【名师一号】2016届高考数学一轮总复习 3.7正弦定理、余弦定理应用举例练习
- 格式:doc
- 大小:287.50 KB
- 文档页数:10
正弦定理和余弦定理及其应用考纲要求 1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos_A ;b 2=c 2+a 2-2ca cos_B ; c 2=a 2+b 2-2ab cos_C常见变形(1)a =2R sin A ,b =2R sin_B ,c =2R sin_C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(3)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数一解两解 一解 一解 无解(1)S =12a ·h a (h a表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R .(3)S =12r (a +b +c )(r 为内切圆半径).4.测量中的几个术语 (1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B 点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等. (4)坡度:坡面与水平面所成的二面角的正切值.解决与平面几何有关的计算问题关键是找清各量之间的关系,从而应用正、余弦定理求解.1.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2.2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A >sin B ⇔ cos A <cos B .诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( ) 答案 (1)× (2)√ (3)× (4)×解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,△ABC 不一定为锐角三角形.2.在△ABC 中,a =2,b =3,c =4,则cos B =( ) A.1116 B .1316C .1114D .1314答案 A解析 由余弦定理知cos B =22+42-322×2×4=1116.3.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD .2522m答案 A解析 在△ABC 中,由正弦定理得 AB sin ∠ACB =ACsin ∠CBA,又∠CBA =180°-45°-105°=30°, ∴AB =AC sin ∠ACBsin ∠CBA =50×2212=502(m).4.(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( ) A.π2 B .π3C .π4D .π6答案 C解析 因为a 2+b 2-c 2=2ab cos C , 且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1. 又C ∈(0,π),故C =π4.5.(2020·全国Ⅲ卷)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A. 5 B .2 5 C .4 5 D .8 5答案 C解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,得AB =3,所以AB =BC .过点B 作BD ⊥AC ,交AC 于点D ,则AD =12AC =2,BD =32-22=5,所以tan ∠ABD =AD BD =25=255,所以tan ∠ABC =2tan ∠ABD1-tan 2∠ABD=4 5.故选C.6.(2019·浙江卷)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________. 答案1225 7210解析 如图,易知sin ∠C =45,cos ∠C =35.在△BDC 中,由正弦定理可得 BD sin ∠C =BCsin ∠BDC,∴BD =BC ·sin ∠Csin ∠BDC =3×4522=1225.由∠ABC =∠ABD +∠CBD =90°,可得cos ∠ABD =cos(90°-∠CBD )=sin ∠CBD =sin[π-(∠C +∠BDC )] =sin(∠C +∠BDC )=sin ∠C ·cos ∠BDC +cos ∠C ·sin ∠BDC =45×22+35×22=7210.考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C =60°,b =6,c =3,则A =________.(2)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b sin 2A =a sin B ,且c =2b ,则ab 等于( ) A .2B .3C . 2D . 3答案 (1)75° (2)D解析 (1)由正弦定理,得sin B =b sin C c =6sin 60°3=22,所以B =45°或135°,因为b <c ,所以B <C ,故B =45°,所以A =75°.(2)由正弦定理及b sin 2A =a sin B ,得2sin B sin A cos A =sin A sin B ,又sin A ≠0,sin B ≠0,则cos A =12.又c =2b ,所以由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+4b 2-4b 2×12=3b 2,得ab = 3.故选D.感悟升华 利用正弦定理可解决以下两类三角形问题:一是已知两角和一角的对边,求其他边与角;二是已知两边和一边的对角,求其他边与角(该三角形具有不唯一性,常根据三角函数值的有界性和大边对大角定理进行判断).利用余弦定理可解决以下两类三角形问题:一是已知两边和它们的夹角,求其他边与角;二是已知三边求各个角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的. 【训练1】 (1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个B .2个C .0个D .无法确定(2)如图所示,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则 sin C 的值为________.