基因工程复习重点
- 格式:doc
- 大小:171.00 KB
- 文档页数:15
绪论1.理论上的三大发现:(1)1944年,美国微生物学家Avery证明基因就是DNA分子,提出 DNA是遗传信息的载体。
(2)1953年,美国科学家Watson 和英国科学家Crick提出 DNA Double Helix model。
1958年,Meselson 和Stahl证明 DNA半保留复制。
(3)1968年,Nirenberg、Holley和Khorana解读了遗传密码及其在蛋白质合成方面的技能而分享诺贝尔生理医学奖。
2.技术上的三大发现:(1)限制性核酸内切酶的发现(1962年Arber )(2)DNA连接酶的发现(1967Gellert)(3)基因工程载体的发现3.基因工程研究的内容:(1)从生物有机体复杂的基因组中,分离出带有目的基因的DNA片段。
(2)在体外,将带有目的基因的DNA片段连接到能够自我复制并具有选择标记的载体分子上,形成重组DNA分子。
(3)将重组DNA分子引入到受体细胞(亦称宿主细胞或寄主细胞)。
(4)带有重组体的细胞扩增,获得大量的细胞繁殖群体(菌落)。
(5)从大量的细胞繁殖菌落中,筛选出具有重组DNA分子的细胞克隆。
(6)将选出的细胞克隆的目的基因进行进一步研究分析;(7)将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要的物质。
第二章基因克隆所需的工具酶一、限制性内切酶1.限制性核酸内切酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶。
它们主要是从原核生物中分离纯化出来的。
限制作用:是指一定类型的细菌可以通过限制性酶的作用,破坏入侵的外源DNA(如噬菌体DNA等),使得外源DNA 对生物细胞的入侵受到限制修饰作用:生物细胞(如宿主)自身的DNA分子合成后,通过修饰酶的作用:在碱基中特定的位置上发生了甲基化而得到了修饰,可免遭自身限制性酶的破坏。
2.核酸内切限制酶的类型:I型、II型、III型3.核酸内切限制酶的命名法由H.O.Smith和D.Nathans(1973)提议的命名系统4.Ⅱ型核酸限制性内切酶的基本特性:a. 在DNA分子双链的特异性识别序列部位,切割DNA分子产生链的断裂;b. 2个单链断裂部位在DNA分子上的分布,通常不是彼此直接相对的;c.??? 因此,断裂的结果形成的DNA片段,也往往具有互补的单链延伸末端。
基因工程复习指导第一章绪论1、基因:就是存在于DNA上承载遗传信息的核苷酸序列,是位于染色体上呈直线排列的遗传物质的最小单位,也是携带遗传信息的结构单位和控制遗传性状的功能单位。
2、基因工程:又称重组DNA技术,分子水平进行遗传操作,将任何生物体(供体)的基因或基因组提出来,或通过人工合成的目的基因,按照先设置好的蓝图,插入质粒或病毒复制子(载体),而形成一杂合分子(DNA重组体),然后将重组体转移到复制子所属的宿主生物体复制,或转移到另一生物体(受体)的细胞内(原核或真核),使之在受体细胞内遗传并使受体细胞获得新的性状。
3、基因工程的三要素:供体、载体、受体4、基因工程的基本流程:(1)DNA的制备包括从供体生物的基因组分离或人工合成,以获得带有目的基因的DNA片段。
(2)在体外通过限制性核酸内切酶分别分离得到的外源DNA和载体分子进行定点切割,使之片段化或线性化(3)在体外将含有外源基因的不同来源的DNA片段通过DNA连接酶到载体分子上,构建重组DNA分子。
(4)将重组DNA分子通过一定的方法引入到受体细胞进行扩增和表达,从培养细胞中获得大量细胞繁殖群体。
(5)筛选和鉴定转化细胞,剔除非必需重组体,获得引入的外源基因稳定高效表达的基因工程菌或细胞,即将所需要的阳性克隆挑选出来。
(6)将选出的细胞克隆的基因进一步分研究,并设法使之实现功能蛋白的表达。
