沪教版数学六年级下复习
- 格式:pptx
- 大小:178.73 KB
- 文档页数:7
上海沪教版六年级数学下知识点总结第五章有理数5.1有理数的意义整数和分数统称为有理数有理数整数:正整数、零、负整数分数:正分数、负分数5.2正数和负数数轴:规定了原点、正方向和单位长度的直线叫数轴。
数轴的三要素:原点、单位长度、正方向。
所有的数都可以用数轴上的点来表示。
也可以用数轴来比较两个数的大小在数轴上表示的两个数,正方向的数大于负方向的数零是正数和负数的分界。
只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称为这两个数互为相反数,零的相反数是零。
一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值注意:1、一个正数的绝对值是它本身。
2、一个负数的绝对值是它的相反数。
3、零的绝对值是零。
4、两个负数,绝对值大的那个数反而小。
5.3有理数的加减有理数加法法则:1、同号两数相加,取原来的符号,并把绝对值相加。
2、异号两数相加,绝对值相等时和为零,绝对值不相等时,其和的绝对值为较大绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号。
3、一个数同零相加,仍得这个数。
有理数加法的运算律1、交换律:a+b=b+a2、结合律:(a+b)+c=a+(b+c)有理数的减法法则1、减去一个数,等于加上这个数的相反数2、a-b=a+(-b)5.4有理数的乘除两数相乘的符号法则正正得正,正负得负,负正得负,负负得正。
有理数的乘法法则1、两数相乘,同号得正,异号得负,并把绝对值相乘。
2、任何数与零相乘,都得零。
注意连成的符号:1、几个不等于零的数相乘,积的符号由负因数的个数决定2、当负因数有奇数个时,积为负3、当负因数有偶数个时,积为正4、几个数相乘,有因数为零,积就为零有理数除法法则1、两数相除,同号得正,异号得负,并把绝对值相除。
2、零除以任何一个不为零的数,都得零。
5.5有理数的乘方求N个相同因数的积的运算,叫做乘方。
乘法的结果叫做幂。
在a n中,a叫做底数,n叫做指数,读作a的n 次方,a n看做是a的n次方结果时,读作a的n次幂。
上海沪教版六年级数学下知识点总结第五章有理数5.1有理数的意义整数和分数统称为有理数有理数整数:正整数、零、负整数分数:正分数、负分数5.2正数和负数数轴:规定了原点、正方向和单位长度的直线叫数轴。
数轴的三要素:原点、单位长度、正方向。
所有的数都可以用数轴上的点来表示。
也可以用数轴来比较两个数的大小在数轴上表示的两个数,正方向的数大于负方向的数零是正数和负数的分界。
只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称为这两个数互为相反数,零的相反数是零。
一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值注意:1、一个正数的绝对值是它本身。
2、一个负数的绝对值是它的相反数。
3、零的绝对值是零。
4、两个负数,绝对值大的那个数反而小。
5.3有理数的加减有理数加法法则:1、同号两数相加,取原来的符号,并把绝对值相加。
2、异号两数相加,绝对值相等时和为零,绝对值不相等时,其和的绝对值为较大绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号。
3、一个数同零相加,仍得这个数。
有理数加法的运算律1、交换律:a+b=b+a2、结合律:(a+b)+ c=a+(b+c)有理数的减法法则1、减去一个数,等于加上这个数的相反数2、a-b=a+(-b)5.4有理数的乘除两数相乘的符号法则正正得正,正负得负,负正得负,负负得正。
有理数的乘法法则1、两数相乘,同号得正,异号得负,并把绝对值相乘。
2、任何数与零相乘,都得零。
注意连成的符号:1、几个不等于零的数相乘,积的符号由负因数的个数决定2、当负因数有奇数个时,积为负3、当负因数有偶数个时,积为正4、几个数相乘,有因数为零,积就为零有理数除法法则1、两数相除,同号得正,异号得负,并把绝对值相除。
2、零除以任何一个不为零的数,都得零。
5.5有理数的乘方求N个相同因数的积的运算,叫做乘方。
乘法的结果叫做幂。
在a n中,a叫做底数,n叫做指数,读作a的n次方,a n看做是a的n次方结果时,读作a的n次幂。
