两平面的相关位置讲解
- 格式:doc
- 大小:53.50 KB
- 文档页数:2
第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.解:2. 设点O是正六边形ABCDEF的中心,在矢量OA、OB、OC、OD、OE、OF、AB、BC、CD、DE、EF和FA中,哪些矢量是相等的?[解]:图1-13. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、CD; (2) AE、CG; (3) AC、EG;(4) AD、GF; (5) BE、CH.解:§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件? (1=+ (2+=+ (3-=+ (4+=- (5= 解:§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解:2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF . 解:3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 解:4 在四边形ABCD中,→→→+=baAB2,→→→--=baBC4,→→→--=baCD35,证明ABCD为梯形.解:6. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量AL, BM, CN可以构成一个三角形.7. 设L、M、N是△ABC的三边的中点,O是任意一点,证明OBOA++OC=OL+OM+ON.解:8. 如图1-5,设M是平行四边形ABCD的中心,O是任意一点,证明OA+OB+OC+OD=4OM.解:9在平行六面体ABCDEFGH(参看第一节第4题图)中,证明→→→→=++AGAHAFAC2.证明:.10.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.解11. 用矢量法证明,平行四边行的对角线互相平分.解12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0.解,13.在12题的条件下,设P 是任意点,证明 证明:§1.4 矢量的线性关系与矢量的分解1.在平行四边形ABCD 中,(1)设对角线,,b BD a AZ ==求.,,,DA CD BC AB 解(2)设边BC 和CD 的中点M 和N ,且q AN P AM ==,求CD BC ,。
平面解析几何解析几何是数学中的一个分支,研究的是在平面或者空间中的点、线、面之间的关系。
平面解析几何主要研究平面内点的位置、线的性质以及二次曲线的方程等问题。
在这篇文章中,我们将深入探讨平面解析几何的相关概念、基本原理以及应用。
一、平面坐标系平面解析几何的基础是平面坐标系。
平面坐标系是通过两个互相垂直的坐标轴来确定平面上任意一点的位置。
通常将水平轴称为x轴,竖直轴称为y轴。
我们可以用有序数对(x, y)来表示一个点在坐标系中的位置,其中x为横坐标,y为纵坐标。
二、点的位置关系在平面坐标系中,点的位置可以通过其坐标值来确定。
对于两个点A(x₁, y₁)和B(x₂, y₂),可以计算它们之间的距离和斜率来研究它们的位置关系。
1. 距离:两点之间的距离可以通过勾股定理计算。
假设两点A(x₁, y₁)和B(x₂, y₂),它们之间的距离d可以表示为d = √((x₂ - x₁)² + (y₂ - y₁)²)。
2. 斜率:对于直线上的两点A(x₁, y₁)和B(x₂, y₂),它们之间的斜率可以表示为k = (y₂ - y₁) / (x₂ - x₁)。
根据斜率的正负和大小,我们可以判断直线的倾斜方向和倾斜程度。
三、直线的方程直线是平面解析几何中的重要对象。
直线的方程可以分为一般式、斜截式和点斜式等形式。
1. 一般式:一般式方程表示为Ax + By + C = 0,其中A、B和C为实常数,且A和B不同时为0。
2. 斜截式:斜截式方程表示为y = kx + b,其中k为斜率,b为截距。
3. 点斜式:点斜式方程表示为(y - y₁) = k(x - x₁),其中(x₁, y₁)为直线上的已知点,k为斜率。
通过这些方程,我们可以根据已知条件推导出直线的方程,或者根据方程求出直线的性质。
四、二次曲线的方程除了直线,二次曲线也是平面解析几何中研究的重点之一。
二次曲线的方程一般形式为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为实常数。
第三章 平面与空间直线版权所有,侵权必究§3.1 平面的方程1.平面的点位式方程在空间给定了一点M 0与两个不共线的向量a ,b 后,通过点M 0且与a ,b 平行的平面π 就惟一被确定. 向量a ,b 叫平面π 的方位向量. 任意两个与π 平行的不共线的向量都可作为平面π 的方位向量.取标架{}321,,;e e e O ,设点M 0的向径0r =0OM ={}000,,z y x ,平面π 上任意一点M 的向径为r =OM = {x ,y ,z }(如图). 点M 在平面π上的充要条件为向量M M 0与向量a ,b 共面. 由于a ,b 不共线,这个共面的条件可以写成M M 0= u a +v b而M M 0= r -r 0,所以上式可写成r = r 0+u a +v b(3.1-1)此方程叫做平面π 的点位式向量参数方程,其中u ,v 为参数.