答案 (1)B (2)66解析 (1)由正弦定理得a sin A =b sin B ,∴sin B =b sin A a =6sin 45°2=32,∵0°<B <180°,A =45°,b >a ,∴B =60°或120°,故满足条件的三角形有2个. (2)设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD , ∴AD =a ,BD =2a 3,BC =4a3. 在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33, ∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC ,∴sin C =BD ·sin ∠BDC BC =66.考点二 正弦定理、余弦定理的应用角度1 判断三角形的形状【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等腰三角形或直角三角形 答案 C解析 法一 由余弦定理可得a =2b ·a 2+b 2-c 22ab ,因此a 2=a 2+b 2-c 2,得b 2=c 2,于是b =c , 从而△ABC 为等腰三角形.法二 由正弦定理可得sin A =2sin B cos C , 因此sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C ,于是sin(B -C )=0,因此B -C =0,即B =C , 故△ABC 为等腰三角形. 角度2 三角形面积的计算【例3】 (2019·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________.答案 6 3解析 由余弦定理b 2=a 2+c 2-2ac cos B , 得36=4c 2+c 2-2×2c 2×12,解得c =23,所以a =43,所以S △ABC =12ac sin B =12×43×23×32=6 3.角度3 以平面几何为背景解三角形【例4】 如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.解 (1)因为AD ∶AB =2∶3,所以可设AD =2k , AB =3k ,k >0.又BD =7,∠DAB =π3,所以在△ABD 中,由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,所以AD=2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)因为AB ⊥BC ,所以cos ∠DBC =sin ∠ABD =217, 所以sin ∠DBC =277,在△BCD 中,因为BD sin ∠BCD =CD sin ∠DBC ,所以CD =7×27732=433.感悟升华 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系; (2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.三角形面积计算问题要适当选用公式,可以根据正弦定理和余弦定理进行边角互化. 3.求解几何计算问题要注意(1)根据已知的边角画出图形并在图中标示. (2)选择在某个三角形中运用正弦定理或余弦定理.【训练2】 (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B = a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 B解析 由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2,∴△ABC 为直角三角形.(2)(2021·西安模拟)如图,在锐角△ABC 中,D 为边BC 的中点,且AC =3,AD =322,O 为△ABC 外接圆的圆心,且cos ∠BOC =-13.①求sin ∠BAC 的值; ②求△ABC 的面积. 解 ①如图所示,∠BOC =2∠BAC , ∴cos ∠BOC =cos2∠BAC =1-2sin 2∠BAC =-13,∴sin 2∠BAC =23,sin ∠BAC =63.②延长AD 至E ,使AE =2AD ,连接BE ,CE , 则四边形ABEC 为平行四边形,∴CE =AB , 在△ACE 中,AE =2AD =32,AC =3, ∠ACE =π-∠BAC , cos ∠ACE =-cos ∠BAC =-1-⎝⎛⎭⎫632=-33,由余弦定理得,AE 2=AC 2+CE 2-2AC ·CE ·cos ∠ACE ,即(32)2=(3)2+CE 2-2×3·CE ×⎝⎛⎭⎫-33, 解得CE =3,AB =CE =3,∴S △ABC =12AB ·AC ·sin ∠BAC=12×3×3×63=322. 解三角形应用举例一、测量距离问题测量距离问题分为三种类型:两点间不可通又不可视、两点间可视但不可达、两点都不可达.解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解. 【例1】如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为300 3 m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠P AB =90°,∠P AQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________ m.答案 900解析 由已知,得∠QAB =∠P AB -∠P AQ =30°, 又∠PBA =∠PBQ =60°, ∴∠AQB =30°,∴AB =BQ .又PB 为公共边,∴△P AB ≌△PQB , ∴PQ =P A .在Rt △P AB 中,AP =AB ·tan 60°=900,故PQ =900, ∴P ,Q 两点间的距离为900 m. 二、测量高度问题测量高度问题一般涉及方位角、仰角、俯角等,因而所画图形为立体图形.在画图时,要注意运用空间想象力,解题时要尽可能地寻找其中的直角三角形,利用直角三角形中的特征关系解决问题,避免复杂的运算.【例2】如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角30°,45°,且A,B两点间的距离为60 m,则树的高度为________m.答案30+30 3解析在△P AB中,∠P AB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-24,由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度为PB·sin 45°=30(6+2)×22=(30+303)(m).