沪教版六年级下学期数学知识点梳理1.相反意义的量收入与支出;增加与减少;上升与下降; 零上与零下;高于海平面与低于海平面;前进与后退;盈利与亏损;……任意规定一方为正,则另一方为负;2.正数与负数4.数轴的概念与画法数轴是规定了原点、正方向和单位长度的直线;数轴画法:一直线 + 三要素5.数轴的性质数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于一切负数;6.相反数只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0. 正数的相反数是负数;负数的相反数是正数;零的相反数是它本身;7.相反数的几何意义数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等;10.有理数的大小比较两个负数,绝对值大的反而小;对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数;比较两个数的大小,还可以用“作差法”,即:11.有理数加法及加法法则把两个有理数合成一个有理数的运算,叫做有理数的加法;分五种情况:①两个正数相加;②两个负数相加;③两个异号数相加;④有理数和零相加;⑤零和零相加;有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得零;④一个数与零相加,仍得这个数;注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减;12.有理数加法运算律加法交换律:a+b=b+a;加法结合律:a+b+c=a+b+c运算律有下列规律:①互为相反数的两数可以先相加;②符号相同的数可以相加;③分母相同的数可以先相加;④几个数相加能得到整数的可以先相加;13.有理数的减法法则及运算法则:减去一个数,等于加上这个数的相反数;注意:两个“变”字,①改变运算符号;②改变减数的性质符号变为相反数,牢记一个“不变”,被减数与减数的位置不变,即没有交换律;14.有理数乘法的意义乘法是加法的特殊运算形式,它可以看作是多个相同的数相加运算的一种简便运算;如:n个a相加等于na15.有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零;注意:①运算步骤:符号→绝对值相乘;②带分数要化成假分数16.有理数乘法法则的推广几个不为0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正; 几个数相乘,若其中有一个0,则积为零17.有理数的乘法运算律22.有理数的混合运算一个算式里含有加、减、乘、除、乘方五种运算中的两种或两种以上的运算称为有理数混合运算; 23.有理数的混合运算顺序先乘方,再乘除,最后加减;同级运算,从左到右依次进行;如有括号先括号小中大第一级运算:加和减;第二级运算:乘和除;第三级运算:乘方和开方24.科学记数法25.等式与方程等式:用等号把两个值相等的量或式子连接起来的式子. 方程:含有未知数的等式.第六章一次方程组和一次不等式26.方程中的项、系数、次数等概念①项:在方程中,被“+”“-”号隔开的每一部分含这部分前面的“+”“-”号在内称为一项②未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母;③项的次数:在一项中,所有未知数的指数和;④常数项:不含未知数的项;27.列方程的方法列方程:为了求未知数,在未知数和已知数之间建立一种等量关系,就是列方程;列方程步骤:设未知数,找等量关系,列方程;28.方程的解和解方程使方程的左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫做解方程;29.一元一次方程的概念概念:在一个方程中,只含有一个未知数,且未知数的次数是一次的方程;最简形式:ax=ba不等于0标准形式:ax+b=0a不等于030.等式的基本性质性质1:等式两边同时加上或减去同一个数或同一个代数式,所得结果仍是等式;性质2:等式两边同时乘以同一个数或除以同一个不为零的数,所得结果仍是等式;另外性质:①对称性:a=b,则b=a;②传递性:若a=b且b=c,则a=c等量代换31.利用等式的基本性质解一元一次方程解方程:求方程的解的过程;移项法则:方程中任何一项,在改变符号后,从方程的一边移到另一边,这种变形叫移项移项法则:方程中任何一项,在改变符号后,从方程的一边移到另一边,这种变形叫移项; 32.列方程解应用题步骤审题、设元、列方程、解方程、检验、作答33.按比例分配问题已知两个量之比为a:b,则设这两个量分别为ax和bx.34.利率问题利息=本金×利率×期数本利和=本金+利息=本金×1+利率×期数利息税=利息×税率税后利息=利息-利息税=利息×1-税率税后本利和=本金+税后利息35.折扣问题利润额=成本价×利润率售价=成本价+利润额新售价=原售价×折扣36.行程问题路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间37.工程问题工作效率×工作时间=1工作总量38.不等式的概念41.不等式的基本性质与等式的基本性质的关系①相同点:不论是等式还是不等式,都可以在它的两边加上或减去同一个数式子;②不同点:等式在两边乘以除以同一个正数或同一个负数,等式成立;不等式在两边乘以除以同一个正数,方向不变,乘以除以同一个负数时,方向一定要改变;42.不等式的解的定义能使不等式成立的未知数的值,叫做不等式的解;43.不等式的解集的定义一个含有未知数的不等式的解的全体叫做不等式的解集;44.解不等式求不等式解集的过程叫做解不等式;解不等式的依据:不等式的三条性质,特别是不等式的性质3,注意不等号方向的改变;45.