第三章基因工程工具酶1、基因工程中常用的工具酶:限制酶、连接酶、聚合酶、修饰酶2、细菌的限制—修饰系统(简称R—M体系):细菌中存在位点特异性限制酶和特异性甲基化酶,构成了寄主控制的限制—修饰系统R-M体系说明的问题和作用:R-M系统是细菌安内御外的积极措施。
细菌R-M系统的限制酶可以降解DNA,为避免自身DNA的降解,细菌可以修饰(甲基化酶)自身DNA,未被修饰的外来DNA则会被降解。
个别噬菌体在被降解之前已经发生了修饰,则可免予被降解。
3、限制性内切酶的切割方式(识别哪种末端)(1)平齐末端:(切割位点在识别序列中心轴处)(2)5’黏性末端:(DNA片段末端的5’端比3’端长)梅园复印店打印复印只要一毛打好后送货上门。
基因工程理论复习整理1、基因工程(gene engineering)的定义:在分子水平上进行遗传操作,即将任何生物体(供体)的基因或基因组提取出来,或通过人工合成的目的基因,按照人们预先设计的蓝图,插入质粒或病毒复制子(载体),而形成一杂合分子(DNA重组体),然后将重组体转移到复制子所属的宿主生物体中复制,或转移到另一种生物体(受体)的细胞内(可以是原核细胞也可以是真核细胞),使之能在受体细胞内遗传并使受体细胞获得新的性状。
2、基因工程四大要素:目的基因、载体、工具酶、受体细胞。
3、基因工程特点:分子水平操作,细胞水平表达。
4、基因组DNA提取条件(1)提取DNA总的原则:a保证核酸一级结构的完整性;b其他生物大分子如蛋白质、多糖和脂类分子的污染应降低到最低程度;c核酸样品中不应存在对酶有抑制作用的有机溶剂和过高浓度的金属离子;d其他核酸分子,如RNA,也应尽量去除。
(2)影响因素①减少化学因素对DNA的降解:避免过碱、过酸对核酸链中磷酸二酯键的破坏,操作多在pH 4-10条件下进行;②减少物理因素对DNA的降解:避免强烈振荡、搅拌,细胞突置于低渗液中等操作,以避免破坏大分子量的线性DNA分子;③防止核酸的生物降解:避免细胞内、外各种核酸酶对核酸磷酸二酯键的水解作用,DNA酶需要Mg2+、Ca2+的激活,因此实验中常利用金属二价离子螯合剂EDTA,柠檬酸盐,可基本抑制DNA 酶的活性。
5、细胞的破碎:一般采用温和处理法裂解细胞。
6、沉淀基因组DNA:加入一定量的预冷的异丙醇或乙醇。
7、质粒可分为紧密控制型和松弛控制型,基因工程中一般用到的是松弛控制型。
8、利用同一复制系统的不同质粒不能在同一宿主细胞中共同存在,当两种质粒同时导入同一细胞时,它们在复制及随后分配到子细胞的过程中彼此竞争,这种现象称为质粒的不相容性。
9、碱裂解法原理:当用碱处理DNA溶液时,线状染色体DNA容易发生变性,共价闭环的质粒DNA 在回到中性pH时即恢复其天然构象;变性染色体DNA片段与变性蛋白质和细胞碎片结合形成沉淀,而复性的超螺旋质粒DNA分子则以溶解状态存在液相中,从而可通过离心将两者分开。
Southern blotting:即DNA印迹杂交,以碱基互补配对为原则,将DNA影印转移与标记探针进行高特异性杂交的方法。
Cosmid:黏粒载体,含有λ噬菌体的cos位点和质粒的复制子,是专门为克隆大片段设计的载体。
cDNA library:利用某种生物的总mRNA合成cDNA,再将这些cDNA与载体连接,转入细菌细胞中进行保存和扩增称cDNA文库。
RACE:通过反转录和PCR技术进行cDNA末端快速扩增,得到基因转录本的未知序列,从而获得mRNA完整序列的方法。
RT-PCR:即逆转录PCR,先用逆转录酶作用于mRNA,以寡聚dT为引物合成cDNA 第一链,然后用已知一对引物,扩增嵌合分子的一种方法。
MCS:包含多个限制酶切位点的一段短的DNA序列。
插入失活:若把外源DNA片段插入到载体的选择标记基因中而使此基因失活,丧失其原有的表现特性,此方法叫插入失活。
PCR:是模拟体内DNA复制条件,应用DNA聚合酶反应,特异性扩增某一DNA片段的技术。