三、测量角度问题与距离问题和高度问题不同,角度问题求解的方向为角,解决角度问题的关键仍在于将实际问题转化为具体的解三角形问题,即确定所求角,找出三角形中已知的边和角,利用正、余弦定理将这些边、角联系起来从而求解.【例3】如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角∠CAD等于()A.30°B.45°C.60°D.75°答案 B解析 依题意可得AD =2010 m ,AC =30 5 m , 又CD =50 m ,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =3052+20102-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.A 级 基础巩固一、选择题1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( ) A .1 B .2C .4D .6答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).2.已知△ABC ,a =5,b =15,A =30°,则c 等于( ) A .2 5 B . 5C .25或 5D .均不正确答案 C解析 ∵a sin A =b sin B,∴sin B =b sin A a =155·sin 30°=32.∵b >a ,∴B =60°或120°.若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.3.(2020·全国Ⅲ卷)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A.19 B .13C .12D .23答案 A解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.故选A.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形答案 A解析 由c b <cos A ,得sin Csin B <cos A ,又B ∈(0,π),所以sin B >0, 所以sin C <sin B cos A , 即sin(A +B )<sin B cos A , 所以sin A cos B <0,因为在三角形中sin A >0,所以cos B <0, 即B 为钝角,所以△ABC 为钝角三角形.5.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,则B ,C 两点间的距离是( ) A .102海里B .103海里C .203海里D .202海里答案 A解析 如图所示,易知,在 △ABC 中,AB =20,∠CAB =30°,∠ACB =45°, 在△ABC 中,根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里).6.(2021·郑州调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3b ,A -B =π2,则角C =( ) A.π12 B .π6C .π4D .π3答案 B解析 由题意得A =B +π2,所以sin A =sin ⎝⎛⎭⎫B +π2=cos B ,又a =3b ,所以由正弦定理得sin A =3sin B ,故cos B =3sin B ,所以tan B =33,因为B ∈(0,π),所以B =π6,所以C =π-⎝⎛⎭⎫π6+π2-π6=π6. 二、填空题7.(2021·北京西城区模拟改编)在锐角三角形ABC 中,若a =2,b =3,A =π6,则cos B =________. 答案74解析 由正弦定理a sin A =b sin B ,得sin B =b ·sin Aa =3×122=34,又△ABC 为锐角三角形,所以cos B =1-sin 2B =1-916=74. 8.如图,在△ABC 中,D 是AB 边上的点,且满足AD =3BD ,AD +AC =BD +BC =2,CD =2,则cos A =________.答案 0解析 设BD =x (x >0),则AD =3x ,AC =2-3x ,BC =2-x , 易知cos ∠ADC =-cos ∠BDC . ∴9x 2+2-2-3x 22×2×3x=-x 2+2-2-x22×2x,解得x =13,故AD =1,AC =1,∴cos A =AD 2+AC 2-CD 22·AD ·AC=0.9.(2020·长春二模改编)在△ABC 中,C =30°,cos A =-23,AC =15-2,则AC 边上的高为________. 答案5解析 依题意得sin A =1-cos 2A =53,则sin B =sin(A +C )=sin A cos C +cos A sin C =53×32-23×12=15-26. 由正弦定理得BC sin A =AC sin B ,得BC =AC ·sin A sin B ,所以AC 边上的高为BC ·sin C =AC ·sin A ·sin C sin B=15-2×53×1215-26= 5.三、解答题10.(2020·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a =3c ,b =27,求△ABC 的面积; (2)若sin A +3sin C =22,求C . 解 (1)由题设及余弦定理, 得28=3c 2+c 2-2×3c 2×cos 150°, 解得c =-2(舍去)或c =2,从而a =2 3. 因此△ABC 的面积为12×23×2×sin 150°= 3.(2)在△ABC 中,A =180°-B -C =30°-C , 所以sin A +3sin C =sin(30°-C )+3sin C =sin(30°+C ), 故sin(30°+C )=22. 而0°<C <30°,所以30°<30°+C <60°, 所以30°+C =45°,故C =15°.11.(2021·成都诊断)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且(a -c )sin(A +B )=(a -b )(sin A +sin B ). (1)求角B 的大小;(2)若b =4,求a +c 的最大值.解 (1)在△ABC 中,∵sin(A +B )=sin(π-C )=sin C , ∴(a -c )sin C =(a -b )(sin A +sin B ). 由正弦定理,得(a -c )c =(a -b )(a +b ),整理,得c 2+a 2-b 2=ac . ∴c 2+a 2-b 22ac =12,∴cos B =12.