如何用数轴表示不等式的解集一是确定“界点”:解集包含“界点”则用实心圆点;反之,空心圆圈;二是确定“方向”:大于向右画,小于向左画;46.一元一次不等式组的概念由几个含有同一个未知数的一次不等式组成的不等式组;47.一元一次不等式组的解集的概念一元一次不等式组中各个不等式的解集的公共部分,叫这个一元一次不等式组的解集; 解集的公共部分通常用“数轴”来确定;解集规律:大大取大;小小取小;大小小大中间找;大大小小是无解;48.不等式组的解法①求出不等式组中各个不等式的解集;②在数轴上表示各个不等式的解集;③确定各个不等式解集的公共部分即这个不等式组的解集;49.一元一次不等式组的应用与列方程解应用题类似,列不等式组解应用题,求出的通常是一个量的取值范围;50.二元一次方程含有两个未知数的一次方程叫做二元一次方程;51.二元一次方程的解53.二元一次方程组的解在二元一次方程组,使每个方程都适合的解,叫做二元一次方程组的解;检验一组数是否为二元一次方程组的解的方法:将这组数值分别代入方程组中每个方程,满足所有方程时,这组数值是此方程组的解,否则不是;54.用代入消元法解二元一次方程组①从方程组中选一个系数较简单的方程,将这个方程中的某个未知数且另一个未知数的式子表示;②将得到的式子代入另一个方程中,从而消去一个未知数,得到一元一次方程;③解这个一元一次方程,求出一个未知数的值;④求出另一个未知数的值;55.用加减消元法解二元一次方程组把两个方程的两边分别加减消去一个未知数的方法,叫做加减消元法;步骤:①确定要消去的元,并使该元的系数相等或者互为相反数;②把两个方程的两边分别相加或相减,消去一个元,得到一个一元一次方程;③解这个一元一次方程,求出一元的值;④求出另一元的值;56.三元一次方程组的解法方程组中含有三个未知数,且含有未知数的项的次数都是一次的方程组叫三元一次方程组解法:类似二元一次方程组的解法;57.用一次方程组解应用题的建模策略①利用表格;②利用线形示意图;③利用圆形示意图;④利用柱状图;详见解应用题专题;58.线段大小的比较方法①叠合法:比较两条线段AB、CD的长短,可把它们移到同一条直线上,使一个端点A和C重合,另一端点B和D落在直线上A和C的同侧;若B与D重合,则AB=CD;若D在AB上,则AB>CD;若D在AB延长线上,则AB②度量法:分别量出每条线段的长度,再比较;59.线段的性质两点之间的所有连线中,线段最短;60.两点之间的距离联结两点的线段的长度叫做两点之间的距离;61.两条线段的和、差两条线段可以相加或相减,它们的和或差也是一条线段,其长度等于这两条线段的和或差;62.线段的倍、分线段的倍:nan>1为正整数,a是一条线段就是求n条线段a相加所得和的意义;na也可理解为:线段a的n倍;线段的中点:将一条线段分成两条相等线段的点叫这条线段的中点;63.角的概念角的定义:①有公共端点的两条射线组成的图形叫做角;顶点,边②一条射线绕着其端点旋转到另一个位置所成的图形;始边,终边65.角的大小比较方法①度量法:用量角器量出角的度数来比较;②叠合法:把一角放在另一个角上,使它们的顶点重合,并将其中一边也重合,并使两个角的另一边都放在这条边的同侧,就可以比较两个角的大小;66.画相等的角①度量法:①对中:将量角器的中心点与角的顶点重合;②对线:将量角器的零度刻线与角的一边重合;③读数;②尺规法:用直尺与圆规做图;67.角的和、差、倍的画法①度量法:②尺规作图法:68.角平分线的概念及画法概念:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;画法:①用量角器画图:量→算→画;②用直尺与圆规作图69.余角、补角余角:若两个角的度数的和是90度,这两个角互为余角,简称互余;其中一个角是另一角的余角;补角:若两个角的度数和是180度,这两个角互补;其中一个角是另一个角的补角;性质:同角或等角的余角相等;同角或等角的补角相等;70.角的度量单位、角的换算及角的分类角的度量单位:度、分、秒;75.直线与平面垂直直线PQ垂直于平面ABCD,记作:直线PQ⊥平面ABCD;76.直线与平面垂直的检验方法①铅垂线:若铅垂线与直线紧贴,则直线与水平面垂直;②三角尺:两把三角尺各有一条边紧贴平面且位置相交,另一条直角边都能紧贴细棒,则细棒垂直于平面;③合面型折纸:如:将合面型折纸立于桌面,折痕紧贴细棒,则细棒垂直于桌面;77.直线与平面平行直线PQ平行于平面ABCD,记作:直线PQ直线PQ与平面ABCD无公共点;78.直线与平面平行的检验方法①长方形纸片:②铅垂线:79.平面垂直平面平面a垂直于平面b,记作:a80.平面与平面垂直的检验①铅垂线;②合面型折纸;③三角尺;检验要点:“铅垂线”、“折痕”、“三角尺的公共边”能否与另一个面紧贴;81.平面与平面平行平面a平行于平面b,记作:平面a面与平面平行的检验①长方形纸片:把长方形纸片放在两块硬纸板之间,按交叉的方向放两次,使纸片的一边都紧贴一块硬纸板,再观察它的对边,若对边都能与另一块纸板紧贴,则这两块纸板平行;②铅垂线法:找其中一个平面内找三个不共线的点检验;。
六年级下册第五章有理数知识点1、正数:大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
