新一元二次方程——营销问题
- 格式:pptx
- 大小:855.17 KB
- 文档页数:13
一元二次方程—销售问题◆营销中的利润问题:利润=售价-;利润率=%100进价利润;总利润=-总进价=(售价-进价)×例1.进价30元的衣服,以50元出售,平均每月能售出300件。
经试销发现每件衣服涨价1元,其月销售量就减少1件,物价部门规定,每件衣服售价不得高于80元,为实现每月利润8700元,应涨价多少元?变式1.某天猫店销售某种规格学生软式排球,成本为每个30元.以往销售大数据分析表明:当每只售价为40元时,平均每月售出600个;若售价每上涨1元,其月销售量就减少20个,若售价每下降1元,其月销售量就增加200个.(1)若售价上涨m元,每月能售出个排球(用m的代数式表示).(2)为迎接“双十一”,该天猫店在10月底备货1300个该规格的排球,并决定整个11月份进行降价促销,问售价定为多少元时,能使11月份这种规格排球获利恰好为8400元.2、某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件.为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量,增加利润.据测算,每件童装每降价1元,平均每天可多售出2件.设每件童装降价x元.(1)每天可销售件,每件盈利元?(用含x的代数式表示)(2)每件童装降价多少元时,平均每天盈利1200元.(3)平均每天盈利能否达到2000元,请说明理由.3、某店只销售某种进价为40元/kg的特产.已知该店按60元/kg出售时,平均每天可售出100kg,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10kg.若该店销售这种特产计划平均每天获利2240元.(1)每千克该特产应降价多少元?(2)为尽可能让利于顾客,则该店应按原售价的几折出售?4、某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?5、“绿化校园,书香开州”,今年三月份,开州区某校计划购买梧桐树苗和杉树苗共100棵,其中梧桐树苗每棵40元,杉树苗每棵35元,经预算,此次购买两种树苗一共至少需要3800元.(1)计划购买梧桐树苗最少是多少棵?(2)在实际购买中,因受树苗积压以及市场影响,为此商家降低了两种树苗的售价,且降价相同,但降价金额不得高于10元/棵,经统计发现,两种树苗的售价每降低1元,梧桐树苗的销售量会增加2棵,杉树苗的销售量会增加3棵.若该校实际购进这两种树苗一共所需费用比计划购买的最低费用多了300元,则两种树苗都降低多少元?。
一元二次方程的应用解决销售额问题一元二次方程是高中数学中的重要内容,它在解决实际问题中具有广泛的应用。
销售额问题是商业领域中常见的实际问题之一,通过建立一元二次方程,可以帮助企业分析和解决销售额问题。
本文将针对一元二次方程在销售额问题中的应用进行探讨。
一、基本概念和公式复习在开展对销售额问题的深入研究之前,我们需要先对一元二次方程的基本概念和公式进行复习。
1. 一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为已知实数,且a ≠ 0。
2. 一元二次方程的求根公式为:x = (-b ± √(b^2 - 4ac)) / 2a。
根据判别式(D = b^2 - 4ac)的正负和零可以判断方程的解的情况。
二、销售额问题分析在商业领域中,企业不断追求销售额的增长,因此针对销售额问题进行分析具有重要意义。
假设某企业的销售额是一元二次方程的解,我们可以通过建立相应的方程,对销售额进行预测、优化和调整。
以某公司销售额为例,假设公司每月的销售额为y万元,销售额与时间的关系如下:y = ax^2 + bx + c其中,x表示时间,a、b、c为系数,根据具体情况可以确定这三个系数的值。
三、应用实例为了更好地理解一元二次方程在销售额问题中的应用,我们来看一个具体的实例。
某手机公司在推出一款新产品后,销售额呈现出一定的变化规律。
经过统计和分析,得到了以下信息:1. 该产品上市前两个月(x = -2,-1),销售额分别为2万元和1万元。
2. 该产品上市后第一个月(x = 0),销售额达到了5万元。
基于以上信息,我们可以建立一元二次方程,并进一步预测并分析公司未来的销售额。