mRNA差异显示技术:根据真核生物mRNA带有3’poly(dA) 的结构,合成poly(dT)12MN引物与mRNA的3’端互补,在反转录酶的作用下合成cDNA-mRNA 杂交分子。
然后合成5’随机引物(10bp) 和poly(dT)12MN引物,PCR扩增获得所有mRNA的cDNA分子。
巢式PCR:巢式PCR使用两对PCR引物扩增完整的片段。
第一对PCR引物扩增片段和普通PCR相似。
第二对引物称为巢式引物(因为他们在第一次PCR扩增片段的内部)结合在第一次PCR产物内部,使得第二次PCR扩增片段短于第一次扩增。
实时荧光定量PCR:在PCR反应体系中加入荧光基因,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析。
蛋白质印迹法:又称免疫印迹法,在蛋白质凝胶电泳和固相免疫测定基础上发展起来的蛋白质检测技术,检测蛋白样品中是否存在抗原,也可以评价新抗体的特异性。
1、PCR:一种模拟DNA体内复制过程的体外DNA复制过程,在一个离心管的缓冲液体系中,加入DNA模板,d-NTPs、引物和DNA聚合酶,通过变性、退火、延伸三个温度的不断循环,使目标DNA得到快速大量的复制,需要两条合成的寡核苷酸片断和耐热的DNA聚合酶。
2、启动子:在基因序列中,标志着转录起始的可以被RNA聚合酶识别的位点(DNA区段),一般位于基因的上游。
3、终止子:位于基因的编码序列之外(一般在下游)的一段标志着转录停止的RNA聚合酶识别位点。
4、Ti质粒:根癌农杆菌核外的一种环状双链DNA分子,约200kb,Ti质粒的结构上可分为毒性区、T-DNA区、结合转移区、复制起始区。
5、SD序列:位于起始密码子上游的一段保守序列,为细菌核糖体有效结合和翻译起始所必须,一般长约3-9bp,位于起始密码子上游3-11碱基的位置,它与16S核糖体RNA的3端互补,控制翻译的起始。
6、反义链:下链或模板链,在基因的DNA双链中,转录时作为mRNA合成模板的那条单链。
7、基因文库:是指汇集了某一生物基因组DNA全部序列的重组体DNA群体(转化子群)。
具体来说,构建基因文库时,首先将代表某一生物类型的全部DNA片段分别插入到特定载体上,然后将重组载体导入到宿主细胞并获得大量的含有重组载体的克隆(一般为单菌落或噬菌斑)。
8、DNA探针:经放射性或非放射性物质标记已知的特定的DNA序列。
9、载体构建:用限制性酶切取目的基因,再用同一种限制酶切开质粒,用连接酶把目的基因和质粒连接起来的过程。
10、转化:将普通的质粒分子导入受体细胞的过程。
11、感受态细胞:经过处理后处于容易接受外源DNA状态的细胞。
12、多克隆位点:克隆载体中的一段用于插入外源DNA片段的特定区域,由一系列的紧密相连的限制性内切酶位点组成,而且每个限制性内切酶位点应该在整个载体中是唯一的。
13、选择标记基因:在基因工程中的一类用于选择转化细胞(菌)的抗性基因,通常是一些抗生素抗性基因,比如对氨苄青霉素、四环素氯霉素、卡那霉素以及潮霉素等具有抗性的基因,这样,通过在培养基中加入特定的抗生素就可以选择得到转化的细胞(菌)。
第3章基因工程1、什么是基因工程:基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。
2、基因工程的诞生(三个理论和三个技术):基因工程是在生物化学、分子生物学和微生物学等学科基础上发展起来的,正是这些学科的基础理论和相关技术的发展催生了基因工程,具体有三大理论发现和三个技术突破。
1)理论基础:DNA是遗传物质;DNA分子的双螺旋结构和半保留复制;遗传密码的通用性和遗传信息传递的方式;2)技术基础:限制性核酸内切酶的发现与DNA的切割;DNA连接酶的发现与DNA片段的连接;基因工程载体的构建与应用●理论上的三大发现⑴、发现了遗传物质——DNA1944年,艾弗里(O.T.Avery)的肺炎双球菌转化实验⑵、揭示了遗传物质的分子机制:DNA分子的双螺旋结构和半保留复制1953年,沃森(J.D.Watson)和克里克(F.Crick)的DNA双螺旋结构模型、半保留复制图,获1958年诺贝尔奖。