零是正数和负数的分界。
4、有理数:整数和分数统称为有理数。
有理数:正数:正整数、零、负整数分数:正分数、负分数5、数轴:规定了原点、正方向、单位长度的直线叫做数轴。
数轴上的点从左到右依次增大,正数大于零,零大于负数,正数大于负数。
6、相反数:绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8、有理数加法法则加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)9、有理数减法法则减去一个数,等于加这个数的相反数。
表达式:a-b=a+(-b)10、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
表达式:(ab)c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac注意:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有因数为零,积就为零。
也就是说,在积的各个因数中,只有一个负号,积为负; 有两个负号,积为正; 有三个负号,积为负; 有四个负号,积为正; 有零时积就是零。
复习分数知识精要1、分数的基本性质:分数的基本性质:。
即:运用分数的基本性质,可以将一个分数化为不同而相同的分数。
分子和分母的分数,叫做最简分数。
把一个分数的分子与分母的约去的过程,称为约分。
2、分数的大小比较:同分母分数的大小比较: ___________________________________同分子分数的大小比较:____________________________________异分母分数的大小比较:运用,可以把异分母的分数化成,然后再按照同分母分数大小比较的方法来进行比较。
3、真分数、假分数、带分数:真分数:分子比分母小的分数叫做真分数;(都_____1)假分数:分子大于或者等于分母的分数叫做假分数;(___________1)带分数:一个正整数与一个真分数相加所得的数叫做带分数。
4、分数的运算:分数的加减:分数的乘除:倒数:5、分数与小数的互化:分数化为小数:任何一个分数都可以通过_______________化成小数或整数小数化为分数:小数可以直接写成分母是10,100,1000,…的分数,原来有几位小数,就在1后面____________分母,把原来的小数去掉小数点作_______,化成分数后,能约分的要________。
能化成有限小数的分数:一个最简分数,如果分母中 ,再无其他素因数,那么这个分数可以化成有限小数,否则就不能化成有限小数。
复习题一、填空题:1、写出下列各图形中阴影部分是整体的几分之几( ) ( ) ( ) 2、填入适当的分数(1)36厘米=_______米 (2)40小时=_______天3、下列分数102,1312,73,3321,415,4235中是最简分数的是___________。
4、把7化成分母为4的分数是________;把2135化成分子为15且与原分数值相等的分数是_______。
5、 把87、•78.0、65、1615按从小到大的顺序排列为:____________________。
一、大数的读法和写法1.万以内数的读法和写法2.万以内数的读法和写法与整数的区别3.亿以内数的读法和写法4.带小数的数的读法和写法二、整除与整除数1.定义:如果$a$能被$b$整除,且商是整数,那么称$a$被$b$整除,$a$是$b$的倍数,$b$是$a$的因数,$b$能整除$a$。
2.整除判断法则:对于任何整数$a$和正整数$b$,有$a$能被$b$整除的充要条件是$a$的各位数字之和能被$b$整除。
3.利用整除定义进行整除的判断和运算。
4.整数的因数、倍数和约数的关系。
三、简便计算1.简算五法-数的末尾为0,可以在原数的基础上乘以一个数。
-数的末尾为5,可以把数的一半加上原数。
-能被9整除的数,其各位数字之和也能被9整除。
-能被3整除的数,其各位数字之和也能被3整除。
-把一个数的各位数字互换的次序,组成的新数是原数的倍数。
2.把分数化作有限小数-分母只包含2和5的分数化作有限小数。
-分母包含其他质数的分数化作无限小数。
四、面积1.面积的定义:面积是指平面内一个图形所占据的表面的大小。
2. 长方形的面积:$S=ab$,其中$a$和$b$分别是长方形的两条相邻边的长度。
3. 平行四边形的面积:$S=bh$,其中$b$是底边的长度,$h$是底边上的高的长度。
4. 三角形的面积:$S=\frac{1}{2}bh$,其中$b$是底边的长度,$h$是底边上的高的长度。
5.正方形的面积:$S=a^2$,其中$a$是正方形的边长。
6. 圆的面积:$S=\pi r^2$,其中$r$是圆的半径。
五、两个角的关系1.一对补角:两个角的和等于90°。
2.一对平分角:两个角的和等于180°。
3.一对相等角:两个角的度数相等。
4.互补角、对顶角、对角线的关系。
六、三角形1.三角形的边-三边相等的三角形是等边三角形。
-两边相等的三角形的基本性质。
-两边之和大于第三边。
-三角形边长的排序关系。