若令a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z },则由(3.1-1)可得⎪⎩⎪⎨⎧++=++=++=vZ u Z z z v Y u Y y y vX u X x x 210210210 (3.1-2)此方程叫做平面π 的点位式坐标参数方程,其中u ,v 为参数.(3.1-1)式两边与a ×b 作内积,消去参数u ,v 得(r -r 0,a ,b ) = 0(3.1-3)此即222111000Z Y X Z Y X z z y y x x ---=0 (3.1-4)这是π 的点位式普通方程.已知平面π上三非共线点i M (i = 1,2,3). 建立坐标系{O ;e 1, e 2, e 3},设r i = i OM ={i x ,i y ,i z },i = 1,2,3. 对动点M ,设r =OM ={x ,y ,z },取21M M 和31M M 为方位向量,M 1为定点,则平面π的向量参数方程,坐标参数方程和一般方程依次为r = 1r +u(2r -1r )+v(3r -r 1)(3.1-5) ⎪⎩⎪⎨⎧-+-+=-+-+=-+-+=)()()()()()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x(3.1-6)131313121212111z z y y x x z z y y x x z z y y x x ---------= 0(3.1-7)(3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程.特别地,若i M 是π 与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0),3M (0,0,c ),其中abc ≠0,则平面π 的方程就是caba z y a x 00---=0 (3.1-8)即1=++czb y a x (3.1-9)此方程叫平面π的截距式方程,其中a ,b ,c 称为π 在三坐标轴上的截距.2.平面的一般方程在空间任一平面都可用其上一点M 0(x 0,y 0,z 0)和两个方位向量a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z }确定,因而任一平面都可用方程将其方程(3.1-4)表示. 将(3.1-4)展开就可写成Ax +By +Cz +D = 0(3.1-10)其中A =2211Z Y Z Y ,B =2211X Z X Z ,C =2211Y X Y X由于a = {1X ,1Y ,1Z }与b = {2X ,2Y ,2Z }不共线,所以A ,B ,C 不全为零,这说明空间任一平面都可用关于a ,b ,c 的一三元一次方程来表示.反之,任给一三元一次方程(3.1-10),不妨设A ≠0,则(3.1-10)可改写成02=++⎪⎭⎫ ⎝⎛+ACz ABy A D x A即000=--+ACA B zy AD x 它显然表示由点M 0 (-D / A ,0,0)和两个不共线的向量{B ,-A ,0}和{C ,0,-A }所决定的平面. 于是有定理3.1.1 空间中任一平面的方程都可表为一个关于变数x ,y ,z 的三元一次方程;反过来,任一关于变数x ,y ,z 的三元一次方程都表示一个平面.方程(3.1-10) 称为平面π 的一般方程. 3.平面的法式方程若给定一点M 0和一个非零向量n ,则过M 0且与n 垂直的平面π也被惟一地确定. 称n 为π的法向量. 在空间坐标系{O ;i ,j ,k }下,设0r = 0OM ={x 0,y 0,z 0},n = {A ,B ,C },且平面上任一点M 的向径r =OM ={x ,y ,z },则因总有M M 0⊥n ,有n (r -r 0) = 0(3.1-11) 也就是A (x -x 0)+B (y -y 0)+C (z -z 0) = 0(3.1-12)方程(3.1-11)和(3.1-12)叫平面π 的点法式方程. (3.1-12)中的系数A ,B ,C 有简明的几何意义,它们就是平面π 的一个法向量的分量.特别地,取M 0为自O 向π 所作垂线的垂足,而n 为单位向量. 当平面不过原点时,取n 为与OP 同向的单位向量n 0,当平面过原点时取n 0的正向为垂直与平面的两个方向中的任一个.设|OP | = p ,则OP = p n 0,由点P 和n 0确定的平面的方程为 n 0(r -p n 0) = 0式中r 是平面的动向径. 由于1)(20=n ,上式可写成n 0r -p = 0(3.1-13)此方程叫平面的向量式法式方程.若设r = {x ,y ,z },n 0 = {cos α,cos β,cos γ},则由(3.1-13)得x cos α+y cos β+z cos γ-p = 0(3.1-14)此为平面的坐标法式方程,简称法式方程.平面的坐标法式方程有如下特征:1°一次项系数是单位向量的分量,其平方和等于1; 2°常数项-p ≤0(意味着p ≥ 0). 3°p 是原点到平面的距离. 4.化一般方程为法式方程在直角坐标系下,若已知π的一般方程为Ax +By +Cz +D = 0,则n = {A ,B ,C }是π的法向量,Ax +By +Cz +D = 0可写为nr +D = 0(3.1-15)与(3.1-13)比较可知,只要以2221||1CB A ++±=±=n λ 去乘(3.1-15)就可得法式方程λAx +λBy +λCz +λD = 0 (3.1-16)其中正负号的选取,当D ≠0时应使(3.1-16)的常数项为负,D =0时可任意选.