⑶、确立了遗传信息的传递方式:以密码形式传递1963年,美国尼伦伯格(M.W.Nirenberg)和马太(H.Matthaei)确立了遗传信息以密码形式传递,破译了编码氨基酸的遗传密码(3个核苷酸=1个密码子=1个aa)。
●技术上的三大突破⑴、世界上第一个重组DNA实验:实现不同来源DNA的体外重组1972年斯坦福大学化学家伯格(P.Berg)借助内切酶和连接酶将猴病毒SV40的DNA 和大肠杆菌λ噬菌体的DNA在试管中连接在了一起,第一次成功地实现了DNA的体外重组。
⑵、第一个基因克隆实验:重组DNA表达实验,是世界上第一个基因工程实验1973年美国斯坦福大学医学院遗传学家科恩(S.Cohen)将体外构建的含有四环素和卡那霉素抗性基因的重组质粒导入大肠杆菌,获得了具有双抗性的大肠杆菌转化子,成功完成了第一个基因克隆实验。
基因工程复习资料第一章核酸的制备1.主要步骤:分、切、接、转、筛、表2.基因工程的概念:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
第二章基因工程工具酶1.生物催化剂:核酶、抗体酶、模拟酶。
2.限制性内切核酸酶:定义:限制性内切核酸酶是一类能识别双链DNA中特殊核苷酸序列(识别序列),并在识别序列上使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
命名:限制性内切核酸酶一般是以第一次提取到这类酶的生物的属名的第一个字母和种名的第一、第二个字母命名的,有的在后面还加菌株(型)代号中的一个字母。
如果从同一种生物中先后提取到多种限制性内切核酸酶,则依次用罗马数字Ⅰ、Ⅱ、Ⅲ表示。
并且名称的前三个字母须用斜体,第一个字母用大写。
3.DNA连接酶:定义:DNA连接酶也称DNA黏合酶,在分子生物学中扮演一个既特殊又关键的角色,那就是连接DNA链3‘-OH末端和,另一DNA链的5’-P末端,使二者生成磷酸二酯键,从而把两段相邻的DNA链连成完整的链的一种酶。
种类:大肠杆菌DNA连接酶、T4DNA连接酶、TscDNA连接酶、真核生物细胞发现的连接酶,如酶Ⅰ、酶Ⅱ、酶Ⅲ等多种类型。
4.DNA片段的连接方法:①具互补黏性末端DNA片段之间的连接:可用E?coli DNA连接酶,也可用T4 DNA连接酶。
②具平末端DNA片段之间的连接:只能用T4 DNA连接酶,并且必须增加酶的用量。
③DNA片段末端修饰后进行连接:DNA片段末端同聚物加尾后进行连接,可按互补粘性末端片段之间的连接方法进行连接;粘性末端修饰成平末端后进行连接;DNA片段5′端脱磷酸化后进行连接;DNA片段加连杆或衔接头后连接。
5.DNA聚合酶:①定义:DNA聚合酶是指以DNA单链为模板,以4种脱氧核苷酸为底物,催化合成一条与模板链序列互补的DNA新链的酶。
基因工程高三知识点基因工程是现代生物学中的一项重要技术,通过改变生物体的遗传物质(DNA)来创造新的基因组合或改变生物体的性状。
在高中生物学课程中,学生需要掌握基因工程的基本原理、应用以及相关的伦理和社会问题。
以下是基因工程的一些高三知识点。
一、基因工程的基本原理基因工程是利用DNA技术改变生物体的遗传信息,主要包括以下几个步骤:1. DNA提取:从感兴趣的生物体中提取DNA,通常使用PCR 技术扩增目标DNA片段。
2. DNA剪切:利用限制酶切割目标DNA,产生特定的切口。
3. DNA连接:将DNA片段连接到载体DNA上,形成重组DNA。
4. DNA转化:将重组DNA导入目标细胞中,使其具有新的遗传特性。
5. PCR扩增:使用聚合酶链反应扩增目标DNA的数量。