2.三角形的角-三角形的内角和为180°。
一、数值:
1、分数加减运算:进行同分母分数加减运算,求得同分母加减后的分数;
2、小数乘除法运算:乘减法的基本运算法与小数乘除法运算中的抹去法;
3、整数四则运算:熟练掌握整数的加减乘除,增加难度可以运用被加数、被减数、乘数与被乘数来确定四则运算的顺序;
4、数的阶乘:了解数阶乘的基本概念,找出规律进行运算;
5、正数的幂次:根据幂次的定义熟练掌握正数的幂次;
6、数轴:掌握数轴上的基本概念,如正负号、加减号等。
二、几何:
1、钝角的性质:了解钝角的定义,掌握钝角的性质;
2、平行四边形:了解平行四边形的定义,熟练掌握平行四边形的性质;
3、正方形:了解正方形的定义,包括边长与对角线,了解正方形的性质;
4、多边形:了解多边形的定义,掌握多边形的性质,并能针对特定多边形的求解;
5、三角形:掌握三角形的性质,包括角度关系,边长关系,以及对错角三角形的判断;
6、几何性质:能利用平行线、共线、全等、中线等几何性质求解特定图形的属性。
三、空间:
1、棱面:了解棱面的定义,掌握棱面的性质,比如棱线,边,角的个数;。
沪教版六年级数学复习资料(已标注重点)
本文档旨在为六年级学生提供沪教版数学的复资料,以准备即将到来的考试。
下面将列出已经标注了重点的重要知识点和技巧。
请同学们认真研究并加以复。
一、整数运算
1. 四则运算:加法、减法、乘法、除法的运算规则和性质。
2. 整数的绝对值:如何求整数的绝对值及其性质。
3. 数轴上的整数:如何在数轴上表示整数,并进行各种运算。
4. 整数的比较:如何比较两个整数的大小。
二、小数运算
1. 小数的读法和写法:正确读写小数并了解小数的性质。
2. 小数的加减法:掌握小数的加法和减法运算。
3. 小数的乘除法:熟练掌握小数的乘法和除法运算。
4. 小数的大小比较:学会比较大小。
三、分数
1. 分数的表示和读法:了解分数的基本表示形式和读法。
2. 分数的化简:熟练化简分数和约分。
3. 分数的加减法:掌握分数的加法和减法运算。
4. 分数的乘除法:熟练掌握分数的乘法和除法运算。
5. 分数的大小比较:学会比较大小。
四、面积和周长
1. 长方形的面积和周长:了解如何计算长方形的面积和周长。
2. 正方形的面积和周长:掌握计算正方形的面积和周长。
3. 三角形的面积:学会计算三角形的面积。
4. 圆的面积和周长:熟悉计算圆的面积和周长的方法。
五、图形的旋转
1. 图形的旋转:学会将图形按照一定规律进行旋转。
以上是本文档的部分内容,希望同学们在复习过程中能够扎实掌握这些知识点和技巧,顺利应对考试。
加油!。
一.列方程1.某水果店有苹果与香蕉共134千克,其中苹果的数量是香蕉的5倍,求该水果店的苹果与香蕉各有多少千克?2.有一所监狱,安排监舍时,如果每间监舍住8人,有10个人没有床位;如果每间监舍安排住9人,就有300人没有床位,问有多少人?3.一个数与它的一半的和是32,求这个数。
4.一个正方形的边长为x 厘米,周长为4y 厘米。
5.小丽3月赚工资12560元,她花掉了x 元,还剩下4500元。
6. 59减去x 的一半是y 。
二.解一元一次方程(1)25(3-x)+15(3-x)=25x-15x(2)1.005(3678+x )=1.005(x 6735-)+20.1(3)x-212361433112)(+=-+x x(4)92391627y61⨯+⨯+=y(5)3.5(m-1)=8.7(2-2m)-12.15(5m-5)(6)2{[4(5x-1)-8]-20}-7=1(7)已知5:4:3::=z y x ,且3x-4y+z=-4,求式子x-3y+5z 的值。
(8)已知关于x 的方程)0(17231≠=-++x x x n 是一元一次方程,试求n 的值。
(9)讨论关于x 的方程(a-2)x=b 的值。
(10)如果关于x 的方程83)1(2=+-m x m 是一元一次方程,球m ,n 。
(12)求1||;3|25|321==--x x三.一元一次方程的应用1.某人从甲地到乙地,如果每小时走15千米,就能比预计时间早24分钟,如果每小时走12千米,就会晚到24分钟,甲乙两地相距多少千米?2.一客车从A 站开往B 站,1小时30分后,一快车也从A 站开出,当快车开出15小时后,快车不仅追上客车,还超过客车15千米.已知客车每小时少行15千米,求两车速度.3.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。
(一元一次解答)4.把99拆成4个数,使第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到结果都相等,应该怎样拆?5.一个拖拉机队耕一片地,第一天耕了这片地的31,第二天耕了剩下地的21,这时还剩38亩地没有耕,问这片地一共有多少亩?6.甲乙丙三个单位为希望工程捐款176万元,所捐款数的比例为2 :4;5,问三个单位各捐多少万元?7.甲乙丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村庄人口多少不等,只要按2:3:6的比例摊派才合理,问甲乙丙三个村庄各派出多少个劳动力?8.一所中学举行运动会,七年级甲班和丙班参加人数的和是乙班参加人数的3倍,甲班有40人参加,乙班参加人数比丙班参加人数少10人,求乙班参加运动会人数。