以上过程称为平面方程的法式化,而将2221CB A ++±=λ叫做法化因子.§3.2 平面与点的相关位置平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上. 前者的条件是点的坐标满足平面方程. 点不在平面上时,一般要求点到平面的距离,并用离差反映点在曲面的哪一侧.1.点与平面间的距离定义3.2.1 自点M 0向平面π 引垂线,垂足为Q . 向量0QM 在平面π的单位法向量n 0上的射影叫做M 0与平面π之间的离差,记作δ = 射影n 00QM(3.2-1)显然δ = 射影n 00QM = 0QM ·n 0 =∣0QM ∣cos ∠(0QM ,n 0) =±∣0QM ∣当0QM 与n 0同向时,离差δ > 0;当0QM 与n 0反向时,离差δ < 0. 当且仅当M 0在平面上时,离差δ = 0.显然,离差的绝对值|δ |就是点M 0到平面π 的距离. 定理3.2.1 点M 0与平面(3.1-13)之间的离差为δ = n 0r 0-p (3.2-2)推论1 若平面π 的法式方程为 0cos cos cos =-++p z y x γβα,则),,(0000z y x M 与π间的离差=δp z y x -++γβαcos cos cos 000(3.2-3)推论2 点),,(0000z y x M 与平面Ax +By +Cz +D = 0间的距离为()2220000,CB A DCz By Ax M d +++++=π (3.2-4)2.平面划分空间问题,三元一次不等式的几何意义 设平面π的一般方程为Ax +By +Cz +D = 0那么,空间任何一点M (x ,y ,z )与平面间的离差为=δp z y x -++γβαcos cos cos = λ (Ax +By +Cz +D )式中λ为平面π的法化因子,由此有Ax +By +Cz +D =δλ1(3.2-5)对于平面π同侧的点,δ 的符号相同;对于在平面π的异侧的点,δ 有不同的符号,而λ一经取定,符号就是固定的. 因此,平面π:Ax +By +Cz +D = 0把空间划分为两部分,对于某一部分的点M (x ,y ,z ) Ax +By +Cz +D > 0;而对于另一部分的点,则有Ax +By +Cz +D < 0,在平面π上的点有Ax +By +Cz +D = 0.§3.3 两平面的相关位置空间两平面的相关位置有3种情形,即相交、平行和重合. 设两平面π1与π2的方程分别是π1: 11110A x B y C z D +++=(1)π2: 22220A x B y C z D +++=(2)则两平面π1与π2相交、平行或是重合,就决定于由方程(1)与(2)构成的方程组是有解还是无解,或无数个解,从而我们可得下面的定理.定理3.3.1 两平面(1)与(2)相交的充要条件是111222::::A B C A B C ≠(3.3-1)平行的充要条件是11112222A B C D A B C D ==≠(3.3-2)重合的充要条件是11112222A B C D A B C D ===(3.3-3)由于两平面π1与π2的法向量分别为11112222{,,},{,,}n A B C n A B C ==,当且仅当n 1不平行于n 2时π1与π2相交,当且仅当n 1∥n 2时π1与π2平行或重合,由此我们同样能得到上面3个条件.下面定义两平面间的夹角.设两平面的法向量间的夹角为θ,称π1与π2的二面角∠(π1,π2) =θ 或π-θ为两平面间的夹角.显然有12cos (,)ππ∠=±cos θ =(3.3-4)定理3.3.2 两平面(1)与(2)垂直的充要条件是0212121=++C C B B A A(3.3-5)例 一平面过两点 1(1,1,1)M 和2(0,1,1)M -且垂直于平面x +y +z = 0,求它的方程.解 设所求平面的法向量为n = {A ,B ,C },由于12{01,11,11}{1,0,2}M M =----=--在所求平面上,有12M M n ⊥, 120M M n ⋅=,即20A C --= .又n 垂直于平面x +y +z = 0的法线向量{1,1,1},故有 A +B +C = 0 解方程组20,0,A C A B C --=⎧⎨++=⎩得2,,A CBC =-⎧⎨=⎩ 所求平面的方程为2(1)(1)(1)0C x C y C z --+-+-=,约去非零因子C 得2(1)(1)(1)0x y z --+-+-=,即2x -y -z =0§3.4 空间直线的方程1.由直线上一点与直线的方向所决定的直线方程在空间给定了一点0000(,,)M x y z 与一个非零向量v = {X ,Y ,Z },则过点M 0且平行于向量v 的直线l 就惟一地被确定. 向量v 叫直线l 的方向向量. 显然,任一与直线l 上平行的飞零向量均可作为直线l 的方向向量.下面建立直线l 的方程.如图,设M (x ,y ,z ) 是直线l 上任意一点,其对应的向径是r = { x ,y ,z },而0000(,,)M x y z 对应的向径是r 0,则因M M 0//v ,有t ∈R ,M M 0= t v . 即有r -r 0= t v所以得直线l 的点向式向量参数方程r = r 0+t v (3.4-1)以诸相关向量的分量代入上式,得⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛Z Y X t z y x z y x 000根据向量加法的性质就得直线l 的点向式坐标参数方程为⎪⎩⎪⎨⎧+=+=+=Ztz z Yt y y Xtx x 000 (3.4-2)消去参数t ,就得直线l 的点向式对称方程为Zz z Y y y X x x 000-=-=- (3.4-3)此方程也叫直线l 的标准方程.