二、基因工程的应用领域1. 农业领域:基因工程可以用于改良作物,包括提高抗病虫害能力、增加产量、提高品质等。
2. 医学领域:基因工程可以用于制备重组蛋白药物,如胰岛素、生长激素等。
3. 环境领域:基因工程可以用于环境修复,包括通过基因修复技术降解污染物。
4. 科研领域:基因工程可以用于基因功能研究、疾病模型建立等。
三、基因工程的风险与伦理问题1. 生物安全风险:基因工程可能导致基因剥离和转基因生物的释放,风险包括基因污染、基因流动等。
2. 伦理问题:基因工程涉及到修改生物的基因组,可能引发对自然与人类的伦理关切,如人类基因改造、人类克隆等。
四、国际和国内基因工程的监管措施1. 国际监管:1992年生物安全议定书规定,转基因生物的跨国转运需要进行风险评估和合格证明。
2. 国内监管:我国设立了生物安全管理委员会,建立了转基因食品的安全管理体系。
五、基因工程的前景与挑战基因工程作为一种重要的生物技术,将会继续在农业、医学、环境等领域发挥重要作用。
但同时也面临着风险与挑战,需要加强监管、推动科学研究和公众教育。
总结:基因工程作为现代生物学的重要分支,已经在农业、医学、环境等领域取得了巨大的进展和应用。
基因工程复习题一、名词解释: (10~20%)基因工程基因工程工具酶限制性内切酶限制性内切酶得Star活性PCR引物PCR扩增平台期DNA芯片基因组文库cDNA文库转化限制与修饰系统原位杂交: 将细胞或组织得核酸固定保持在原来得位置上, 然后用探针与之杂交得一种核酸分子杂交技术, 该方法可较好地反映目得基因在细胞或组织中得分布与表达变化。
粘性末端: 双链DNA被限制性内切酶切割后, 形成得两条链错开几个碱基, 而不就是平齐得末端。
Northern印迹杂交: 将RNA进行变性电泳后, 再转移到固相支持物上与探针杂交得一种核酸分子杂交技术, 可用于检测目得基因得转录水平。
转位: 一个或一组基因片段从基因组得一个位置转移到另一个位置得现象。
基因工程: 在体外, 用酶学方法将各种来源得DNA与载体DNA连接成为重组DNA, 继而通过转化与筛选得到含有目得基因得宿主细胞, 最后进行扩增得到大量相同重组DNA分子得过程称为基因工程, 又称基因克隆、DNA克隆与重组DNA等。
目得基因:基因工程中, 那些被感兴趣得、被选作研究对象得基因就叫作目得基因。
连接器: 人工合成得一段含有某些酶切位点寡核苷酸片段, 连接到目得基因得两端, 便于基因重组中得切割与连接。
转化: 受体细胞被导入外源DNA并使其生物性状发生改变得过程。
停滞效应: PCR中后期, 随着目得DNA扩展产物逐渐积累, 酶得催化反应趋于饱与, DNA扩增产物得增加减慢, 进入相对稳定状态, 即为停滞效应, 又称平台期。
逆转录PCR: 以mRNA为原始模板进行得PCR反应。
PCR: 即聚合酶链式反应。
在模板, 引物, 4种dNTP与耐热DNA聚合酶存在得条件下, 特异性地扩增位于两段已知序列之间得DNA区段地酶促合成反应。
α-互补(α-complementation):指在M13噬菌体DNA或PUC质粒序列中, 插入了lac 启动子-操纵子基因序列以及编码β-半乳糖苷酶N-端145个氨基酸得核苷酸序列(又称α-肽), 该序列不能产生有活性得β-半乳糖苷酶。
复习题一、名词解释1. 原核基因(Prokaryotic gene):由原核生物(如大肠杆菌)基因组编码的基因,以及高等生物细胞器线粒体基因组和叶绿体基因组等编码的基因,统称原核基因。
2. 真核基因(Eukaryotic gene):真核生物基因组DNA编码的基因,以及感染真核细胞的DNA病毒和反转录病毒基因组编码的基因,统称真核基因。
3. .前导序列(Leader sequence):又叫前导序列区或5'-非翻译区(5'-UTR),,系指位于mRNA5'-起始密码子之前的一段长数百个核苷酸的不翻译的RNA 区段。