又0<B <π,∴B =π3.(2)∵b =4,∴a 2+c 2-16=ac , 即(a +c )2-16=3ac . ∵ac ≤⎝⎛⎭⎫a +c 22,∴(a +c )2-16≤3⎝⎛⎭⎫a +c 22,∴14(a +c )2≤16, ∴a +c ≤8,当且仅当a =c 时等号成立. ∴a +c 的最大值为18.B 级 能力提升12.(2021·西安一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b =a tan A +btan B ,则角C =( ) A.π6 B .π4C .π3D .π2答案 D 解析 ∵a +b =a tan A +b tan B, ∴a +b =a cos A sin A +b cos Bsin B ,由正弦定理得sin A +sin B =sin A cos A sin A +sin B cos Bsin B,即sin A -cos A =cos B -sin B , ∴2sin ⎝⎛⎭⎫A -π4=2sin ⎝⎛⎭⎫π4-B , ∴A -π4=π4-B 或A -π4+π4-B =π,即A +B =π2或A -B =π(舍),∴C =π2,故选D.13.(2020·太原调研)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的外接圆面积为16π,且cos 2C -cos 2B =sin 2A +sin A sin C ,则a +c 的最大值为________. 答案 8解析 由cos 2C -cos 2B =sin 2A +sin A sin C , 得(1-sin 2C )-(1-sin 2B )=sin 2A +sin A sin C , 即sin 2B -sin 2C =sin 2A +sin A sin C ,结合正弦定理,得b 2-c 2=a 2+ac ,即a 2+c 2-b 2=-ac , 所以由余弦定理,得cos B =a 2+c 2-b 22ac =-12.因为0<B <π,所以B =2π3,则A +C =π-B =π3,C =π3-A ,且0<A <π3.设△ABC 的外接圆半径为R ,则由条件得πR 2=16π, 解得R =4,所以由正弦定理,得a sin A =c sin C=2R =8, 所以a =8sin A ,c =8sin C ,所以a +c =8sin A +8sin C =8sin A +8sin ⎝⎛⎭⎫π3-A =8sin A +8⎝⎛⎭⎫32cos A -12sin A =4sin A +43cos A =8sin ⎝⎛⎭⎫A +π3. 因为π3<A +π3<2π3,所以sin ⎝⎛⎭⎫A +π3=1, 即A =π6时,a +c 取得最大值8.14.已知函数f (x )=sin 2x -cos 2x +23sin x cos x (x ∈R). (1)求f (x )的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,c =5,cos B =17,求△ABC中线AD 的长.解 (1)f (x )=-cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x -π6.∴T =2π2=π.∴函数f (x )的最小正周期为π.(2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π6, ∵在△ABC 中f (A )=2, ∴sin ⎝⎛⎭⎫2A -π6=1, ∴2A -π6=π2,∴A =π3.又cos B =17且B ∈(0,π),∴sin B =437,∴sin C =sin(A +B )=32×17+12×437=5314, 在△ABC 中,由正弦定理c sin C =a sin A ,得55314=a32, ∴a =7,∴BD =72.在△ABD 中,由余弦定理得, AD 2=AB 2+BD 2-2AB ·BD cos B =52+⎝⎛⎭⎫722-2×5×72×17=1294, 因此△ABC 的中线AD =1292.。
正弦定理、余弦定理综合应用例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭. 3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,.例2.已知ABC △1,且sin sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC +-= 22()2122AC BC AC BC AB AC BC +--==, 所以60C =.例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π.例4.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,c =3b.求ac的值;解:由余弦定理得2222cos a b c b A =+-=2221117()2,3329c c c c c +-= 故3a c =例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++的值为 . 612例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos _________________.3例7.(2009年广东卷文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=,则b =【解析】0000000sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=由62a c ==+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得sin 2sin a b B A =⋅=, 例8.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 2 ,AC 的取值范围为 (2,3) .解: 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos 22θθ<<⇒<<, 2cos (2,3).AC θ∴=∈例9.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠。