今后如无特别说明,在作业和考试时所求得的直线方程的结果都应写成对称式.例1 设直线L 通过空间两点M 1(x 1,y 1,z 1)和M 2(x 2,y 2,z 2),则取M 1为定点,21M M 为方位向量,就得到直线的两点式方程为121121121z z z z y y y y x x x x --=--=-- (3.4-4)根据前面的分析和直线的方程(3.4-1),可得到||||||||||00v M M v t =-=r r 这个式子清楚地给出了直线的参数方程(3.4-1)或(3.4-2)中参数的几何意义:参数t 的绝对值等于定点M 0到动点M 之间的距离与方向向量的模的比值,表明线段M 0M 的长度是方向向量v 的长度的 |t | 倍.特别地,若取方向向量为单位向量v 0 = {cos α,cos β,cos γ}则(3.4-1)、(3.4-2)和(3.4-3)就依次变为r = r 0+t v 0(3.4-5)⎪⎩⎪⎨⎧+=+=+=γβαcos cos cos 000t z z t y y t x x (3.4-6)和γβαcos cos cos 000z z y y x x -=-=- (3.4-7)此时因 |v | = 1,t 的绝对值恰好等于l 上两点M 0与M 之间的距离.直线l 的方向向量的方向角α,β,γ cos α,cos β,cos γ 分别叫做直线l 的方向角和方向余弦.由于任意一个与v 平行的非零向量v'都可作为直线l 的方向向量,而二者的分量是成比例的,我们一般称X :Y :Z 为直线l 的方向数,用来表示直线l 的方向.2.直线的一般方程空间直线l 可看成两平面π1和π2的交线. 事实上,若两个相交的平面π1和π2的方程分别为π1: 11110A x B y C z D +++= π2: 22220A x B y C z D +++=那么空间直线l 上的任何一点的坐标同时满足这两个平面方程,即应满足方程组111122220,0.A x B y C z D A x B y C z D +++=⎧⎨+++=⎩ (3.4-8)反过来,如果点不在直线l 上,那么它不可能同时在平面π1和π2上,所以它的坐标不满足方程组(3.4-8).因此,l 可用方程组(3.4-8)表示,方程组(3.4-8)叫做空间直线的一般方程.一般说来,过空间一直线的平面有无限多个,所以只要在无限多个平面中任选其中的两个,将它们的方程联立起来,就可得到空间直线的方程.直线的标准方程(3.4-3)是一般方程的特殊形式. 将标准方程化为一般式,得到的是直线的射影式方程.将直线的一般方程化为标准式,只需在直线上任取一点,然后取构成直线的两个平面的两个法向量的向量积为直线的方向向量即可.例1将直线的一般方程10,2340.x y z x y z +++=⎧⎨-++=⎩ 化为对称式和参数方程.解 令y = 0,得这直线上的一点(1,0,-2).两平面的法向量为a = {1,1,1},b = {2,-1,3}因a ×b = {4,-1,-3},取为直线的法向量,即得直线的对称式方程为12413x y z -+==--令t z y x =-+=-=-32141,则得所求的参数方程为 14,,23.x t y t z t =+⎧⎪=-⎨⎪=--⎩§3.5 直线与平面的相关位置直线与平面的相关位置有直线与平面相交,直线与平面平行和直线在平面上3种情形. 设直线l 与平面π 的方程分别为L :000x x y y z z X Y Z ---== (1) π :Ax +By +Cz +D = 0(2)将直线l 的方程改写为参数式⎪⎩⎪⎨⎧+=+=+=tZz z tY y y tX x x 000. (3)将(3)代入(2),整理可得(AX +BY +CZ )t = -(Ax 0+By 0+Cz 0+D )(4)当且仅当AX +BY +CZ ≠0时,(4)有惟一解CZBY AX DCz By t +++++-=000Ax这时直线l 与平面π 有惟一公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠0时,方程(4)无解,直线l 与平面π 没有公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0时,(4)有无数多解,直线l 在平面π 上. 于是有定理3.5.1 关于直线(1)与平面(2)的相互位置,有下面的充要条件: 1)相交: AX +BY +CZ ≠02)平行:AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠03)直线在平面上: AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0以上条件的几何解释:就是直线l 的方向向量v 与平面π 的法向量n 之间关系. 1)表示v 与n 不垂直;2)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)不在平面π 上; 3)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)在平面π 上. 当直线l 与平面π 相交时,可求它们的交角. 当直线不与平面垂直时,直线与平面的交角ϕ 是指直线和它在平面上的射影所构成的锐角;垂直时规定是直角.设v = {X ,Y ,Z }是直线l 的方向向量,n = {A ,B ,C }是平面π 的法向量,则令∠(l ,π ) =ϕ,∠(v ,n ) = θ ,就有ϕ=-2πθ 或 ϕ= θ-2π(θ 为锐角) 因而sin ϕ =∣cos θ∣=vn v n ⋅⋅=222222ZY X CB A CZ BY AX ++++++ (3.5-1)§3.6 空间直线与点的相关位置任给一条直线l 的方程和一点M 0,则l 和M 0的位置关系只有两种:点在直线上和点不在直线上。