4. 尾随序列(Tai1er sequence):又称尾随序列区或3'-非翻译区(3'-UTR),系指位于mRNA3'-终止密码子之后一段100多核苷酸的不翻译的RNA区段。
5 复制子(Replicon):指有一个复制起始区(oriC)和起始基因的DNA复制单元。
例如细菌染色体、病毒基因组、质粒基因组等,凡其DNA能够进行复制的遗传单元,均称复制子。
真核细胞基因组的复制子是指含有一个复制起始位点的DNA(RNA)的复制子特称复制单元。
6. 增强子(Enhancer):又叫增强子序列或增强子元件,是真核基因中发现的一种特异序列,能够在距离目标基因50kb以上的位置,从上游或下游的不同位置及方向增强该基因的转录活性。
7. 沉默子(Silencer)在真核基因启动子中除了增强子之外,沉默子同样也是一种可远距离调控相关基因转录活性的顺式元件。
与增强子一样,沉默子也能够从启动子的上游、下游甚至是基因内部三种不同的位置以及正向或反向,影响相关基因启动子的转录起始效率。
同时沉默子往往是以组织特异性或时间特异的作用方式,控制基因的表达作用。
但与增强子的功能效应相反,沉默子只能抑制而不能激活相关基因的转录起始活性。
8. 绝缘子(Insulator)亦即是增强子活性的物理边界元件(physical boundaryelement),它是一段能够抑制或隔离增强子功能效应的顺式转录调节序列。
二、简答题1、说明限制性内切核酸酶的命名原则要点。
答:限制性内切核酸酶采用三字母的命名原则,即属名+种名+株名的各一个首字母,再加上序号. 基本原则: 3-4个字母组成,方式是:属名+种名+株名+序号; 首字母: 取属名的第一个字母,且斜体大写;第二字母: 取种名的第一个字母,斜体小写;第三字母: (1)取种名的第二个字母,斜体小写;(2)若种名有词头,且已命名过限制酶,则取词头后的第一字母代替.第四字母: 若有株名,株名则作为第四字母,是否大小写,根据原来的情况而定,但用正体. 顺序号: 若在同一菌株中分离了几种限制酶,则按先后顺序冠以I,Ⅱ,Ⅲ,…等,用正体.2、什么是限制性内切核酸酶的星号活性?受哪些因素影向?答:Ⅱ类限制酶虽然识别和切割的序列都具有特异性,但是这种特异性受特定条件的限制,即在一定环境条件下表现出来的特异性。
条件的改变,限制酶的特异性就会松动,识别的序列和切割都有一些改变,改变后的活性通常称第二活性,而将这种因条件的改变会出现第二活性的酶的右上角加一个星号表示,因此第二活性又称为星号活性。
概括起来,诱发星活性的因素有如下几种:(1)高甘油含量(>5%, v/v);(2)限制性内切核酸酶用量过高(>100U/ugDNA);(3)低离子强度(<25 mmol/L);(4)高pH(8.0以上);(5)含有有机溶剂,如DMSO,乙醇等;(6)有非Mg2+的二价阳离子存在(如Mn2+,Cu2+,C02+,Zn2+等)。
3、影响DNA连接酶催化连接反应的因素有哪些?答:(1)DNA的纯度(2)DNA甲基化的程度(3)酶切消化反应的温度(4)DNA的分子结构(5)核酸内切限制酶的缓冲液4、什么是Klenow酶?有哪些活性?在基因工程中有什么作用?答:Klenow酶是1974年Klenow用枯草杆菌蛋白酶水解DNA聚合酶I,得到两个片段,其中大片段的分子量为75kDa,它具有5'-3'聚合酶和3'-5'外切核酸酶的活性,小片段具有5'-3'外切核酸酶活性。
由于大片段失去了DNA聚合酶I中会降解5'引物的5'-3'外切核酸酶的活性,所以在基因工程中更有用。
Klenow酶主要有下列用途:(1)修复反应,制备平末端可用Klenow酶修复限制性内切核酸酶或其他方法产生的5'或3'突出末端,制备平末端,这样可以使原来具有不相容的黏性末端的DNA片段通过平末端重组。
如在反应系统中加入放射性同位素标记的脱氧核苷酸,用这种末端填补的方法可以制备3'末端标记的探针。
