2020届首师附中3月高三数学试题及答案
- 格式:pdf
- 大小:1.35 MB
- 文档页数:12
北京首都师范大学附属中学2020年高三数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. =()A.2 B. C.D.参考答案:D2. 已知m、n是两条不同的直线,是两个不同的平面,有下列命题①若,则②若,则③若,则.④若,则其中真命题的个数是,(A)O 个(B)1 个(C)2 个(D)3 个参考答案:B3. 函数y=lncos(2x+)的一个单调递减区间是()A.(﹣,﹣)B.(﹣,﹣)C.(﹣,﹣)D.(﹣,)参考答案:C【考点】复合函数的单调性.【专题】函数思想;转化法;函数的性质及应用.【分析】先求出函数的定义域,结合复合函数单调性的关系进行求解即可.【解答】解:设t=cos(2x+),则lnt在定义域上为增函数,要求函数y=lncos(2x+)的一个单调递减区间,即求函数函数t=cos(2x+)的一个单调递减区间,同时t=cos(2x+)>0,即2kπ≤2x+<2kπ+,k∈Z,即kπ﹣≤x<kπ+,k∈Z,当k=0时,﹣≤x<,即函数的一个单调递减区间为(﹣,﹣),故选:C【点评】本题主要考查函数单调区间的求解,利用复合函数单调性之间的关系以及对数函数和三角函数的性质是解决本题的关键.4. 某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( ) A.B.C.D.参考答案:D试题分析:由三视图可知,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该半圆锥的侧面展开图为扇形,所以侧面积为,底面积为,由三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为,则该几何体的表面积为.选D考点:几何体的表面积,三视图5. 甲、乙两位同学约定周日上午在某电影院旁见面,并约定谁先到后必须等10分钟,若等待10分钟后另一人还没有来就离开.如果甲是8:30分到达的,假设乙在8点到9点内到达,且乙在8点到9点之间何时到达是等可能的,则他们见面的概率是A. B. C. D.参考答案:D6. 函数的定义域是(A) (B) (C) (D)参考答案:B略7. 已知椭圆的对称轴为坐标轴,短轴的一个端点和两个焦点的连线构成一个正三角形,且焦点到椭圆上的点的最短距离为,则椭圆的方程为()A. B.或C. D. 或参考答案:D8. 在中,分别为的对边,三边成等差使数列,且则的值为A. B. C. D.参考答案:D略9. 设椭圆的左、右焦点分别为,为椭圆上异于长轴端点的一点,,△的内心为I,则()A. B. C. D.参考答案:A10. 执行如图所示的程序框图,则输出的结果是A.225B.75C.275D.300参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知复数z1=m+2i,z2=3﹣4i,若为实数,则实数m的值为.参考答案:略12. 设,满足约束条件则的最大值是________.参考答案:答案:513. 函数的定义域是______________.参考答案:{x | x >1 }略14. 将边长为2的正方形ABCD沿对角线BD折成直二面角A-BD-C,若点A、B、C、D都在一个以O为球心的球面上,则球O的体积为。
江西师大附中2020届高三三模考试参考答案(文科数学) 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C A A D D D C A B B D B二、填空题:本题共4小题,每小题5分,共20分。
13. 17 14. 10 15. 3 16. 1(0,)2e三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22题、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)【解析】(1)由πsin 22sin cos()3a Bb A B =-得, π2sin sin cos 2sin sin cos()3A B B B A B =-, 从而πcos cos()3B B =-, ……………………3分 因为ABC ∆为锐角三角形, 所以π(0,)2B ∈,ππ(,)363B π-∈-,所以π3B B =-, 从而π6B =, 所以3cos B =. ……………………6分 (2)因为1sin 12ABC S ac B ∆==, 所以4ac =, ……………………9分 又222222cos 43243843b a c ac B a c ac =+-=+-≥-=-,当且仅当2a c ==时取等号. 所以b 的最小值为84362-=-. ……………………12分18.(12分)【解析】(1)估计“厨余垃圾”投放正确的概率为130030053007030804808P ===+++; ……………3分 估计“有害垃圾”投放正确的概率为260601202060201202P ===+++. ……………………6分 (2)当600,0a b c d ====时,数据a ,b ,c ,d 的方差2s 最大. ……………………9分 因为2004a b c d x +++==,所以此时方差 222221[()()()()]4s a x b x c x d x =-+-+-+-221(6003200)1200004=+⨯=. ………………12分19.