第六节 正弦定理和余弦定理时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·北京卷)在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1解析 利用a sin A =bsin B 代入计算即可. 答案 B2.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定解析 ∵sin 2A +sin 2B <sin 2C ,∴a 2+b 2<c 2. cos C =a 2+b 2-c 22ab <0,∴C 为钝角. 答案 C3.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1D.23解析 由(a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4.① 由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos60°=ab ,②将②代入①得ab +2ab =4,即ab =43. 答案 A4.(2013·新课标全国卷Ⅰ)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5解析 23cos 2A +cos2A =23cos 2A +2cos 2A -1=0,所以cos 2A =125,因为A 是锐角,所以cos A =15,由余弦定理得49=36+b 2-2×6b ×cos A ,解得b =5或b =-135(舍去),故选D.答案 D5.(2013·新课标全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( )A .23+2 B.3+1 C .23-2D.3-1解析 由正弦定理得c sin C =bsin B ⇒c =2×2212=22,又sin A =sin(B +C )=sin(π6+π4)=6+24,所以三角形面积为S =12bc sin A =12×2×22×6+24=3+1,故选B.答案 B6.(2014·湖南五市十校联考)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对边的边长,若cos A +sin A -2cos B +sin B =0,则a +b c 的值是( )A .1 B. 2 C. 3D .2解析 (cos A +sin A )(cos B +sin B )=2,cos A cos B +cos A sin B +sin A cos B +sin A sin B =cos(A -B )+sin(A +B )=2,cos(A -B )+sin C =2.所以cos(A -B )=1,sin C =1,所以A -B =0且C =90°,所以A =B =45°,该三角形为等腰直角三角形,所以a +bc = 2.答案 B二、填空题(本大题共3小题,每小题5分,共15分)7.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________. 解析 由余弦定理可得cos B =22+c 2-b 22×2c =-14,又b +c =7,从而cos B =22+(7-b )2-b 22×2×(7-b ),化简得15b =60,解得b =4.答案 48.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.解析 由(a +b -c )(a +b +c )=ab ,得a 2+b 2+2ab -c 2=ab ,则a 2+b 2-c 2=-ab ,故cos C =a 2+b 2-c 22ab =-ab 2ab =-12,又C 是三角形的内角,所以C =2π3.答案 2π39.(2013·福建卷)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.解析 ∵sin ∠BAC =sin(90°+∠BAD ) =cos ∠BAD =223,∴BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD =18+9-2×92×223=3.∴BD = 3. 答案3三、解答题(本大题共3小题,每小题10分,共30分) 10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc .(1)求角A 的大小;(2)若sin B ·sin C =sin 2A ,试判断△ABC 的形状. 解 (1)由已知得cos A =b 2+c 2-a 22bc =bc 2bc =12. 又角A 是△ABC 的内角,∴A =π3. (2)由正弦定理,得bc =a 2, 又b 2+c 2=a 2+bc ,∴b 2+c 2=2bc . ∴(b -c )2=0,即b =c .又A =π3,∴△ABC 是等边三角形.11.(2013·北京卷)在△ABC 中,a =3,b =26,∠B =2∠A . (Ⅰ)求cos A 的值; (Ⅱ)求c 的值.解 (Ⅰ)因为a =3,b =26,∠B =2∠A ,所以在△ABC 中,由正弦定理得3sin A =26sin2A . 所以2sin A cos A sin A =263.故cos A =63.(Ⅱ)由(Ⅰ)知cos A =63,所以sin A =1-cos 2A =33. 又∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223.在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c =a sin C sin A =5.12.(2014·南昌模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin C +cos C =1-sin C 2.(1)求sin C 的值;(2)若a 2+b 2=4(a +b )-8,求边c 的值. 解 (1)由已知得sin C +sin C2=1-cos C , ∴sin C 2(2cos C 2+1)=2sin 2C 2.由sin C 2≠0,得2cos C 2+1=2sin C 2, ∴sin C 2-cos C 2=12.两边平方,得1-sin C =14,∴sin C =34. (2)由sin C 2-cos C 2=12>0,得π4<C 2<π2, 即π2<C <π,则由sin C =34得cos C =-74. 由a 2+b 2=4(a +b )-8得(a -2)2+(b -2)2=0, 得a =2,b =2.由余弦定理得c 2=a 2+b 2-2ab cos C =8+27, 所以c =7+1.。
