。
(4)若代入求根公式求值,否则,原方程无实数根。
【小试牛刀】方程ax2+bx+c=0的根为④因式分解法·因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个0,即:若ab=0,则a=0或b=0。
·步骤:(1)将方程化为一元二次方程的一般形式。
(2)把方程的左边分解为两个一次因式的积,右边等于0。
(3)令每一个因式都为零,得到两个一元一次方程。
(4)解出这两个一元一次方程的解,即可得到原方程的两个根。
根的判别情况判别式:b2-4ac的值x1、x2的关系根的具体值一元二次方程两根与系数的关系:。
一元二次方程知识点归纳一、一元二次方程的概念:1、含有1个未知数;2、未知数最高次数是2;3、必须整式方程(分母不能含有未知数)4、形式:)(002≠=++a c bx ax5、二次项:2ax ;一项:bx ;常数项 :c6、二次项系数:0≠a ;一次项系数 :b (全体实数);常数项 :c (全体实数)二、解方程的方法:直接开方法、配方法、公式法、因式分解法(1)02=+c ax c ax —=2 a c x —=2 ac x -±= (2)02=+bx ax 0=+)(b ax x a b x x -==210; (3)p n mx =+2)( p n mx ±=+ n p mx —±= mn p x -±=(4)0)()(=+++b ax N b ax M 0)(=++b ax N M )((5)02=++n mx x n m m mx x -=++222)2()2( 44)2(22n m m x —=+ 4422n m m x —±=+ 242m n m x --±= (6))0(02≠=++a c bx ax )(ac b b x 422-=∆∆±-=三、一元二次方程根的判别式——ac b 42-=∆1、一元二次方程根的情况: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<∆⎪⎩⎪⎨⎧==∆≠>∆≥∆(无解))(有两个相等实数根:):(有两个不相等实数根(有两个实数根)00002121x x x x 2、规律:(1)当0<ac 时,必定0>∆,即一元二次方程有两个不相等实数根(2)当c=0时,ab x x -==210;,即一元二次方程有一根为0 (3)当b=0时,ac x —±=,即一元二次方程两根互为相反数 (4)当a=c 时,一元二次方程两根互为倒数四、一元二次方程的“根”(1)“根”:代入原方程使得左右两边相等的未知数的值(2)韦达定理:a b x x -=+21;a c x x =21;cb x x —=+2111; 2122122212x x x x x x —)(+=+ ;212212214)(x x x x x x —)(+=-五、配方法的应用(1)解一元二次方程(2)讨论∆(3)讨论恒值(4)平方的非负性六、应用题(1)“围栏”问题①设宽为x ;利用周长用x 的代数式表示长(注意:有围墙与无围墙区别) ②利用矩形面积公式列出并列出方程③结合实际,列出关于长、宽取值范围的不等式组,解得x 的取值范围(2)“边框问题”(挖角)(3)“挖路问题”(平移计算)(4)平均增长率:n x a M )1(+=(M :后量;a :现量;x :增长率;n :经过次数)(5)“握手”问题——单循环:2)1(-n n ;双循环:)(1-n n (6)直角三角形问题(7)“黄金分割”:215-=x (8)多边形的对角线条数:2)3(-n n (9)利润问题:调价幅度与销量增减成比例关系①设调价为x ;根据题意得,销量增幅:kx②调价后单价=原售价±调价;调价后销量=原销量±销量增幅调价后总收入=调价后单价×调价后销量③进货量=调价后销量④总成本=单成本×进货量5调价后总利润=调价后总收入-总成本(2)①单利润=单售价—单成本②总利润=单利润×销量。
一元二次方程式知识点总结1. 什么是一元二次方程式?一元二次方程式是一个以未知数的二次幂为最大次数的方程式。
一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,且a不等于0。
2. 一元二次方程的解法2.1 因式分解法如果一元二次方程可以通过因式分解为两个一次因式的乘积形式,那么方程的解可以直接从分解中得到。
例如:x^2 + 5x + 6 = (x + 2)(x + 3),方程的解为x = -2和x = -3。
2.2 公式法一元二次方程的解可以通过求根公式得到。
求根公式为:x = (-b ± √(b^2 - 4ac)) / 2a。
根据求根公式,可以计算方程的解。
2.3 完全平方法如果一元二次方程可以通过完全平方形式表示,那么可以直接从完全平方形式中得到方程的解。
例如:x^2 + 6x + 9 = (x + 3)^2,方程的解为x = -3。
3. 一元二次方程的判别式一元二次方程的判别式Δ = b^2 - 4ac可以用来判断方程的解的性质。
- 当Δ > 0时,方程有两个不相等的实数解。
- 当Δ = 0时,方程有两个相等的实数解。
- 当Δ < 0时,方程没有实数解。
4. 一元二次方程的图像一元二次方程的图像是抛物线。
抛物线的开口方向和判别式的正负有关:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
5. 一元二次方程的应用一元二次方程在实际问题中有广泛的应用。
例如,抛物线的运动轨迹、物体抛出和抛射问题等都可以用一元二次方程来描述和解决。
6. 注意事项- 在解一元二次方程时,要注意对方程进行整理和化简,以便于使用不同的解法。
- 在使用公式法求解时,需要注意判别式的值,以确定方程的解的类型和个数。
- 在实际应用中,要注意问题的具体条件和意义,避免得出没有实际意义的解。
以上是一元二次方程式的知识点总结,希望对你有帮助!。
一元二次方程知识点总结
一元二次方程是数学中的一个重要概念,它在数学、物理、化学等领域中都有广泛的应用。
以下是一元二次方程的知识点总结:
1. 一元二次方程的基本概念:一元二次方程是一个含有一个未
知数的二次方程,通常表示为 ax2+bx+c=0(a、b、c 为已知常数,x 为未知数)。
