6-2反馈控制与极点配置
- 格式:ppt
- 大小:232.00 KB
- 文档页数:23
控制器极点配置方法如果已知系统的模型或传递函数,通过引入某种控制器,使得闭环系统的极点可以移动到指定的位置,从而使系统的动态性能得到改善。
这种方法称为极点配置法。
例6-12 有一控制系统如图6-38,其中,要求设计一个控制器,使系统稳定。
图6-38解:(1)校正前,闭环系统的极点:> 0因而控制系统不稳定。
(2)在控制对象前串联一个一阶惯性环节,c>0,则闭环系统极点:显然,当,时,系统可以稳定。
但此对参数c 的选择依赖于 a 、b 。
因而,可选择控制器,c 、d ,则有特征方程:当,时,系统稳定。
本例由于原开环系统不稳定,因而不能通过简单的零极点相消方式进行控制器的设计,其原因在于控制器的参数在具体实现中无法那么准确,从而可能导致校正后的系统仍不稳定。
例6-13 已知一单位反馈控制系统的开环传递函数:要求设计一串联校正装置Gc(s) ,使校正后系统的静态速度误差系统,闭环主导极点在处。
解:首先,通过校正前系统的根轨迹可以发现,如图6-39所示,其主导极点为:。
图6-39为使主导极点向左偏移,宜采用超前校正装置。
(2)令超前校正装置,可采用待定系数法确定相关参数:又其中、、、为待定系数。
进一步可得:即将代入式子可以得到:,,,。
进一步可得超前校正装置的传递函数:校正后系统的根轨迹如图6-39所示。
该校正装置与例6-7中由超前装置获取的校正装置结果基本相同,说明结果是正确的。
在matlab中,亦有相应的命令可进行极点配置,主要有三个算法可实现极点配置算法:Bass-Gura算法、Ackermann 算法和鲁棒极点配置算法。
这些算法均以状态空间进行表征,通过设定期望极点位置,获取状态反馈矩阵K。
下面通过示例介绍其中的一种算法。
例6-14 考虑给定的系统,其状态方程模型如下:,期望的闭环系统配置在,,,试设计其控制器。
解:可以使用下面的MATLAB语句来实现极点的配置:A=[0,1,0,0;0,0,-1,0;0,0,0,1;0,0,11,0]; B=[0;1;0;-1];eig(A)'ans =0 0 3.3166 -3.3166P=[-1;-2;-1+sqrt(-1);-1-sqrt(-1)];K=place(A,B,P)place: ndigits= 15Warning: Pole locations are more than 10% in error.K =-0.4000 -1.0000 -21.4000 -6.0000eig(A-B*K)'ans =-1.0000 - 1.0000i -1.0000 + 1.0000i -2.0000 -1.0000。
线性系统的状态反馈及极点配置1.前言随着现代控制理论的不断发展和成熟,线性系统的状态反馈控制在控制理论中得到了广泛的应用,并成为了控制领域中重要的一种控制方法。
状态反馈控制能够将系统的状态进行反馈,并利用反馈得到的信息对系统进行控制,从而达到使系统达到预期控制目标的目的。
本文将从状态反馈控制的原理和实现方法两方面介绍线性系统的状态反馈及极点配置。
2.状态反馈控制的原理状态反馈控制是建立在现代控制理论的基础上的一种高级控制方法。
状态反馈控制的基本思想是在系统中引入反馈环节,设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,以期望控制系统按照预期的运动轨迹运行。
因此,状态反馈控制要实现以下两个步骤:- 系统状态量的测量:首先要在系统中安装测量传感器,实时地测量系统状态量,使得状态量可以被反馈到控制器中。
- 反馈控制器的设计:设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,实现对系统的精确控制。
因此,状态反馈控制的基本原理就是将系统状态量反馈到控制器中,以期望控制系统按照预期的运动轨迹运行。
2.2 状态空间模型与状态反馈控制状态空间模型是状态反馈控制的基础。
状态空间模型是一种方便描述线性系统动态行为和控制器的模型。
对于线性时不变系统,我们可以用如下的状态变量描述:x(t) = [x1(t),x2(t),...,xn(t)]T其中,x(t) 是系统在时刻 t 的状态量,n 是状态量的数量,x1(t),x2(t),...,xn(t) 分别是系统的每个状态量。
状态空间模型可以用一组线性常微分方程描述:dx/dt = Ax + Bu其中,A 是系统的状态方程矩阵,B 是输入矩阵,C 是输出矩阵,D 是直接耦合矩阵。
系统的状态反馈控制可以表示为:u(t) = -Kx(t)其中,K 是状态反馈矩阵。