平面内两两相交的8条全文共四篇示例,供读者参考第一篇示例:平面内两两相交的8条,指的是在平面上有8条线段,每两条线段都有交点,这是一个非常有趣的几何问题。
在数学上,我们可以通过研究这些线段之间的交点来探讨平面上的交点问题,了解它们之间的关系和性质。
本文将详细介绍平面内两两相交的8条线段的情况,包括它们的位置关系、交点的性质和应用等方面。
我们假设在平面上有8条线段,它们是任意取定的,没有特殊的限制。
这8条线段中的每两条线段之间都有一个交点,也就是说,任意两条线段都会相交。
这样的情况在平面几何中是非常常见的,可以通过简单的构造和排列来实现。
下面我们将具体分析这8条线段的情况。
1. 位置关系:在平面上有8条线段,它们的位置关系可以是多样的。
我们可以通过对称性、平移、旋转等方式来布置这些线段,确保它们之间都有交点。
我们可以将这8条线段排列成交叉的样子,这样每两条线段都会相交。
2. 交点的性质:这8条线段之间的交点有很多性质。
每两条线段的交点都会唯一确定一条线。
这是因为两个不同的线段在平面上的交点只能是一个点,而且这个点同时也属于这两条线段,因此可以唯一确定一条线。
这些交点可以形成一个网格状的结构,每个交点都与至少两条线段相关联,从而形成了一个复杂的图形。
3. 应用:平面内两两相交的8条线段的问题在数学、计算机科学和工程领域都有广泛的应用。
在数学中,通过研究这些线段之间的交点可以揭示平面几何的一些基本性质,为后续的研究奠定基础。
在计算机科学中,这些线段的交点可以用来解决几何计算问题,比如线段相交检测、凸包算法等。
在工程领域,平面内两两相交的线段可以应用于地图绘制、路径规划、交通流分析等方面。
平面内两两相交的8条线段是一个有趣且具有挑战性的几何问题。
通过研究这些线段之间的关系和性质,我们可以深入了解平面几何的特点,探讨几何计算的算法和技术,同时还可以应用到实际的工程问题中。
希望本文可以为读者提供一些关于平面内线段相交问题的启发和帮助。
直线与平面的位置关系知识点总结直线与平面之间的位置关系是几何学中重要的内容之一,涉及到直线与平面的相交、平行以及垂直等相关概念与性质。
本文将对这些知识点进行总结,以帮助读者更好地理解并应用于实际问题。
一、直线与平面的相交关系1. 直线与平面相交的基本条件是直线不在平面内,即直线与平面不能共面。
2. 直线与平面相交有三种情况:a. 直线与平面相交于一点,此时直线称为平面的切线,而平面称为直线的切平面。
b. 直线与平面相交于一条直线,此时直线与平面互相交于一个点,该直线称为平面的截线,平面也称为直线的截面。
c. 直线与平面相交于无穷多个点,此时称为直线与平面的交。
3. 根据欧氏几何的公理,一条直线与平面交于一点后,该直线在平面上的每一点都与该平面有且只有一个交点。
二、直线与平面的平行关系1. 直线与平面平行的基本条件是直线与平面不相交,即两者没有任何公共点。
2. 直线与平面平行有以下情况:a. 直线与平面在空间中没有交点,此时称直线与平面平行。
b. 直线在平面上,但不在平面内,此时称直线与平面平行。
3. 欧氏几何的公理表明,两条直线分别与同一个平面平行,则这两条直线之间平行。
三、直线与平面的垂直关系1. 直线与平面垂直的基本条件是直线上的任意一条线段与平面上的任意一条线段互相垂直。
2. 直线与平面垂直有以下情况:a. 直线与平面相交,并且直线上的每一条线段都与平面上的每一条线段垂直,则称直线与平面垂直。
b. 直线在平面内,但不在平面上。
此时,直线与平面射线是互相垂直的。
3. 欧氏几何的公理表明,直线与平面垂直,则平面上的任意一条线段与直线上的任意一条线段皆垂直。
四、其他相关知识点1. 平面同时和一条直线的两个点重合,则称该直线在平面上。
2. 平面同时和一条直线的一个点重合,则称该直线在平面内。
3. 平面绕着一条直线旋转,可以得到一组平行于原平面的平面,这个过程叫做平面的旋转。
总结:直线与平面的位置关系包括相交、平行和垂直等几种情况。
§3.3 两平面的相关位置1. 两平面的位置关系两平面的位置关系有相交、平行、重合.定理: 两平面11111:0A x B y C z D π+++=,22222:0A x B y C z D π+++=相交的充要条件是 111222::::A B C A B C ≠,平行的充要条件是11112222A B C D A B C D ==≠, 重合的充要条件是11112222A B C D A B C D ===. 证明: (证法一)代数法,由方程组111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩的解集可证得定理.(证法二)几何法,由平面方程可得{}1111,,n A B C =JG ,{}2222,,n A B C =JJ G所以 1π与2π相交:1n ⇔JG 与2n JJG 不平行,⇔111222::::A B C A B C ≠;1212n n ππ⇔JG JJ G &&且1122A D A D ≠⇔11112222A B C DA B C D ==≠;1212n n ππ≡⇔JG JJ G &且1122A D A D =⇔11112222A B C DA B C D ===.2.