2. 一元二次方程的解法:一元二次方程的解法包括配方法、公
式法、因式分解法等。
其中,配方法是最常用的解法,它可以使一元二次方程化为一个完全平方公式的形式,从而方便解出未知数的值。
3. 一元二次方程的性质:一元二次方程的性质包括根的分布性质、根的符号性质、根的近似计算等。
其中,根的分布性质指出,一元二次方程的根的分布情况取决于系数 a、b、c 的大小。
4. 一元二次方程的应用:一元二次方程在数学、物理、化学等
领域中都有广泛的应用。
例如,在物理中,一元二次方程可以用来描述物体的运动轨迹;在化学中,一元二次方程可以用来表示化学反应
的平衡状态等。
5. 一元二次方程的判别式:一元二次方程的判别式是指 b2-4ac,它可以用来判断一元二次方程是否有实数根、有几个实数根等。
6. 一元二次方程的逆用:一元二次方程的逆用是指利用一元二
次方程的根的判别式和根的分布性质来求解未知数的方法。
例如,如果已知一元二次方程 ax2+bx+c=0 有两个不等实数根,可以利用逆用定理求解未知数的值。
以上是一元二次方程的知识点总结。
在学习一元二次方程时,需要掌握基本概念、解法、性质、应用和判别式等方面的知识,并且结合实际问题进行理解和应用。
一元二次方程知识点总结一元二次方程是初中数学中的重要内容,它在解决实际问题和进一步学习数学知识中都有着广泛的应用。
接下来,让我们系统地梳理一下一元二次方程的相关知识点。
一、一元二次方程的定义只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的整式方程,叫做一元二次方程。
一般形式为$ax^2 + bx + c =0$($a ≠ 0$),其中$a$是二次项系数,$b$是一次项系数,$c$是常数项。
需要注意的是,判断一个方程是否为一元二次方程,需要满足以下三个条件:1、是整式方程。
2、只含有一个未知数。
3、未知数的最高次数是 2。
例如,方程$x^2 2x + 1 = 0$是一元二次方程,而方程$\frac{1}{x^2} + 2x = 1$不是一元二次方程,因为它不是整式方程。
二、一元二次方程的解法1、直接开平方法对于形如$x^2 = p$($p ≥ 0$)或$(x + m)^2 = n$($n ≥ 0$)的方程,可以使用直接开平方法求解。
当$x^2 = p$时,$x = ±\sqrt{p}$;当$(x + m)^2 = n$时,$x + m = ±\sqrt{n}$,即$x = m ±\sqrt{n}$。
2、配方法配方法是一种通过配方将一元二次方程转化为完全平方式来求解的方法。
对于方程$ax^2 + bx + c = 0$($a ≠ 0$),我们可以通过在方程两边同时加上一次项系数一半的平方,将方程左边配成完全平方式。
例如,对于方程$x^2 + 6x 7 = 0$,可以将方程变形为$x^2 + 6x + 9 9 7 = 0$,即$(x + 3)^2 16 = 0$,然后再用直接开平方法求解。
3、公式法一元二次方程$ax^2 + bx + c = 0$($a ≠ 0$)的求根公式为$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$。
在使用公式法求解时,需要先计算判别式$\Delta = b^2 4ac$。
一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b叫做一次项系数;c 叫做常数项。
3.一元二次方程的解法(1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
(2)配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根;II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21。
一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
考点二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 提公式法,公式法(平方差公式,完全平方公式)5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a 。
一元二次方程知识题型总结一、知识与技能的总结(一)概念一元二次方程--“整式方程”;“只含一个未知数,且未知数的最高次数是2".一元二次方程的一般形式-—,按未知数x降幂排列方程的根(解)—-是使方程成立的未知数的取值,了解一元二次方程的根的个数.(二)一元二次方程的解法-—把一元二次方程降次为一元一次方程求解1.直接开平方法-—适用于的方程.2.配方法——适用于所有的一元二次方程;(1)“移项”-—使得(2)“系数化1”——使得(3)“配方”——使得(4)“求解”—-利用解方程3.公式法—-适用于的方程.反映了一元二次方程的根与系数的关系,(1)一元二次方程首先必须要把方程化为一般形式,准确找出各项系数a、b、c;(2)先求出的值,若,则代入公式.若,则;4.因式分解法--适用于的方程.用因式分解法解一元二次方程的依据是:.通过将二次三项式化为两个一次式的乘积,从而达到降次的目的,将一元二次方程转化为求两个方程的解.(三)其它知识方法1.根的判别式: ,(1)若,则方程有解;(2)若,则方程有解;(3)若,则方程有解;2.换元法(1);(2)(3).3.可化为一元二次方程的分式方程解方程二、典型题型的总结(一)一元二次方程的概念1.(一元二次方程的项与各项系数)把下列方程化为一元二次方程的一般形式:(1);(2);(3);(4) ;(5);2.(应用一元二次方程的定义求待定系数或其它字母的值)(1)= 时,关于的方程是一元二次方程。