【关键字】方向第七节正弦定理、余弦定理应用举例1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图3-7-1①).①②图3-7-12.方向角和方向角(1)方向角:从指北方向顺时针转到目标方向线的水平角,如B点的方向角为α(如图3-7-1②).(2)方向角:相对于某正方向的水平角,如南偏东30°等.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( )(2)俯角是铅垂线与视线所成的角,其范围为.( )(3)方向角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )(4)如图3-7-2,为了测量隧道口AB的长度,可测量数据a,b,γ进行计算.( )图3-7-2[答案] (1)×(2)×(3)√(4)√2.(教材改编)海面上有A,B,C三个灯塔,AB=10 n mile,从A望C和B成60°视角,从B望C和A成75°视角,则BC等于( )A.10 n mile B. n mileC.5 n mile D.5 n mileD [如图,在△ABC中,AB=10,∠A=60°,∠B=75°,∠C=45°,∴=,∴BC=5.]3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B 的( )A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°B [如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°,∴点A在点B的北偏西15°.]4.如图3-7-3,要测量底部不能到达的电视塔的高度,选择甲、乙两观测点.在甲、乙两点测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距,则电视塔的高度是( )A. m B.C. m D.图3-7-3D [设塔高为x m,则由已知可得BC=x m,BD=x m,由余弦定理可得BD2=BC2+CD2-2BC·CDcos ∠BCD,即3x2=x2+5002+500x,解得x=500(m).]5.如图3-7-4,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=,∠ACB=45°,∠CAB=105°,则A,B两点的距离为( ) A. mB. mC. mD. m图3-7-4D [因为∠ACB=45°,∠CAB=105°,所以∠B=30°.由正弦定理可知=,即=,解得AB= m.]如图3-7-567°,30°,此时气球的高是,则河流的宽度BC约等于________m.(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,≈1.73)图3-7-560 [如图所示,过A作AD⊥CB且交CB的延长线于D.在Rt△ADC中,由AD=46 m,∠ACB=30°得AC=92 m.在△ABC中,∠BAC=67°-30°=37°,∠ABC=180°-67°=113°,AC=92 m,由正弦定理=,得=,即=,解得BC=≈60(m).][规律方法] 应用解三角形知识解决实际问题需要下列三步:(1)根据题意,画出示意图,并标出条件;(2)将所求问题归结到一个或几个三角形中(如本例借助方向角构建三角形),通过合理运用正、余弦定理等有关知识正确求解;(3)检验解出的结果是否符合实际意义,得出正确答案.[变式训练1] 江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 【导学号:】 10 3 [如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300 =103(m).]测量高度问题如图376,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =______m.图376100 6 [由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m. 在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m).][规律方法] 1.在测量高度时,要准确理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.2.分清已知条件与所求,画出示意图;明确在哪个三角形内运用正、余弦定理,有序地解相关的三角形,并注意综合运用方程、平面几何、立体几何等知识.[变式训练2] 如图377,从某电视塔CO 的正东方向的A 处,测得塔顶的仰角为60°,在电视塔的南偏西60°的B 处测得塔顶的仰角为45°,AB 间的距离为35米,则这个电视塔的高度为________米. 【导学号:】图377521 [如图,可知∠CAO =60°,∠AOB =150°,∠OBC =45°,AB =35米.设OC =x 米,则OA =33x 米,OB =x 米. 在△ABO 中,由余弦定理, 得AB 2=OA 2+OB 2-2OA ·OB ·cos ∠AOB ,即352=x 23+x 2-233x 2·cos 150°, 整理得x =521,所以此电视塔的高度是521米.]测量角度问题 在海岸A 处,发现北偏东45°方向、距离A 处(3-1)海里的B 处有一艘走私船;在A 处北偏西75°方向、距离A 处2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.同时,走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多长时间?[解] 设缉私船t 小时后在D 处追上走私船,则有CD =103t ,BD =10t .在△ABC 中,AB =3-1,AC =2,∠BAC =120°.4分根据余弦定理,可得BC =3-12+22-2×2×3-1cos 120°=6, 由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =26×32=22,∴∠ABC =45°,因此BC 与正北方向垂直.8分 于是∠CBD =120°.在△BCD 中,由正弦定理,得sin ∠BCD =BD sin ∠CBD CD =10t ·sin 120°103t=12, ∴∠BCD =30°,又CD sin 120°=BC sin 30°, 即103t3=6,得t =610.∴当缉私船沿北偏东60°的方向能最快追上走私船,最少要花610小时.14分 [规律方法] 解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为解三角形的问题后,注意正弦、余弦定理的“联袂”使用.[变式训练3] 如图378,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.