工程力学第4章
- 格式:ppt
- 大小:196.00 KB
- 文档页数:1
第4章材料力学基本假设及杆件内力题库:主观题4-1 试计算图示各杆件各段的内力,并做各杆的轴力图解:(a)如图4-1-1所示,做截面1-1和截面2-2图4-1-1取截面1-1右部分研究,其受力图如图4-1-2所示图4-1-2由平衡方程∑Fx=0,﹣FN1+3F=0,得FN1=3F结果为正值,表明FN1的方向与假设相同,即为拉力。
取截面2-2右部分来研究,其受力图如图4-1-3所示图4-1-3由平衡方程∑Fx=0,﹣FN2+F+3F=0得FN2=4F结果为正值,表明FN2的方向与假设相同,即为拉力轴力图如图4-1-4所示图4-1-4(b)如图4-1-5所示,做截面1-1、截面2-2和截面3-3图4-1-5取截面1-1右部分来研究,其受力图如图4-1-6所示图4-1-6由平衡方程∑Fx=0,﹣FN1﹣5KN=0,得FN1=-5KN结果为负值,表明FN1的方向与假设相反,即为压力。
取截面2-2右部分来研究,其受力图如图4-1-7所示图4-1-7由平衡方程∑Fx=0,﹣FN2+8KN-5KN=0,得FN2=3KN结果为正值,表明FN2的方向与假设相同,即为拉力。
取截面3-3右部分来研究,其受力图如图4-1-8所示图4-1-8由平衡方程∑Fx=0,﹣FN3﹣6KN+8KN-5KN=0,得FN3=-3KN 结果为负值,表明FN3的方向与假设相反,即为压力。
轴力图如图4-1-9所示:图4-1-9知识点:1.内力,截面法;2. 轴力和轴力图参考页: P72-73学习目标: 2(会用截面法计算法求轴力和轴力图)难度: 1提示一:该题考察知识点:3 内力,截面法;4轴力和轴力图提示二:无提示三:无提示四(同题解)题解:1、用截面法求解每个截面的内力;2、画出每个截面的内力图。
4-2 求图示各梁中指定截面上的剪力和建立图解:(a)计算1-1截面上的剪力Fs和弯矩M1用截面1-1把梁截开,取梁的左段为研究对象如图4-2-1所示图4-2-1由∑Fy=0得:Fs1=-qa(负剪力)由∑Mo1=0得:qa﹒a+M1=0,得M1=-qa2(负弯矩)计算2-2截面上的剪力Fs2和弯矩M2如图4-2-2所示,由∑Fy=0得:Fs2=-qa(负剪力)由∑Mo2=0得M2=-3qa2(负弯矩)图4-2-2计算3-3截面上的剪力Fs3和弯矩M3如图4-2-3所示,由∑Fy=0,-qa-qa-Fs3=0得:Fs3=-2qa(负剪力)由∑Mo3=0,qa﹒4a+qa﹒0.5a+ M3=0得M3=-4.5qa2(负弯矩)图4-2-3(b)计算支座范力选整体梁为研究对象,如图4-2-4所示·图4-2-4由∑MA=0,10KN﹒m+FB×2.5m=0得:FB = -4KN(↓)由∑Fy=0得:FA=-FB=4KN(↑)计算1-1截面上的剪力Fs1和弯矩M1用截面1-1把梁截开,取梁的左段为研究对象如图4-2-5所示图4-2-5由∑Fy=0,FA-Fs1=0,得FA=Fs1=4KN(正剪力)由∑Mo1=0得:-FA·1m+M1=0得M1=4KN·m(正弯矩)计算2-2截面上的剪力Fs2和弯矩M2,如图4-2-6所示图4-2-6由∑Fy=0,FB+Fs2=0,得-FB=Fs2=4KN(正剪力)由∑Mo2=0得:FB·1.5m-M2=0得M2=-6KN·m(负弯矩)(c)计算支座反力选整体梁为研究对象,如图4-2-7所示·图4-2-7由∑Fy=0,FA-5KN+FB=0得FA=3KN(↑)由∑MA=0得:FB·5m-5KN·3m+5KN·m=0得FB=2KN(↑)计算1-1截面上的剪力Fs1和弯矩M1取1-1截面左边部分为研究对象,如图4-2-8所示·图4-2-8由∑Mo1=0得:5KN·m + M1=0,得M1=-5KN·m(负弯矩)由∑Fy=0,FA-Fs1=0,得FA=Fs1=3KN(正剪力)计算2-2的剪力Fs2弯矩M2取2-2截面左边研究对象,如图4-2-9所示·图4-2-9由∑Mo2=0,5KN·m - FA·3m+M2=0,得M2=4KN·m(正弯矩)由∑Fy=0,FA-Fs2=0,得FA=Fs2=3KN(正剪力)计算3-3的剪力Fs3和弯矩M3取3-3截面右边研究对象,如图4-2-10所示图4-2-10由∑Mo3=0,FB·2m-M3=0,得M3=4KN·m(正弯矩)由∑Fy=0,FB+Fs3=0,得-FB=Fs3=-2KN(负剪力)(d)计算支座反力选整体梁为研究对象,如图4-2-11所示图4-2-11由∑MB=0得:qa·25a-FA·2a+qa·a=0,得FA=47qa (↑)由∑Fy=0,FA-2qa+FB=0得FB=41qa (↑)计算1-1截面上的剪力Fs1和弯矩M1取1-1截面左边部分为研究对象,如图4-2-12所示图4-2-12由图知 Fs1=0 M1=0 计算2-2的剪力Fs2弯矩M2取2-2截面左边研究对象,如图4-2-13所示图4-2-13由∑Mo2=0,qa·21a+ M2 =0得M2=-21qa 2(负弯矩)由∑Fy=0,-qa-Fs2=0,得Fs2=-qa(负剪力) 计算3-3的剪力Fs3和弯矩M3取3-3截面右边研究对象,如图4-2-14所示图4-2-14由∑Mo3=0,FB·a-M3=0,得M3=41qa 2(正弯矩)由∑Fy=0,-qa+FB+Fs3=0,得Fs3=43a (正剪力)知识点:1.内力,截面法;2. 轴力和轴力图 参考页: P72-73学习目标: 2(会用截面法计算法求轴力和轴力图) 难度: 1提示一:该题考察知识点:3 内力,截面法;4轴力和轴力图 提示二:无 提示三:无 提示四(同题解) 题解:1、用截面法求解每个截面的内力;2、画出每个截面的内力图。