(12分)【解析】(1)在四棱台ABCD EFGH -中,延长,,,AE BF CG DH 可相交于一点S ,如图所示.取CD 的中点M ,连接SM 交GH 于点N ,连接FN .因为1CG GH HD ===,所以SD SC =,从而CD SM ⊥. ……………………3分因为底面ABCD 是菱形,2BD CD ==,所以BCD ∆为正三角形,所以CD BM ⊥.又因为M BM SM =I ,所以⊥CD 平面SBM .所以SB CD ⊥,即BF CD ⊥. ………………6分(2)因为平面CDHG ⊥平面ABCD , 所以由(1)可知,⊥SM 平面ABCD .因为1=GH ,2=CD ,CD GH //,所以21=SM SN . 又1=CG , 所以3122222=-=-=CM SC SM . ………………9分所以四棱台ABCD EFGH -的体积为SN S SM S V EFGH ABCD ⋅-⋅=3131 47231233132233122=⨯⨯⨯-⨯⨯⨯=. ………………12分20.(12分)【解析】(1)由已知,(0,)B b ,(,0)F c -,所以||BF a =,所以bc =,即c a ==,所以b = ………………3分 又222213b e a=-=, 所以26a =. 所以椭圆C 的方程为22162y x +=. ………………5分 (2)将1x =代入22162y x +=得,253y =, y =, 此时2||||1)(113AM AN ==≠,因此,直线l 的斜率必定存在. ………………6分 设直线l 的方程为1(1)y k x -=-,即1y kx k =+-,1122(,),(,)M x y N x y , 联立221,162y kx k y x =+-⎧⎪⎨+=⎪⎩得,222(31)6(1)3(1)60k x k k x k ++-+--=, 所以1226(1)31k k x xk -+=+,21223(1)631k x x k --=+, ………………8分 所以12||||1|1|AM AN x x =-- 222212122|3(1)66(1)31|(1)|()1|(1)31k k k k k x x x x k k ----++=+-++=+⋅+ 222(1)131k k +==+, ………………11分 解得21k =,所以1k =±. 所以直线l 的方程为y x =或2y x =-+. ………………12分 【注】利用参数方程解答也可,根据步骤相应给分.21.(12分)【解析】(1)由已知,()(1)2xf x x =+⋅,从而()2(1)2ln 22[(1)ln 21]x x x f x x x '=++⋅=++, ………………3分 所以(0)1f =,(0)ln 21f '=+,所以曲线()y f x =在0x =处的切线方程为1(ln 21)y x -=+⋅,即(ln 21)1y x =++. ………………6分 (2)当0x >时,()1(2ln 22f x a x x x x≥++++)可化为2(1)2(21)ln 22x x x x a x +≥++++, 即2(1)2(21)ln 22x a x x x x ≤+-++-.令2()(1)2(21)ln 22,0x g x x x x x x =+-++->,则依题设,只需min ()a g x ≤. ……………8分()2(1)2ln 2(22)ln 22x x g x x x '=++-+-(22)[(1)ln 21]x x =-++,因为(1)ln 210x ++>,所以当01x <<时,()0g x '<;当1x >时,()0g x '>.从而()g x 在(0,1)上单调递减,在(1,)+∞上单调递增, ………………10分 所以min ()(1)44ln 2224ln 2g x g ==--=-,所以24ln 2a ≤-. 即实数a 的取值范围是(,24ln 2]-∞-. ………………12分(二)选考题:共10分。
北京首都师范大学附属房山中学2020年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知为虚数单位, 则复数)在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:B2. 4.已知向量,,且∥,则︱︱=()A. B. C. D.参考答案:B命题意图:本题考查平面向量的基本运算,简单题.3. 袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。
利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好第三次就停止摸球的概率为()A. B. C. D.参考答案:B【分析】随机模拟产生了18组随机数,其中第三次就停止摸球的随机数有4个,由此可以估计,恰好第三次就停止摸球的概率.【详解】随机模拟产生了以下18组随机数:343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134其中第三次就停止摸球的随机数有:142,112,241,142,共4个,由此可以估计,恰好第三次就停止摸球的概率为p.故选:B.4. 曲线的焦点F恰好是曲线的右焦点,且曲线与曲线交点连线过点F,则曲线的离心率是( )A. B. C. D.参考答案:D略5. “”是“”成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 不充分不必要条件参考答案:A【分析】根据充分、必要条件的判断方法,即可得正确答案.