用Klenow酶修复5'突出末端的反应主要是利用了Klenow酶的DNA聚合酶活性,是填补反应;而修复3'突出末端则是用Klenow酶的3'-5'外切核酸酶的活性,是切割反应。
用Klenow酶的切割反应来修复3'突出末端是不理想的,改用T4DNA聚合酶或其他的酶是更好的选择。
(2) 标记DNA3'突出末端(protruding end)该反应分两步进行:先用3'-5'的外切核酸酶活性除去3'突出末端,产生3'隐含末端,然后在高浓度的标记底物( -32p-dNTP)存在下,使降解(3'-5')作用与聚合(5'-3')作用达到平衡。
这种反应也叫交换或取代反应(exchange/replacement reaction)。
不过这一反应用T4DNA聚合酶的效果更好,因它的3'-5'外切核酸酶活性较强。
(3)其他的一些用途:包括用双脱氧末端终止法进行DNA序列分析、用于cDNA第二链的合成、在定点突变中用于合成第二链、用引物延伸法(primer extension)制备单链DNA探针等。
二、简答题1、什么是蓝白斑筛选法?答:这种方法是根据组织化学的原理来筛选重组体。
主要是在λ载体的非必要区插入一个带有大肠杆菌β—半乳糖苷酶的基因片段,携带有lac基因片段的λ载体转入lac的宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷(X-gal)平板上形成浅蓝色的噬菌斑。
外源基因插人lac(或lac基因部分被取代)后,重组的噬菌体将丧失分解X-gal的能力,转入lac-宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷 (X-gal)平板上形成白色的噬菌斑,非重组的噬菌体则为蓝色噬菌斑。
2、什么是基因文库?用重组DNA技术将某种生物细胞的总DNA 或染色体DNA的所有片断随机地连接到基因载体上,然后转移到适当的宿主细胞中,通过细胞增殖而构成各个片段的无性繁殖系(克隆),在制备的克隆数目多到可以把某种生物的全部基因都包含在内的情况下,这一组克隆的总体就被称为某种生物的基因文库。
3、黏性末端连接法是最常用的连接方法,具有许多优点,但是也有一些不足,请指出这些不足之处。
答:黏性末端连接法不足之处有:(1)载体易自身环化;(2)若是用同一种限制性内切核酸酶产生的黏性末端连接又不易定向克隆;(3)难插入特定的基因;(4)再者就是大片段DNA的重组率较低,即使用碱性磷酸酶处理了载体,防止了载体的自身环化,载体也有成环的倾向;(5)用这种方法产生的重组体往往含有不止一个外源片段或不止一个载体连接起来的串联重组体,增加筛选工作的困难。
4、什么是同聚物加尾连接法?用何种方法加尾?具有哪些优缺点?答:所谓同聚物加尾法就是利用末端转移酶在载体及外源双链DNA的3’端各加上一段寡聚核苷酸,制成人工黏性末端,外源DNA和载体DNA分子要分别加上不同的寡聚核苷酸,如dA(dG)和dT(dC),然后在DNA连接酶的作用下涟接成为重组的DNA。
这种方法的核心是利用末端转移酶的功能,将核苷酸转移到双链DNA分子的突出或隐蔽的3'-OH上。
以Mg2+作为辅助因子,该酶可以在突出的3'-OH端逐个添加单核苷酸,如果用Co2+作辅助因子则可在隐蔽的或平末端的3'-OH端逐个添加单个核苷酸。
同聚物加尾法实际上是一种人工黏性末端连接法,具有很多优点:.(1)首先不易自身环化,这是因为同一种DNA的两端的尾巴是相同的,所以不存在自身环化。
(2)因为载体和外源片段的末端是互补的黏性末端,所以连接效率较高。
(3)用任何一种方法制备的DNA都可以用这种方法进行连接。
同聚物加尾法也有一些不便之处:(1)方法繁琐;(2)外源片段难以回收。
由于添加了许多同聚物的尾巴,可能会影响外源基因的表达。
另外要注意的是,同聚物加尾法同平末端连接法一样,重组连接后往往会产生某种限制性内切核酸酶的切点。