将状态反馈控制引入到状态空间模型中,可以得到控制器的状态空间模型为:y = Cx上述控制器的状态空间模型就是一个闭环系统,通过反馈控制器将系统状态返回到系统,形成了一个反馈环。
控制系统的极点配置设计法一、极点配置原理1.性能指标要求2.极点选择区域主导极点:2111cos tanξβξξ---==图3.22 系统在S平面上满足时域性能指标的范围nstζω4=;当Δ=0.02时,。
nstζω3=当Δ=0.05时,3.其它极点配置原则系统传递函数极点在s 平面上的分布如图(a )所示。
极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2);同时,极点s 1、s 2的附近不存在系统的零点。
由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为1351451s n s t t =⨯≤ξω 式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。
图(b )表示图(a )所示的单位阶跃响应函数的分量。
由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。
因为它衰减得最慢。
其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。
因此,对系统过渡过程进行近似分析时。
可以忽略这些分量对系统过渡过程的影响。
n x o (t)(a )(b )系统极点的位置与阶跃响应的关系二、极点配置实例磁悬浮轴承控制系统设计1.1磁悬浮轴承系统工作原理图1是一个主动控制的磁悬浮轴承系统原理图。
主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。
设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。
(a)(b)图1 磁悬浮轴承系统的工作原理Fig.1 The magnetic suspension bearing system principledrawing假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。
摘要本文基于11阶天线伺服系统模型,并对其进行降阶。
用平衡实现方法降至3阶的模型,对降阶后的模型分别设计PID、超前-滞后控制器,并分析控制器参数对闭环系统的影响。
运用极点配置、LQR以及方法设计状态反馈控制器和运用LQR方法设计输出反馈控制器,然后结合内膜原理,使设计后的闭环系统能够在有参数扰动或者常数扰动下,能够实现对阶跃信号无静差地跟踪,基于3阶模型的闭环系统的阶跃响应的过渡时间在4s以内,并给出了相应的对应仿真结果。
然后用设计好的控制系统去控制11阶模型,使要求基于11阶模型的闭环系统其阶跃响应的过渡过程的时间在6s以内。
关键词:天线伺服系统 PID 超前-滞后极点配置 LQR H内膜原理∞第一章 基于平衡实现的系统降阶1.1平衡实现的原理一个模型的实现有无穷多种,其中阶次最小的实现被称为最小实现。
定理:实现是最小实现的充要条件是该实现是能控能观的。
定理:所有的传递函数()g s 的所有最小实现均代数等价。
定理:若{,,}{,,}A B C A B C 是同一个传递函数的两个能控能观实现。
,,,C O C O W W W W 分别为上述实现的能控Gramian 矩阵和能观Gramian 矩阵,则C O C O W W W W 与相似并且所有特征根均为正数。
定理: 若{,,}A B C 为一任意一最小实现,其Hankel 奇异值为22212,,,n σσσ,则存在一个实现{,,}A B C 满足12{,,,}C O n W W diag σσσ==∑=,该实现称为平衡实现。
1.2平衡实现的系统降阶过程由上平衡实现的Hankel 奇异值,若12k σσσ≥≥≥ 并且121,,,,,k k n σσσσσ+012(,)C W W diag ==∑∑ 且对应的平衡实现为: []111121111222122222x A A x b x u y c c x A A x b x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 则我们可以把系统降阶为:1111111x A x b u y c x =+=本次设计六十五米大口径天线伺服系统的模型如下:由于Matlab里有求平衡实现的函数balreal,故可以直接调用,求出平衡实现。