【详解】若,则成立;若,则同号,所以不成立,“”是“”成立的的充分不必要条件.故选:A【点睛】本题考查充分、必要条件的判断,考查不等式的性质,属于基础题.6. 如图:正方体,棱长为1,黑白二蚁都从点出发,沿棱向前爬行,每走一条棱称为“走完一段”.白蚁爬行的路线是黑蚁爬行的路线是它们都遵循如下规则:所爬行的第段所在直线与第段所在直线必须是异面直线(其中).设黑白二蚁走完第2014段后,各停止在正方体的某个顶点处,这时黑白蚁的距离是 ( )A. 1 B. C. D. 0参考答案:B7. 如图,从点发出的光线,沿平行于抛物线的对称轴方向射向此抛物线上的点,经抛物线反射后,穿过焦点射向抛物线上的点,再经抛物线反射后射向直线上的点,经直线反射后又回到点,则等于A. B. C.D.参考答案:B8. 某几何体的三视图如图所示,图中的四边形都是边长为的正方形,两条虚线互相垂直且相等,则该几何体的体积是()A. B.C. D.参考答案:A9. 数列中,若,则的值为()A.—1 B.C.D.1参考答案:B略10. “0<x<1”是“log2(x+1)<1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于C点,CDAB于D 点,则CD= 。
2020年北京海淀区首都师范大学附属中学高三三模数学试卷-学生用卷一、选择题(本大题共10小题,每小题4分,共40分)1、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第1题4分2017~2018学年10月安徽合肥巢湖市巢湖市柘皋中学高一上学期月考第5题5分2017年北京东城区高三二模文科第1题5分已知全集U是实数集R,右边的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合可能为().A. {x|x<2}B. {x|1<x<2}C. {x|x>3}D. {x|x⩽1}2、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第2题4分复数z=3+5i(i为虚数单位)在复平面内对应的点位于().1+iA. 第一象限B. 第二象限C. 第三象限D. 第四象限3、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第3题4分下列函数中有最小值的是().A. y=2xB. y=√x+1C. y=tanxD. y=lg|x|4、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第4题4分2020~2021学年12月重庆长寿区高二上学期月考第5题5分直线l与圆O:x2+y2=1交于A,B两点,若AB=√2,则点O到直线l的距离为().A. √2B. 1C. √22D. 125、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第5题4分已知非零向量a→,b→满足a→=λb→,则“λ=1”是“a→2=b→2”的().A. 充分必要条件B. 必要而不充分条件C. 充分而不必要条件D. 既不充分也不必要条件6、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第6题4分某三棱锥的三视图如图所示(图中小正方形的边长为1),则该三棱锥的体积为().A. 23B. 43C. 1D. 27、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第7题4分给出下列四个函数:①y=x⋅sinx;②y=x⋅cosx;③y=x⋅|cos x|;④y=x⋅2x.这四个函数的部分图象如下,但顺序被打乱,则按照从左到右的顺序将图象对应的函数序号安排正确的一组是().A. ③④②①B. ①④③②C. ④①②③D. ①④②③8、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第8题4分已知平面向量a→,b→的夹角为π3,且a→⋅b→=1,则|a→+b→|的最小值为().A. 1B. √2C. 2D. √69、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第9题4分如图,正方体ABCD−A1B1C1D1棱长为3,点E在棱BC上,且满足BE=2EC,动点M在正方体表面上运动,且ME⊥BD1,则动点M的轨迹的周长为().A. 6√2B. 4√3C. 4√2D. 3√310、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第10题4分设函数f(x)=sin(ωx+π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论:①f(x)在(0,2π)有且仅有2个极大值点;②f(x)在(0,2π)有且仅有3个极小值点;③f(x)在(0,π10)单调递增;④ω的取值范围是[125,2910);其中所有正确结论的编号是().A. ①④B. ③④C. ①②③D. ①③④二、填空题(本大题共5小题,每小题5分,共25分)11、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第11题5分2018年甘肃兰州高三二模理科第15题5分(x2−1x )6的展开式中,常数项的值为(用数字作答).12、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第12题5分已知双曲线x 2a2−y2b2=(a>0,b>0)的一条渐近线方程为y=√33x,且一个焦点在抛物线y2=8x的准线上,则该双曲线的方程为.13、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第13题5分已知等差数列{a n}的首项为2,等比数列{b n}的公比为2,S n是数列{b n}的前n项和,且b n= (√2)a n.