首先,我们将x = -2、y = 2代入一元二次方程,得到第一个方程:4a - 2b + c = 2。
然后,将x = -1、y = 1代入方程,得到第二个方程:a - b + c = 1。
最后,将x = 0、y = 5代入方程,得到第三个方程:c = 5。
利用一元二次方程求解营销类问题【学习目标】1.会用一元二次方程解决销量随销售单价变化而变化的市场营销类应用题.2.通过列方程解应用题,进一步认识方程模型的重要性,提高逻辑思维能力和分析问题、解决问题的能力.【学习重点】会用一元二次方程求解营销类问题.【学习难点】将实际问题抽象为一元二次方程的模型,寻找等量关系,用一元二次方程解决实际问题.情景导入生成问题1.列一元二次方程解应用题的步骤:(1)审题;(2)设元;(3)列方程;(4)解方程;(5)检验;(6)写出答案.2.利用一元二次方程解决销售利润问题:这类问题中的等量关系有:(1)一件商品的利润=一件商品的售价-一件商品的进价;(2)商品的利润率=一件商品的利润一件商品的进价×100%;(3)商品的总利润=一件商品的利润×销售商品的数量.利用以上等量关系,结合题意建立方程来解决此类问题.自学互研生成能力知识模块利用一元二次方程求解营销类问题先阅读教材P54例2的解答过程,然后完成下面填空.1.本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5000元.2.如果设每台冰箱降价x元,那么每台冰箱的定价应为(2900-x)元.每天的销售量/台每台的销售利润/元总销售利润/元降价前8 400 3200降价后8+4×x50400-x(400-x)(8+4×x50)填完上表后,就可以列出一个方程,进而解决问题了.典例讲解:探究P54“做一做”改编.某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?分析:如果这种台灯售价上涨x元,那么每个月每个台灯获利(40+x-30)元,每月平均销售数量为(600-10x)个,销售利润为(40+x-30)和(600-10x)的积.用一元二次方程解决实际问题时,所求得的结果往往有两个,而实际问题的答案常常是一个,这就需要我们仔细审题,看清题目的要求,进而作出正确的选择.解:设这种台灯的售价上涨x元,根据题意,得(40+x-30)(600-10x)=10000,即x2-50x+400=0,解得x1=10,x2=40.所以每个台灯的售价应定为50元或80元.当台灯售价定为80元,售价利润率为166.7%,高于100%,不符合要求;当台灯售价定为50元时,售价利润率为66.7%,低于100%,符合要求.答:每个台灯售价应定为50元.归纳总结:列一元二次方程解应用题,步骤与以前的列方程应用题一样,其中审题是解决问题的基础,找等量关系列方程是关键,恰当灵活地设元直接影响着列方程与解法的难易,它可以为正确合理的答案提供有利的条件.方程的解必须进行实际意义的检验.对应练习:1.教材P55——随堂练习2.教材P55习题2.10第1题.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块利用一元二次方程求解营销类问题检测反馈达成目标1.兰翔百合经销店将进货价为20元/盒的百合,在市场参考价28-38元/盒的范围内定价为36元/盒销售,这样平均每天可售出40盒.经市场调查发现,在进货价不变的情况下,若每盒售价每下调1元钱,平均每天就能多销售10盒,要使每天的利润达到750元,应将每盒的售价下调(A)A.1元B.11元 C.1元或11元 D.无法确定2.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是20%.3.某商店准备进一批季节性小家电,单价为40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若准备获利2000元,则应进货多少个?定价为多少元?解:设每个商品的定价是x元,由题意,得(x-40)[180-10(x-52)]=2000,整理,得x2-110x+3000=0,解得x1=50,x2=60.当x=50时,进货180-10(x-52)=200(个),不符合题意,舍去.当x=60时,进货180-10(x-52)=100(个).答:该商品每个定价为60元,进货100个.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。