(2)若分式,则3.(由方程的根的定义求字母或代数式值)(1)关于的一元二次方程有一个根为0,则(2)已知关于的一元二次方程有一个根为1,一个根为,则,(3)已知2是关于的方程的一个根,则的值是(4)已知c为实数,并且关于的一元二次方程的一个根的相反数是方程的一个根,则方程的根为,c=(二)一元二次方程的解法4.开平方法解下列方程:(1)(2)(3) (4)(5);(6);(7).(8)5.用配方法解下列各方程:(1); (2);(3) (4)(5);(6).6.用公式法解下列各方程:(1); (2);(3);(4).(5)(6)(7)(8)(9)7.用因式分解法解下列各方程:(1);(2)(3)(4)(5) (6)(7);(8).(9)(10)(11)8.用适当方法解下列方程(解法的灵活运用):(1)(2)(3)(4)(5)9.解关于x的方程(含有字母系数的方程):(1)(2)(3)()(4)(三)一元二次方程的根的判别式10.不解方程,判别方程根的情况:(1)4 —-(2)-—(3)—-11.为何值时,关于x的二次方程(1)满足时,方程有两个不等的实数根(2)满足时,方程有两个相等的实数根(3)满足时,方程无实数根12.已知关于的方程,如果,那么此方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定13.关于的方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定14.已知关于的方程有实根,则的取值范围是().A.B.且C.D.15.已知,且方程有两个相等实根,那么的值等于().A.B.C.3或D.316.若关于的方程有实根,则的非负整数值是().A.0,1 B.0,1,2 C.1 D.1,2,317.已知关于x的方程有两个相等的实数根.求m的值和这个方程的根.18.方程有实数根,求正整数a.19.对任意实数m,求证:关于x的方程无实数根。
一元二次方程一、相关概念1.定义:把含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2、一般形式: ax 2 +bx+c=0(a ≠0).(1.判断一个方程是否是一元二次方程抓住的五点: “化简后”;“一个未知数”; “未知数的最高次数是2” ; “二次项系数不等于0” ; “整式方程”.2.确定一元二次方程各项的系数的方法是:将一元二次方程化成一般形式ax 2 +bx+c=0(a ≠0)..) 二、直接开平方法1.利用直接开平方法求一元二次方程的解时,必须把方程化为x ²=a(a ≥0),(x-a)²=b(b ≥0)的形式,否则不能用直接开平方法求一元二次方程的解. 三、配方法1. 配方法: 通过配成完全平方公的形式来解一元二次方程的方法叫做配方法.2. 解二次项系数是1的方程的具体配方方法是:方程两边同时加上一次项系数一半的平方,使方程左边化为完全平方,右边化为非负数.(1、注意学生对求一个数的一半的方法逐一的要求,检查是否达到目的. 2.用配方法解一元二次方程时,最关键的一步是必须把二次项的系数化为1;再把方程化为(x-a)²=b(b ≥0)的形式后,就可用直接开平方法求一元二次方程的解.3.一次项系数的符号决定了左边的完全平方式是完全平方和或完全平方差.4.配方作为一种求解的方法,比其它方法要复杂,为此,一般不用该方法,除非是题目指明用配方法,但配方法是一种重要的数学方法,应用较广,应掌握好.)四、公式法1. 判别式ac b 42-=∆判断方程的根的情况(1)ac b 42-=∆>0⇔方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根. (2)ac b 42-=∆=0⇔方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3)ac b 42-=∆<0⇔方程ax 2+bx+c=0(a ≠0)没有实数根. (4)ac b 42-=∆≥0⇔方程ax 2+bx+c=0(a ≠0)有实数根.一元二次方程ax 2+bx+c=0(a ≠0)的两根分别为x 1,x 2,aac b b x 2421-+-=,aac b b x 24-22--=(1.用公式解方程时,在教学中应注意两个问题:①a ≠0,②Δ=b ²-4ac ≥0. 2.代入公式时一定先把方程化为一般形式ax 2+bx+c=0(a ≠0),才能准确的确定a 、b 、c 的符号.3.学生容易把表示的字母都写成x ,如解方程t 2+2t=3,写成x 1=1,x 2=-3.4.当Δ=b ²-4ac=0时,,方程的根要写成x 1=x 2= 的形式,从而说明方程有两个根,而不是一个根.)五、因式分解法解方程的步骤: 1. 因式分解法:将一个一元二次方程化为两个一次因式的积等于0的形式,再使这两个一次因式分别等于0,从而实现降次,这种解法叫做因式分解法. ①移项使方程的右边为0;②将方程的左边分解为两个一次因式的积;③令每个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.展开方程(x-x 1)(x-x 2)=0得x 2-(x 1+x 2)x+x 1x 2=0,其中p=-( x 1+x 2),q= x 1x 2.实际上x 1,x 2是方程x 2+px+q=0的两根.即x 1+x 2 =-p , x 1x 2= q 用十字相乘法解一元二次方程我们知道()()22356x x x x ++=++,反过来,就得到二次三项式256x x ++的因式分解形式,即()()25623x x x x ++=++,其中常数项6分解成2,3两个因数的积,而且这两个因数的和等于一次项的系数5,即6=2×3,且2+3=5。
一元二次方程知识点总结一元二次方程是高中数学中的重要概念之一,它是由形如ax^2 + bx + c = 0的方程组成,其中a、b、c都是实数且a不等于0。
本文将总结一元二次方程的相关知识点,并详细介绍其求解方法和应用。
一、一元二次方程的一般形式与基本性质1.1 一元二次方程的一般形式: ax^2 + bx + c = 0,其中a、b、c都是实数且a不等于0。
1.2 一元二次方程的次数为2,被称为二次方程。
1.3 一元二次方程的系数:a、b、c分别是方程的二次项系数、一次项系数和常数项。
1.4 一元二次方程的根:方程的解叫做方程的根,方程可能有两个相等的实根、两个不等的实根、两个复数根或无解。
二、一元二次方程的求解方法2.1 因式分解法通过将一元二次方程进行因式分解,将方程转化为两个一次方程相乘的形式,从而求解方程的根。