两平面的交角设两平面1π与2π的交角()12,ππ∠,两平面法矢量1n JG 与2n JJ G 的夹角为()12,n n θ=∠JG JJ G,则 ()12,ππθ∠=或πθ−,()()12121212cos ,cos cos ,n n n n n n ππθ∠=±=±∠⋅=±=JG JJ GJG JJ G JG JJ G定理:两平面1π与2π垂直的充要条件是1212120A A B B C C ++=3. 两平行平面间的距离设两平行平面:0i i Ax By Cz D π+++=()1,2i =,()1111,,M x y z 是平面1π上的一点,则11110Ax By Cz D +++=,所以1112M d d πππ−−====例1. 求通过x 280y z −−+=所成的角为60D 的平面方程. 解: 设所求平面方程为0By Cz += 则cos 60=±D ,即 ()2222144410B C BC B C ++=+, 解得3B C =,或13B C =所以所求平面方程为30y z −+=或30y z +=.例 2.求两平行平面1:1948210x y z π−++=,2:1948420x y z π−++=之间的距离,并求到12,ππ距离相等的点轨迹方程.解: 121d ππ−== 设(),,P x y z 是轨迹上的任一点,则因此 ()194821194842x y z x y z −++=±−++, (舍去正值) 解得 38816630x y z −++=,所求两平行平面12,ππ间距离为1, 到12,ππ距离相等的点轨迹方程为38816630x y z −++=.例 3. 求平行于平面且与三坐标面所构成的四面体的体积为9立方单位的平面方程.解: 设所求平面方程为220x y z D +++=, 即221D D x y z D ++=−−−因此,平面与三坐标轴的交点分别为(),0,0,0,,0,0,0,22D D A B D C ⎛⎞⎛⎞−−−⎜⎟⎜⎟⎝⎠⎝⎠.()3002111,,00666402OABCDD V OA OB OC D D −⎛⎞==−=−⎜⎟⎝⎠−JJJ G JJJ G JJJ G ,3924D =±×, 6D =±. 所求平面方程为2260x y z ++±=.例4.设三平行面:0i i Ax By Cz D π+++=()1,2,3i =,,,L M N 分别是平面123,,πππ上任三点,求LMN Δ重心的轨迹方程.解:设()111,,L x y z ,()222,,M x y z ,()333,,N x y z ,(),,P x y z 是LMN Δ的重心,则11110Ax By Cz D +++=,22220Ax By Cz D +++=,33330Ax By Cz D +++=. 因此 ()()()1231231231230A x x x B y y y C z z z D D D +++++++++++= 因为 1233x x x x ++=,1233y y y y ++=,1233z z zz ++= 所以 1233330Ax By Cz D D D +++++=为所求LMN Δ重心的轨迹方程.。
第3章 平面与空间直线§ 3.1平面的方程1.求下列各平面的坐标式参数方程和一般方程:(1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;(3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。
求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面。
解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为:⎪⎩⎪⎨⎧++-=-=--=v u z u y vu x 212123一般方程为:07234=-+-z y x(2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为:⎪⎩⎪⎨⎧+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。
(3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为:⎪⎩⎪⎨⎧+-=+=--=v u z uy vu x 235145 一般方程为:0745910=-++z y x 。
(ⅱ)设平面π'通过直线AB ,且垂直于ABC ∆所在的平面∴}1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯AC AB均与π'平行,所以π'的参数式方程为:⎪⎩⎪⎨⎧+-=++=+-=v u z v u y v u x 35145 一般方程为:0232=--+z y x .2.化一般方程为截距式与参数式: 042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-,∴ 所求平面的参数式方程为:⎪⎩⎪⎨⎧=-=++-=v z uy v u x 24 3.证明矢量},,{Z Y X v =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX . 证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为:⎪⎪⎩⎪⎪⎨⎧==---=v z uy v A C u A B A D x 故其方位矢量为:}1,0,{},0,1,{ACA B --,从而v 平行于平面0=+++D Cz By Ax 的充要条件为:v ,}1,0,{},0,1,{ACA B --共面⇔01001=--AC A B Z Y X ⇔ 0=++CZ BY AX .4.已知:连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 里的坐标z .解: }5,2,3{z AB +-= 而AB 平行于0147=--+z y x 由题3知:0)5(427)3(=+-⨯+⨯-z 从而18=z .§ 3.2 平面与点的相关位置1.计算下列点和平面间的离差和距离:(1))3,4,2(-M , :π 0322=++-z y x ; (2))3,2,1(-M , :π 0435=++-z y x . 解: 将π的方程法式化,得:01323132=--+-z y x , 故离差为:311332431)2()32()(-=-⨯-⨯+-⨯-=M δ,M 到π的距离.31)(==M d δ(2)类似(1),可求得0354353356355)(=-++-=M δ,M 到π的距离.0)(==M d δ2.求下列各点的坐标:(1)在y 轴上且到平面02222=--+z y 的距离等于4个单位的点;(2)在z 轴上且到点)0,2,1(-M 与到平面09623=-+-z y x 距离相等的点; (3)在x 轴上且到平面01151612=++-z y x 和0122=--+z y x 距离相等的点。
空间几何的相交性质空间几何是研究三维空间中点、线、面的相互关系及其属性的数学学科。
在空间几何中,相交是一个重要的性质,它涉及到点、线、面在空间中如何相互穿过或交叉。
本文将介绍空间几何中的相交性质以及与之相关的定理和应用。
一、点的相交性质在空间几何中,点是最基本的几何元素,其相交性质也最为简单直观。
事实上,两个点的相交性质只有两种情况:相交或不相交。
如果两个点重合于同一位置,则它们相交;如果两个点处于不同的位置,则它们不相交。
二、直线的相交性质直线是另一种基本的几何元素,在空间几何中具有更多的相交性质。
根据直线相交的关系,可以将直线的相交性质分为三种情况:1.相交于一点:当两条直线在空间中有且只有一个公共点时,它们相交于一点。
这种情况下,这两条直线称为相交直线。
2.平行不相交:当两条直线在空间中没有公共点,并且它们的方向也不重合时,它们平行不相交。
这种情况下,这两条直线称为平行直线。
3.重合:当两条直线在空间中有无限多个公共点,并且它们的方向也完全一致时,它们重合。
这种情况下,这两条直线称为重合直线。
三、平面的相交性质平面是空间几何中更复杂的几何元素,其相交性质也更加多样。
根据平面相交的关系,可以将平面的相交性质分为四种情况:1.相交于一条直线:当两个平面在空间中有且只有一条直线是公共的时,它们相交于一条直线。
这种情况下,这两个平面被称为相交平面。
2.平行:当两个平面在空间中没有公共点并且方向一致时,它们平行。
这种情况下,这两个平面称为平行平面。
3.重合:当两个平面在空间中有无限多个公共点,并且它们的方向也完全一致时,它们重合。
这种情况下,这两个平面称为重合平面。
4.相交于一条直线外的平面: 如果两个平面在空间中有一条直线是公共的,并且除了这条直线之外还有其他的公共点,那么这两个平面相交于一条直线外的平面。
四、定理与应用在空间几何中,许多定理都与相交性质有关,并且在实际问题中有广泛的应用。
以下是一些与相交性质相关的典型定理:1.平面切割定理:如果平面P切割了空间中的两个平行平面Q和R,并且平面P与平面Q和平面R的任意两个交线都相交于同一点,则这三个平面的交线也相交于同一点。
点、线、面是空间几何学中的基本概念,它们存在着一定的位置关系。
向量法是解决几何问题的重要方法之一,可以有效地描述点、线、面的位置关系。
本文将探讨向量法在点、线、面位置关系中的应用,并给出相关参考内容。
一、点、线、面的向量表示向量是对空间中的点、线、面进行表示的一种数学工具。
在向量法中,我们通常使用坐标表示点的位置、用箭头表示线的方向、用平面方程表示面的位置。
具体表示如下:1.点的向量表示设点A在空间中的坐标为(Ax, Ay, Az),则A点的位置向量表示为OA = (Ax, Ay, Az)。
2.线的向量表示设直线L上一点A的位置向量为OA,且直线上一点B的位置向量为OB,则直线L的向量表示为(OA, OB)。
3.面的向量表示设平面α通过点A,并以直线L为法线,则平面α的向量表示为α: AX + BY + CZ + D = 0,其中(x, y, z)为空间中的任意一点坐标。
二、点、线、面的位置关系1.点和线的位置关系给定直线L的向量表示为(OA, OB),设点P的位置向量为OP。
点P在直线L上的充分必要条件是OP = λ1·OA + λ2·OB,其中λ1和λ2为实数。
当λ1和λ2满足该条件时,点P在线段AB上;当λ1和λ2为0或非零时,点P在线段AB的延长线上。
2.点和面的位置关系给定面α的向量表示为α: AX + BY + CZ + D = 0,设点P的位置向量为OP。
点P在平面α上的充分必要条件是OP·n = 0,其中n为α的法向量。
当OP·n = 0时,点P在平面α上;当OP·n ≠ 0时,点P在平面α的一侧。
3.线和面的位置关系给定直线L的向量表示为(OA, OB),平面α的向量表示为α: AX + BY + CZ + D = 0。
直线L与平面α的位置关系可以通过求交点进行判断。