5、何谓接头连接法?答:将人工合成的或来源于现有质粒的一小段DNA分子(在这一小段DNA分子上有某种限制性内切核酸酶的识别序列),加到载体或外源DNA的分子上,这样便在载体DNA和外源DNA 上制造出新的酶切点。
把这一小段含有酶切点的DNA分子称为连接器分子,这种方法称为接头连接法。
二、简答题1、常用的工具酶有哪些?其主要用途是什么?答:限制性内切核酸酶,DNA聚合酶和Klenow大片段,DNA连接酶,碱性磷酸酶,末端脱氧核苷酸转移酶. 限制性内切核酸酶, 能够识别特异的DNA碱基序列, DNA碱基序列往往呈回文对称结构; DNA 聚合酶 a 位于细胞核内,也许是复合物,有催化细胞增生的作用; Klenow 大片段它也可以通过基因工程得到,分子量为 76kDa 。
DNA连接酶负责双链DNA中相邻3`-OH与5`-磷酸基团之间的磷酸二酯键的形成。
碱性磷酸酯酶的作用是从DNA或RNA的三磷酸核苷酸上除去5`磷酸根残基。
末端转移酶的作用是将脱氧核糖核苷酸通过磷酸二酯键加到DNA分子的3`-OH末端。
2、重组DNA技术常包括哪些基本步骤?答:①获得目的基因;②与克隆载体连接,形成新的重组DNA分子;③用重组DNA分子转化受体细胞,并能在受体细胞中复制和遗传;④对转化子筛选和鉴定。
在具体工作中选择哪条技术路线;⑤对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。
主要取决于基因的来源、基因本身的性质和该项遗传工程的目的。
2、何为载体?一个理想的载体应具备那些特点?答:将外源DNA或基因携带入宿主细胞(host cell)的工具称为载体载体具备的特点:①在宿主细胞内必须能够自主复制(具备复制原点)②必须具备合适的酶切位点,供外源DNA 片段插入,同时不影响其复制③有一定的选择标记,用于筛选④最好具有较高的拷贝数,便于制备。
4、抗性基因是目前使用的最广泛的选择标记,常用的抗生素抗性有哪几种?并举两例说明其原理?答:氨苄青霉素抗性基因ampr 、四环素抗性基因tetr、氯霉素抗性基因Cmr 、卡那霉素和新霉素抗性基因kanr ①氨苄青霉素抗性基因ampr: 青霉素可抑制细胞壁肽聚糖的合成,与有关的酶结合并抑制其活性,抑制转肽反应. 氨苄青霉素抗性基因编码一个酶,该酶可分泌进入细菌的周质区,抑制转肽反应并催化b-内酰胺环水解(水解青霉素),从而解除了氨苄青霉素的毒性。
②四环素抗性基因tetr:四环素可与核糖体30S亚基的一种蛋白质结合,从而抑制核糖体的转位。
四环素抗性基因编码一个由399个氨基酸组成的膜结合蛋白,可阻止四环素进入细胞。
三、论述题1、什么是基因组文库(genomic library)?构建基因组文库,涉及哪些基本过程?它同遗传学上的基因库有什么不同?答:基因组文库是用基因工程的方法,人工构建的含有某一生物基因组DNA的各种片段的克隆群。
一般以改造的噬菌体DNA或黏粒作为载体,包括下列过程:(1)高分子量染色体DNA 的制备;(2)体外重组连接;(3)包装蛋白的制备;(4)重组体的体外包装;(5)将重组DNA 导人寄主细胞;(6)筛选。
基因组文库同遗传学上所讲的基因库是完全不同的概念。
基因库(gene pool)是指在进行有性生殖的某一群体中,能进行生殖的个体所含总的遗传信息。
在基因组文库的构建中,由于使用的载体不同,分为噬菌体载体和黏粒载体构建的基因组文库、YAC文库、BAC文库等。
三、论述题 1、何谓限制性核酸内切酶?写出大多数限制性核酸内切酶识 DNA 序列的结构特点。
答:限制性核酸内切酶是一类能识别双链DNA分子中特异性核苷酸序列并由此特异切割DNA 双链结构的水解酶. 是在DNA分子内部切割,水解磷酸二酯键的核酸内切酶。
能够识别特异的DNA碱基序列, DNA碱基序列往往呈回文对称结构;并具有特异切割位点。
(一)要使动物中编码激素的基因在大肠杆菌中表达,通常遇到的问题有:(1)细菌的RNA聚合酶不能识别真核生物的启动子。