六年级数学(下)综合复习练习题一.选择题(共6小题)1.在2-,3,0,1-中,最小的数是( ) A .2-B .3C .0D .1-2.下列运算正确的是( ) A .1131522-+=-B .34143÷= C .21222⨯= D .(3)(6)2-÷-=3.下列各对数中,数值相等的是( ) A .332-⨯与232-⨯ B .22-与2(2)-C .32-与3(2)-D .2(3)-与3(2)-4.下列各组数中,是二元一次方程54x y -=的一个解的是( ) A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩5.下列说法正确的是( ) A .两点之间的连线中,直线最短B .如果AP BP =,那么点P 是线段AB 的中点C .两点之间的线段叫做这两点之间的距离D .如果点P 是线段AB 的中点,那么AP BP = 6.已知线段8AB =,延长线段AB 至C ,使得12BC AB =,延长线段BA 至D ,使得14AD AB =,则下列判断正确的是( ) A .12BC AD = B .3BD BC = C .4BD AD = D .6AC AD =二.填空题(共12小题) 7.计算:14(1)2-⨯--= .8.若3557a b a b -=⎧⎨+=⎩,则a b += .9.不等式353x x -<+的正整数解是 . 10.绝对值小于4的负整数有 .11.用不等式表示:y 减去1的差不小于y 的一半 . 12.不等式2(1)34x x ->-的自然数解为 .13.将方程68x y +=写成用含x 的代数式表示y ,则y = .14.月球离地球近地点的距离为363300千米,数据363300用科学记数法表示是 . 15.若21x y =⎧⎨=⎩是关于x ,y 的二元一次方程310x my +=的解,则m = .16.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g .17.如图,在数轴上表示到原点的距离为3个单位长度的所有点是 .18.如图,线段16AB cm =,C 是AB 上一点,且10AC cm =,O 是AB 中点,则线段OC 的长度为 cm .三.解答题(共9小题)19.计算:221335(7)18()3--+-+⨯-.20.求不等式组133222(1)x xx x ⎧<-⎪⎨⎪+⎩的整数解.21.解方程:21511032x x -+--=.22.解方程组6125x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩.23.解不等式组42233xx x+⎧⎨>-+⎩,并将解集在数轴上表示出来.24.暑假快到了,王老师想让自己女儿的假期生活过的充实点,于是就花了14500元给女儿报了一个英语口语班和一个儿童绘画班,两门课程合计55课时,英语口语一课时的学费是300元,儿童绘画一课时的学费是220元,问王老师给女儿分别报了多少课时的英语口语和多少课时的儿童绘画?25.某工厂甲乙两车间生产汽车零件,四月份甲乙两车间生产零件数之比是4:7,五月份甲车间提高生产效率,比四月份提高了25%,乙车间却比四月份少生产50个,这样五月份共生产1150个零件.求四月份甲乙两车间生产零件个数各多少个.26.先阅读理解下列例题,再按要求完成作业.例题:解一元二次不等式(32)(21)0x x-+>.解:由有理数的乘法法则“两数相乘,同号得正”有①320210xx->⎧⎨+>⎩或②320210xx-<⎧⎨+<⎩解不等式组①得23x>,解不等式组②得12x<-.所以一元二次不等式(32)(21)0x x-+>的解集是23x>或12x<-.作业题:(1)求不等式5123xx+<-的解集;(2)通过阅读例题和做作业题(1),你学会了什么知识和方法?27.某公司装修需用A型板材48块、B型板材36块,A型板材规格是6030cm cm⨯,B型板材规格是4030cm cm⨯.现只能购得规格是15030cm cm⨯的标准板材.于是需将每张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n(1)填空:上表中,m=,n=;(2)如果所购的标准板材为35张,按裁法一、裁法二和裁法三全部裁完,且所裁出的A、B两种型号的板材块数与所需块数相符.问按三种裁法各裁标准板材多少张?参考答案一.选择题(共6小题)1.在2-,3,0,1-中,最小的数是( ) A .2-B .3C .0D .1-【解答】解:2103-<-<<,∴在2-,3,0,1-中,最小的数是2-.故选:A .2.下列运算正确的是( ) A .1131522-+=-B .34143÷= C .21222⨯= D .(3)(6)2-÷-=【解答】解:11.31222A -+=-,故选项A 不合题意;3416.439B ÷=,故选项B 不合题意; 21.222C ⨯=,故选项C 符合题意; D .1(3)(6)2-÷-=,故选项D 不合题意. 