设直线L与平面α的交点为点P,则有OP·n = 0和OP = λ1·OA + λ2·OB。
高一数学知识重点:两个平面的位置关系之二面角高中数学具有较强的学科化特点,难度有些高。
所以在学数学的时候要学会读书,把厚书读薄。
要想熟练灵活的运用知识,就需要掌握适合自己的学习方法,下文为同学们整理了高一数学知识重点,详情如下:两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)数学,在我们的日常生活中,尤其对于学生来说,学好它很重要。
有句俗话说得好,学好数理化,走遍天下都不怕,可见数学的重要性。
而且对于我们很多的学生来说,高考是我们的学生一个很重要的出路。
而学好数学,不仅对于我们考上好的大学,有很大的帮助。
而且对我们以后的事业和我们甚至是我们的智力的发展,都有很大的帮助。
那么我们该如何学好数学呢?要学好数学,首先最重要的一点,我们要及时的预习。
高考数学中的平面几何相关知识点详解高考数学中平面几何是一个重点和难点,需要学生在长期的学习中进行大量的练习和思维训练。
平面几何可以说是数学学科中的好入手也好深入的部分,掌握它不仅可以提高解题能力和思维能力,还可以加强对于数学知识的理解和运用。
本文将着重介绍高考数学中平面几何相关的知识点,并进行详细的分析和解释。
1. 点、线、面平面几何的基本概念有点、线和面。
点是几何中最小的概念,没有任何大小,只有位置。
线是由一组相邻的点按照一定的方向连接而成,具有长度和方向。
面是由一组相邻的线围成的区域,具有面积和形状。
在平面几何中,常常会涉及到点、线、面的相互关系。
比如,过两个点可以画出一条直线,两条相交而不共面的直线至少可以确定一个点,而两个平行的直线在平面上不相交。
此外,还有很多和点、线、面有关的基本定理和定律,需要牢记和灵活运用。
2. 直线和角的性质直线是平面几何中最简单的图形,直线上的点无限多,并没有起点和终点。
在平面几何中,直线所具有的性质有很多,比如,两条直线如果不共面,则它们不可能在任何一点相交;两个平行的直线在任何一点上的夹角都是相等的;如果一条直线上有两个垂直的线段,则它们相互垂直。
角是有大小和方向的图形,是由两条射线共同确定的。
在平面几何中,角所具有的性质也很重要,比如,同侧内角相等定理、同侧外角相等定理、对顶角相等定理等等。
掌握角的性质可以帮助学生解决许多有关平面几何的问题。
3. 相似和全等相似和全等是几何中重要的概念,也是平面几何中常用的概念。
相似是指两个图形形状相同但大小不同的关系。
在相似的图形中,对应的角度相等,对应的边长成比例关系。
全等是指两个图形大小、形状完全相同的关系。
在全等的图形中,对应的角度是相等的,对应的边长是相等的。
相似和全等是平面几何中常常会用到的概念,在解决各种几何问题时需要灵活运用。
4. 三角形和圆三角形是平面几何中最基本和重要的图形之一,具有许多特点和性质。
比如,三角形的内角和为180度,三角形的任意两边之和大于第三边,三角形的垂心、重心、外心等重要概念。
§3 两平面的相关位置
一 两平面的夹角:
定义 两平面的法线向量的夹角称作两平面间的夹角.
下面,我们阐述一下用两平面间法线向量的夹角来定义两平面间夹角的合理性. 如图3-4所示,设想平面1π与平面2π重合在一起的,于是它们的法线向量应平行,即 12//n n .将平面2π的一侧向上提起,与1π之间产生倾角θ,与此同时,2π的法线向量2n 发生转动,与平面1π的法线向量1n 产生的角度θ
.
下面,我们导出计算两平面夹角θ的公式.设平面π1与π2的方程分别是
π1: 11110A x B y C z D +++=, (1)
π2: 22220A x B y C z D +++=, (2)
则π1与π2的法线向量分别为 11112222{,,},{,,}n A
B C n A B C ==, 因两向量间夹角的余弦为
cos θ=
++++⋅++A A B B C C A B C A B C 121212121212222222,
所以两平面的夹角的余弦为 12cos (,)ππ∠
=
. (3.3-1) 由(3.3-1)式,立刻可给出如下结论: 121212120A A B B C C ππ⊥⇔++=, (3.3-2)
二 两平面位置关系的解析条件:
平面π1与π2是相交还是平行或重合,就决定由方程(1)与(2)构成的方程组是有解还是无解或无数个解,从而我们可得下面的定理.
定理 两平面(1)与(2)相交的充要条件是
111222::::A
B C A B C ≠, (3.3-3) 平行的充要条件是
(图3.3)
11112222A B C D A B C D ==≠, (3.3-4)
重合的充要条件是
11112222A B C D A B C D ===. (3.3-5)
例 一平面过两点 1(1,1,1)M 和 2(0,1,1)M - 且垂直于平面
x y z ++=0,求它的方程.
解 设所求平面的法线向量为 {,,}n A B C =,
显然, 12{01,11,11}{1,0,2}M M =----=--在所求平面上, 故 12M M n ⊥, 120M M n ⋅=, 即
20A C --= .
又 n 垂直于平面x y z ++=0的法线向量'= n {,,}111,
故有 0A B C ++=
解方程组 20,0,A C A B C --=⎧⎨++=⎩
得 2,,A C B C =-⎧⎨=⎩
据点法式方程有
2(1)(1)(1)0C x C y C z --+-+-=,
约去非零因子 (0)C ≠ 得
2(1)(1)(1)0x y z --+-+-=,
故所求方程为
02=--z y x。