例如:x^2 + 7x + 12 = 0,可因式分解为(x+3)(x+4) = 0,方程的根为x=-3和x=-4。
2.2 公式法(求根公式)利用一元二次方程的根与系数之间的关系,可以通过求根公式来求解方程的根。
一元二次方程的求根公式为:x = (-b ±√(b^2 - 4ac))/(2a)。
例如:x^2 + 7x + 12 = 0,代入a=1,b=7,c=12,可得x = (-7± √(7^2 - 4*1*12))/(2*1),计算后得方程的根为x=-3和x=-4。
2.3 完全平方方法对于一些特殊的一元二次方程,可以利用完全平方公式来求解方程的根。
完全平方公式是指:(a ± b)^2 = a^2 ± 2ab + b^2。
例如:x^2 + 10x + 25 = 0,可写为(x+5)^2 = 0,方程的根为x=-5。
三、一元二次方程的判别式一元二次方程的判别式是通过方程的系数来判断方程的根的情况。
3.1 判别式的定义:Δ = b^2 - 4ac。
一元二次方程知识点总结一、一元二次方程的概念。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
2. 判断方程是否为一元二次方程。
- 首先看方程是否为整式方程。
- 然后看是否只含有一个未知数,且未知数的最高次数为2,同时二次项系数不为0。
例如x^2+2x - 1 = 0是一元二次方程;而x^2+(1)/(x)=1不是一元二次方程,因为它是分式方程。
二、一元二次方程的解法。
1. 直接开平方法。
- 对于方程x^2=p(p≥0),解为x=±√(p)。
- 例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
2. 配方法。
- 步骤:- 把方程ax^2+bx + c = 0(a≠0)的常数项移到等号右边,得到ax^2+bx=-c。
- 二次项系数化为1,即x^2+(b)/(a)x =-(c)/(a)。
- 在等式两边同时加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=((b)/(2a))^2-(c)/(a)。
- 左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。
- 例如解方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x + 9 = 7+9,即(x + 3)^2=16,解得x = 1或x=-7。
3. 公式法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 步骤:- 确定a、b、c的值。
- 计算b^2-4ac的值,判断方程是否有实数根。
- 当b^2-4ac≥0时,代入求根公式求解。
一元二次方程1. 一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2 (二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:ax2 bx c 0(a 0)。
其中a为二次项系数,b为一次项系数,c为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2. 一元二次方程的解法(1 )直接开平方法:形如(x a)2 b(b 0)的方程可以用直接开平方法解,两边直接开平方得x a b或者x a 、、b,x a , b。
注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0 ;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。
(3)配方法:用配方法解一元二次方程ax2 bx c 0(a 0)的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为(x m)2 n(n 0)的形式;④用直接开平方法解变形后的方程。
注意:当n 0时,方程无解(4)公式法:一元二次方程ax2 bx c 0(a 0)根的判别式:b24ac0方程有两个不相等的实根:x b甘4/( b2 4ac 0)2af(x)的图像与x轴有两个交点0方程有两个相等的实根f(x)的图像与x轴有一个交点0方程无实根f(x)的图像与x轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax2+bx+c = 0之后,设它的两个根是x i 和X2,则&和X2与方程的系数a, b, c之间有如下关系:X i+X2 = b;X i?X2 = 2a a4. 一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
一元二次方程知识点总结一元二次方程知识点总结一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:)0(02≠=++a c bx ax,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
3.一元二次方程的解法(1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如ba x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
(2)配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,acb 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根;II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax的两个实数根是21x x ,,那么ab x x-=+21,ac xx =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