图378[解] 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207.4分 由正弦定理,得AB sin ∠ACB =BC sin ∠BAC ⇒sin ∠ACB =AB BC ·sin∠BAC =217.8分 由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277. 由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114.14分 [思想与方法]解三角形应用题的两种情形(1)已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.[易错与防范]1.“方位角”与“方向角”的区别:方位角大小的范围是[0,2π),方向角大小的范围一般是⎣⎢⎡⎭⎪⎫0,π2. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.课时分层训练(二十一)正弦定理、余弦定理应用举例A 组 基础达标(建议用时:30分钟)一、选择题1.如图379所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )图379A .a km B.3a km C.2a km D .2a kmB [在△ABC 中,AC =BC =a ,∠ACB =120°,∴AB 2=a 2+a 2-2a 2cos 120°=3a 2,AB =3a .]2.如图3710,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )【导学号:】图3710A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D [由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.]3.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里A [如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°, 解得BC =102(海里).]4.如图3711,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为 ( )图3711A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h B [设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝ ⎛⎭⎪⎫110v 2=⎝ ⎛⎭⎪⎫110×22+12-2×110×2×1×45,解得v =6 2.]5.如图3712,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为 ( )图3712A .30°B .45°C .60°D .75°B [依题意可得AD =2010(m),AC =305(m),又CD =50(m),所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=3052+20102-5022×305×2010= 6 0006 0002=22, 又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.]二、填空题6.在地上画一个∠BDA =60°,某人从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点B ,则B 与D 之间的距离为________米. 【导学号:】16 [如图所示,设BD =x m ,则142=102+x 2-2×10×x ×cos 60°,整理得x 2-10x -96=0,x =-6(舍去),x =16,∴x =16(米).]7.如图3713,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米. 【导学号:】图3713 10 6 [在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=AB BC,AB =BC tan 60°=106(米).]8.如图3714所示,一艘海轮从A 处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B 处,海轮按北偏西60°的方向航行了30分钟后到达C 处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分钟.图371463[由已知得∠ACB =45°,∠B =60°, 由正弦定理得AC sin B =ABsin ∠ACB ,所以AC =AB ·sin B sin ∠ACB =20×sin 60°sin 45°=106, 所以海轮航行的速度为10630=63(海里/分钟).] 三、解答题9.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A ,B ,且AB 长为80米,当航模在C 处时,测得∠ABC =105°和∠BAC =30°,经过20秒后,航模直线航行到D 处,测得∠BAD =90°和∠ABD =45°.请你根据以上条件求出航模的速度.(答案可保留根号)图3715[解] 在△ABD 中,∵∠BAD =90°,∠ABD =45°,∴∠ADB =45°,∴AD =AB =80,∴BD =80 2.4分在△ABC 中,BC sin 30°=ABsin 45°, ∴BC =AB sin 30°sin 45°=80×1222=40 2.8分 在△DBC 中,DC 2=DB 2+BC 2-2DB ·BC cos 60°=(802)2+(402)2-2×802×402×12=9 600. ∴DC =406,航模的速度v =40620=26米/秒. 14分 10.如图3716,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.图3716(1)求渔船甲的速度;(2)求sin α的值. 【导学号:】[解] (1)依题意知,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.4分 在△ABC 中,由余弦定理,得 BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC=122+202-2×12×20×cos 120°=784,解得BC =28.