故选:C .3.下列各对数中,数值相等的是( ) A .332-⨯与232-⨯ B .22-与2(2)-C .32-与3(2)-D .2(3)-与3(2)-【解答】解:A 、3323824-⨯=-⨯=-,2329218-⨯=-⨯=-,2418-≠-,故本选项错误; B 、224-=-,2(2)4-=,44-≠,故本选项错误; C 、328-=-,3(2)8-=-,88-=-,故本选项正确;D 、2(3)9-=,3(2)8-=-,98≠-,故本选项错误.故选:C .4.下列各组数中,是二元一次方程54x y -=的一个解的是( ) A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩【解答】解:A、把31xy=⎧⎨=⎩代入得:左边15114=-=,右边4=,左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边514=-=,右边4=,左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边044=-=-,右边4=,左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边532=-=,右边4=,左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.5.下列说法正确的是()A.两点之间的连线中,直线最短B.如果AP BP=,那么点P是线段AB的中点C.两点之间的线段叫做这两点之间的距离D.如果点P是线段AB的中点,那么AP BP=【解答】解:A、两点之间的连线中,线段最短,故本选项错误;B、如图AP BP=,但P不是线段AB的中点,故本选项错误;C、两点之间线段的长度叫做这两点之间的距离,故本选项错误;D、如果点P是线段AB的中点,则AP BP=,故本选项正确;故选:D.6.已知线段8AB =,延长线段AB 至C ,使得12BC AB =,延长线段BA 至D ,使得14AD AB =,则下列判断正确的是( ) A .12BC AD = B .3BD BC = C .4BD AD = D .6AC AD =【解答】解:如图所示:8AB =,12BC AB =, 4BC ∴=,14AD AB =, 2AD ∴=,12AC AB BC ∴=+=, 10BD AD AB =+=,2BC AD ∴=, 2.5BD BC =,5BD AD =,6AC AD =.故选:D .二.填空题(共12小题) 7.计算:14(1)2-⨯--= 1- .【解答】解:原式211=-+=-, 故答案为:1-8.若3557a b a b -=⎧⎨+=⎩,则a b += 3 .【解答】解:3557a b a b -=⎧⎨+=⎩①②,①+②得: 4412a b +=,等式两边同时除以4得:3a b +=, 故答案为:3.9.不等式353x x -<+的正整数解是 1,2,3 .【解答】解:不等式的解集是4x <,故不等式353x x -<+的正整数解为1,2,3.10.绝对值小于4的负整数有 3-,2-,1- .【解答】解:根据绝对值的定义,则绝对值小于3的负整数是3-,2-,1-. 故答案为:3-,2-,1-.11.用不等式表示:y 减去1的差不小于y 的一半 112y y - . 【解答】解:依题意,得:112y y -. 故答案为:112y y -. 12.不等式2(1)34x x ->-的自然数解为 1和0 . 【解答】解:2(1)34x x ->-, 2234x x ->-, 2342x x ->-+, 2x ->-, 2x <,则该不等式的自然数解为1和0, 故答案为:1和0.13.将方程68x y +=写成用含x 的代数式表示y ,则y = 86x - 【解答】解:将方程68x y +=写成用含x 的代数式表示y ,则86y x =-, 故答案为:86x -.14.月球离地球近地点的距离为363300千米,数据363300用科学记数法表示是 53.63310⨯ .【解答】解:5363300 3.63310=⨯, 故答案为53.63310⨯.15.若21x y =⎧⎨=⎩是关于x ,y 的二元一次方程310x my +=的解,则m = 4 .【解答】解:把21x y =⎧⎨=⎩代入方程310x my +=,得:3210m ⨯+=解得:4m = 故答案为:4.16.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是20g.【解答】解:设每块巧克力的重量为x克,每块果冻的重量为y克.由题意列方程组得:3250x yx y=⎧⎨+=⎩,解方程组得:2030xy=⎧⎨=⎩.答:每块巧克力的质量是20克.故答案为:20.17.如图,在数轴上表示到原点的距离为3个单位长度的所有点是A、D.【解答】解:当点在原点的左边时,033-=-,当点在原点的右边时,033+=,即在数轴上表示到原点的距离为3个单位长度的点所表示的数是3-或3,从数轴可知A表示的数是3-,B表示的数是1-,C表示的数是1,D表示的数是3,∴在数轴上表示到原点的距离为3个单位长度的所有点是A、D.