则a4=,S5=.14、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第14题5分中国地大物博,大兴安岭的雪花还在飞舞,长江两岸的柳枝已经发芽,海南岛上盛开着鲜花.燕子每年秋天都要从北方飞向南方过冬,专家发现,两岁燕子的飞行速度可以表示为v=5log2q 10(米/秒),其中q表示燕子的耗氧量,则燕子静止时耗氧量为;若某只两岁的燕子耗氧量为q1时的飞行速度为v1(米/秒),另一只两岁的燕子耗氧量为q2时的飞行速度为v2(米/秒),两只燕子同时起飞,当q1=4q2时,一分钟后第一只燕子比第二只燕子多飞行的路程为米.15、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第15题5分已知函数f(x)=x2+1,直线l:y=ax+2与x轴和y轴分别交于点D,B,直线l与函数f(x)的图象交于A,C两点(点C在点B,D之间),给出下列四个结论:①若点E为y轴上一点,则存在符合条件的点E和实数a,使得△ABE为等边三角形;②记f(a)=|AC||DC|,则1∈{y|y=f(a)};③记ℎ(a)=|AB||BC|,则ℎ(a)的值域为(0,+∞);④记g(a)=max {|AB|,|CB|}min{|AB|,|CB|},则对任意的非零数实数a,都有g(a)g(−a)=1成立.(max{x1,x2}表示x1,x2中最大的数,min{x1,x2}表示x1,x2,中最小的数).其中正确结论的序号是.三、解答题(本大题共6小题,共85分)16、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第16题14分如图,三棱柱ABC−A1B1C1中,AA1⊥底面ABC,D是AB的中点,AA1=AC=CB=2,AB= 2√2.(1) 证明:BC1//平面A1CD.(2) 求直线AA1与平面A1CD所成角的正弦值.17、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第17题14分2020年岁末年初,“新冠肺炎”疫情以其汹汹袭来之势席卷了我国的武汉,在这关键的时刻,在党中央的正确指导下,以巨大的魄力,惊人的壮举,勇敢的付出,及时阻断了疫情的传播,让这片土地成为了世界上最温暖的家园;通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.下表统计了2月12日到2月18日连续七天全国的治愈人数:(单位:例)请根据以上信息,回答下列问题:(1) 记前四天治愈人数的平均数和方差分别为x1和s12,后三天治愈人数的平均数和方差分别为x2和s22,判断x1与x2,s12与s22的大小(直接写出结论).(2) 从这七天中任取连续的两天,则后一天的治愈人数比前一天的治愈人数多于200例的概率.(3) 设集合M={(x i,x i+1)|x i表示2月i日的治愈人数i=12,13,⋯,17},从集合M中任取两个元素,设其中满足x i<x i+1的个数为X,求X的分布列和数学期望E(X).18、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第18题14分已知△ABC中,cb<cosA.(1) 求证:B为钝角.(2) 若△ABC同时满足下列四个条件中的三个:①sinA=√22;②a=2;③c=√2;④sinC=√32,请指出这三个条件,说明理由,并求出b的值.19、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第19题14分已知曲线C:x 24+y23=1(y⩾0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.(1) 当点B坐标为(−1,0)时,求k的值.(2) 记△OAD的面积S1,四边形ABCD的面积为S2.求证:S1S2⩾12.20、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第20题15分已知函数f(x)=(x−1)e x−alnx(a⩽e).(1) 当a=e时,①求曲线y=f(x)在点(1,f(1))处的切线方程.②求函数f(x)的最小值.(2) 若曲线y=f(x)与x轴有且仅有一个公共点,求实数a的取值范围.21、【来源】 2020年北京海淀区首都师范大学附属中学高三三模第21题14分2020~2021学年北京海淀区首都师范大学附属中学高一下学期期末(成达学部)第18题12分对给定的正整数n,令Ωn={a=(a1,a2,⋯,a n)|a i∈{0,1}i=1,2,⋯,n},对任意的x=(x1,x2,⋯,x n),y=(y1,y2,⋯,y n)∈Ωn,定义x与y的距离d(x,y)=|x1−y1|+|x2−y2|+⋯+|x n−y n|,设A是Ωn的含有至少两个元素的子集,集合D={d(x,y)|x≠y,x,y∈A}中的最小值称为A的特征,记作χ(A).