6.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,① 必然事件发生的概率为1,即P(必然事件)=1;② 不可能事件发生的概率为0,即P (不可能事件)=0;③ 如果A 为不确定事件,那么0<P(A)<17. 随机事件发生的可能性(概率)的计算方法: ① 理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率.一.旋转1、定义:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
(3)旋转前、后图形全等。
二、中心对称1、定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质:(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
3、中心对称图形:把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
三、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)一、圆的定义:1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、以点O为圆心的圆记作“⊙O”,读作“圆O”二、与圆有关的定义:(1)弦:连接圆上任意两点的线段叫做弦。
(如图中的AB);经过圆心的弦叫做直径。
(如图中的CD);直径等于半径的2倍。
(2)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧四、圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角:顶点在圆心的角叫做圆心角。
2、弦心距:从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、圆周角定理及其推论1、圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
七、点和圆的位置关系:设⊙O的半径是r,点P 到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。
八、过三点的圆: 不在同一直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆。
三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
圆内接四边形性质(四点共圆的判定条件): 圆内接四边形对角互补。
九、反证法:先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
十、直线与圆的位置关系:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个公共点叫做切点(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
(4)如果⊙O的半径为r,圆心O到直线l 的距离为d,那么直线l与⊙O相交⇔d<r;直线l与⊙O相切⇔d=r;直线l与⊙O相离⇔d>r。
十一、切线的判定和性质1、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理:圆的切线垂直于经过切点的半径。
十二、切线长定理1、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
十三、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。
三角形的内心:三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
十四、圆和圆的位置关系:1、如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距:两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定:设两圆的半径分别为R和r,圆心距为d,那么两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R-r<d<R+r(R≥r);两圆内切⇔d=R-r(R>r);两圆内含⇔d<R-r (R>r)。
4、两圆相切、相交的重要性质:如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
十五、正多边形和圆1、正多边形:各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十六、与正多边形有关的概念1、正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径:正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距:正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角:正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
十七、正多边形的对称性1、正多边形的轴对称性:正多边形都是轴对称图形。
一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性:边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法:先用量角器或尺规等分圆,再做正多边形。
十八、弧长和扇形面积1、弧长公式:n °的圆心角所对的弧长l 的计算公式为180r n l π=2、扇形面积公式:lR R n S 213602==π扇;其中n 是扇形的圆心角度数,R是扇形的半径,l 是扇形的弧长。
3、圆锥的侧面积:rl r l S ππ=•=221;其中l 是圆锥的母线长,r 是圆锥的地面半径。