故答案为:A、D.18.如图,线段16AB cm=,C是AB上一点,且10AC cm=,O是AB中点,则线段OC的长度为2cm.【解答】解:12OC AC AO AC AB =-=-,又10AC cm=,16AB cm=,2OC cm∴=;故线段OC的长度是2cm或18cm.故答案为:2三.解答题(共9小题)19.计算:221335(7)18()3--+-+⨯-.【解答】解:原式9357249=---+=-. 20.求不等式组133222(1)x xx x ⎧<-⎪⎨⎪+⎩的整数解.【解答】解:()1332221x x x x ⎧<-⎪⎨⎪+⎩①②, 由①得32x <, 由②得2x -,所以原不等式组的解集为322x -<. 因此原不等式组的整数解是2-、1-、0、1. 21.解方程:21511032x x -+--=. 【解答】解:去分母得,2(21)3(51)60x x --+-=, 去括号的,4215360x x ----=, 移项得,415236x x -=++, 合并同类项得,1111x -=, 系数化为1得,1x =-. 故答案为:1x =-.22.解方程组6125x y z x y x y z ++=⎧⎪-=⎨⎪-+=⎩.【解答】解:6125x y z x y x y z ++=⎧⎪-=⎨⎪-+=⎩①②③,③-①得21x y -=-④,由②④组成方程组得121x y x y -=⎧⎨-=-⎩,解得32x y =⎧⎨=⎩,把32x y =⎧⎨=⎩代入①得326z ++=,解得1z =,所以原方程组的解321x y z =⎧⎪=⎨⎪=⎩.23.解不等式组42233x x x +⎧⎨>-+⎩,并将解集在数轴上表示出来.【解答】解:解不等式42x +,得:2x -,解不等式233x x >-+,得:3x <,则不等式组的解集为23x -<,将解集表示在数轴上如下:24.暑假快到了,王老师想让自己女儿的假期生活过的充实点,于是就花了14500元给女儿报了一个英语口语班和一个儿童绘画班,两门课程合计55课时,英语口语一课时的学费是300元,儿童绘画一课时的学费是220元,问王老师给女儿分别报了多少课时的英语口语和多少课时的儿童绘画?【解答】解:设王老师给女儿报了x 课时的英语口语,y 课时的儿童绘画,依题意,得:5530022014500x y x y +=⎧⎨+=⎩, 解得:3025x y =⎧⎨=⎩. 答:王老师给女儿分别报了30课时的英语口语和25课时的儿童绘画.25.某工厂甲乙两车间生产汽车零件,四月份甲乙两车间生产零件数之比是4:7,五月份甲车间提高生产效率,比四月份提高了25%,乙车间却比四月份少生产50个,这样五月份共生产1150个零件.求四月份甲乙两车间生产零件个数各多少个.【解答】解:设4月份甲乙两车间生产零件数分别为4x 个、7x 个,由题意得,4(125%)7501150x x ++-=,解得:100x =,4400x =,7700x =.答:4月份甲乙两车间生产零件数400个,700个.26.先阅读理解下列例题,再按要求完成作业.例题:解一元二次不等式(32)(21)0x x-+>.解:由有理数的乘法法则“两数相乘,同号得正”有①320210xx->⎧⎨+>⎩或②320210xx-<⎧⎨+<⎩解不等式组①得23x>,解不等式组②得12x<-.所以一元二次不等式(32)(21)0x x-+>的解集是23x>或12x<-.作业题:(1)求不等式5123xx+<-的解集;(2)通过阅读例题和做作业题(1),你学会了什么知识和方法?【解答】解:(1)由有理数的除法法则“两数相除,异号得负”有①510230xx+>⎧⎨-<⎩或②510230xx+<⎧⎨->⎩解不等式组①,得13 52x-<<;解不等式组②,得不等式组②无解,所以不等式5123xx+<-的解集为1352x-<<.(2)运用有理数的乘法法则,把一元二次不等式转化为一元一次不等式组来解决;运用有理数的除法法则,把分母中含有未知数的不等式转化为一元一次不等式(组)来解决.27.某公司装修需用A型板材48块、B型板材36块,A型板材规格是6030cm cm⨯,B型板材规格是4030cm cm⨯.现只能购得规格是15030cm cm⨯的标准板材.于是需将每张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)(1)填空:上表中,m=0,n=;(2)如果所购的标准板材为35张,按裁法一、裁法二和裁法三全部裁完,且所裁出的A、B两种型号的板材块数与所需块数相符.问按三种裁法各裁标准板材多少张?【解答】解:(1)按裁法二裁剪时,2块A型板材块的长为120cm,15012030-=,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120150<,而4块块B型板材块的长为160150cm cm>,所以无法裁出4块B型板;则0m=,3n=;(2)设按裁法一裁x张,按裁法二裁y张,按裁法三裁z张.由题意,得248 233635x yx zx y z+=⎧⎪+=⎨⎪++=⎩,解得6218xyz=⎧⎪=⎨⎪=⎩,答:按裁法一、裁法二和裁法三裁裁标准板材分别为6张、21张和8张.。