所以渔船甲的速度为BC2=14海里/小时.8分(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°,10分 即sin α=AB sin 120°BC =12×3228=3314.14分 B 组 能力提升(建议用时:15分钟)1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是 ( )A .50 mB .100 mC .120 mD .150 mA [设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m .]2.如图3717,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图3717150 [根据图示,AC =100 2 m.在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°⇒AM =100 3 m. 在△AMN 中,MN AM=sin 60°,∴MN =1003×32=150(m).] 3.如图3718已知在东西方向上有M ,N 两座小山,山顶各有一个发射塔A ,B ,塔顶A ,B 的海拔高度分别为AM =100米和BN =200米,一测量车在小山M 的正南方向的点P 处测得发射塔顶A 的仰角为30°,该测量车向北偏西60°方向行驶了1003米后到达点Q ,在点Q 处测得发射塔顶B 处的仰角为θ,且∠BQA =θ,经测量tan θ=2,求两发射塔顶A ,B 之间的距离.图3718[解]在Rt△AMP中,∠APM=30°,AM=100,∴PM=1003,连接QM(图略),在△PQM 中,∠QPM=60°,4分又PQ=1003,∴△PQM为等边三角形,∴QM=100 3.8分在Rt△AMQ中,由AQ2=AM2+QM2,得AQ=200.在Rt△BNQ中,tan θ=2,BN=200,∴BQ=1005,cos θ=55.12分在△BQA中,BA2=BQ2+AQ2-2BQ·AQ cos θ=(1005)2,∴BA=100 5.即两发射塔顶A,B之间的距离是1005米.14分此文档是由网络收集并进行重新排版整理.word可编辑版本!。
第七讲正余弦定理一.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则二.在△ABC中,已知a,b和A时,解的情况a =b sin A b sin A <a <ba ≥ba >b三.三角形常用面积公式(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).四.测量中的有关几个术语例:(1)北偏东α:(2)南偏西α:考向一 正余弦公式选择【例1】(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c = . (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =23,C =30°,则B = . (3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b = .【举一反三】1.已知△ABC 中,A =π6,B =π4,a =1,则b 等于( )A.2B.1C. 3D. 22.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.考向二 正余弦定理的运用【例2】(1)在△ABC 中,2a cos A +b cos C +c cos B =0,则角A 的大小为________.(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为 .【举一反三】1.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知bsin(A +π3)=asinB ,则角A 等于( )A .π6B .π3C .2π3D .5π62.在ΔABC 中,内角A,B,C 的对边分别为a,b,c ,若asinBcosC +csinBcosA =0.5b ,a >b ,则B = ( ) A .30∘ B .60∘ C .120∘ D .150∘3.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b -c )(sin B +sin C )=(a -3c )sin A ,则角B 的大小为____.考向三 三角形的面积【例3】已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +2c =2b cos A .(1)求角B 的大小;(2)若b =23,a +c =4,求△ABC 的面积.【举一反三】1.设△ABC 中的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b =23,c =3,C =2π3,则△ABC 的面积为________.2.设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,D 为AB 的中点,若b =a cos C +c sin A 且CD =2,则△ABC 面积的最大值是________.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =-2c cos C . (1)求C 的大小;(2)若b =2a ,且△ABC 的面积为23,求c 的值.考向四判断三角形的形状【例4】在△ABC中,内角A,B,C所对边分别是a,b,c,若sin2B2=c-a2c,则△ABC的形状一定是________.【举一反三】1.在△ABC中,角A,B,C所对的边分别是a,b,c,若c=2a cos B,则△ABC的形状为______________.2.在△ABC中,角A,B,C的对边分别为a,b,c,若sin Asin B=ac,(b+c+a)(b+c-a)=3bc,则△ABC的形状为________.考向五三角形个数判断【例5】在△ABC中,已知a=2,b=6,A=45°,则满足条件的三角形有个.【举一反三】1.在△ABC中,若a=18,b=24,A=45°,则此三角形解的情况为________.考向六求解几何计算问题【例6】 如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值; (2)若∠BCD =2π3,求CD 的长.【举一反三】1.若E ,F 是等腰直角三角形ABC 斜边AB 上的三等分点,则tan ∠ECF = .2.如图,在△ABC 中,∠B =π3,AB =8,点D 在边BC 上,且CD =2,cos ∠ADC =17。