(1) 当n=3时,直接写出下述集合的特征A={(0,0,0),(1,1,1)},B={(0,0,0),(0,1,1),(1,0,1),(1,1,0)},C={(0,0,0),(0,0,1),(0,1,1),(1,1,1)}.(2) 当n=2020时,设A⊆Ω2020且χ(A)=2,求A中元素个数的最大值.(3) 当n=2020时,设A⊆Ω2020且χ(A)=3,求证:A中的元素个数小于22020.20211 、【答案】 D;2 、【答案】 A;3 、【答案】 B;4 、【答案】 C;5 、【答案】 C;6 、【答案】 A;7 、【答案】 D;8 、【答案】 D;9 、【答案】 A;10 、【答案】 B;11 、【答案】15;−y2=1;12 、【答案】x2313 、【答案】8;62;14 、【答案】10;600;15 、【答案】①②④;16 、【答案】 (1) 证明见解析.;(2) √3.3;17 、【答案】 (1) x1<x2;s12<s22.;(2) 1.3;(3) X的分布列为:E(X)=4.3;18 、【答案】 (1) 证明见解析.;(2) ①②③,1+√3;证明见解析.;.19 、【答案】 (1) −12;(2) 证明见解析.;20 、【答案】 (1)①y=0.②0.;(2) (−∞,0]∪{e}.;21 、【答案】 (1) χ(A)=3,χ(B)=2,χ(C)=1.;(2) 22019.;(3) 证明见解析.;。
2020-2021学年北京市首师大附中高三(上)开学数学试卷一、选择题(共10小题).1.复数i(3+i)=()A.1+3i B.﹣1+3i C.1﹣3i D.﹣1﹣3i2.函数f(x)=tan(x+)的最小正周期为()A.B.C.πD.2π3.已知向量=(1,﹣),=(﹣2,m),若与共线,则||=()A.B.C.D.24.在二项式(1﹣2x)5的展开式中,x3的系数为()A.40B.﹣40C.80D.﹣805.下列函数中,既是偶函数又在(0,+∞)上单调递减的是()A.y=x﹣2B.y=|lnx|C.y=2﹣x D.y=x sin x6.将函数f(x)=cos2x图象上所有点向左平移个单位长度后得到函数g(x)的图象,如果g(x)在区间[0,a]上单调递减,那么实数a的最大值为()A.B.C.D.7.设点A,B,C不共线,则“”是“”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件8.有一改形塔几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8B.7C.6D.49.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1B.2C.3D.010.在声学中,声强级L(单位:dB)由公式给出,其中I为声强(单位:W/m2).L1=60dB,L2=75dB,那么=()A.10B.10C.﹣D.10二、填空题(共5题,每题5分,共25分)11.已知抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则抛物线的焦点坐标为;准线方程为.12.(x+1)7的展开式中x3的系数是.13.在△ABC中,∠ABC=60°,BC=2AB=2,E为AC的中点,则=.14.已知两点A(﹣1,0),B(1,0),若直线x﹣y+a=0上存在点P(x,y)满足•=0,则实数a满足的取值范围是.15.集合A={(x,y)||x|+|y|=a,a>0},B={(x,y)||xy|+1=|x|+|y|},若A∩B是平面上正八边形的顶点所构成的集合,则下列说法正确的为.①a的值可以为2;②a的值可以为;③a的值可以为2+;三、解答题(共6小题,共85分,每题必须写出详细的解答过程)16.已知△ABC ,满足,b=2,______,判断△ABC的面积S>2是否成立?说明理由.从①,②这两个条件中任选一个,补充到上面问题条件中的空格处并作答.注:如果选择多个条件分别解答,按第一个解答计分.17.2019年1月1日,我国开始施行《个人所得税专项附加扣除操作办法》,附加扣除的专项包括子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人.某单位有老年员工140人,中年员工180人,青年员工80人,现采用分层抽样的方法,从该单位员工中抽取20人,调查享受个人所得税专项附加扣除的情况,并按照员工类别进行各专项人数汇总,数据统计如表:子女教育继续教育大病医疗住房贷款利息住房租金赡养老人专项员工人数老员工402203中年员工821518青年员工120121(Ⅰ)在抽取的20人中,老年员工、中年员工、青年员工各有多少人;(Ⅱ)从上表享受住房贷款利息专项扣除的员工中随机选取2人,记X为选出的中年员工的人数,求X的分布列和数学期望.18.如图,已知四边形ABCD为菱形,且∠A=60°,取AD中点为E.现将四边形EBCD 沿BE折起至EBHG,使得∠AEG=90°.(Ⅰ)求证:AE⊥平面EBHG;(Ⅱ)求二面角A﹣GH﹣B的余弦值;(Ⅲ)若点F 满足,当EF∥平面AGH时,求λ的值.19.已知椭圆的右焦点为F(1,0),离心率为.直线l过点F且不平行于坐标轴,l与C有两交点A,B,线段AB的中点为M.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:直线OM的斜率与l的斜率的乘积为定值;(Ⅲ)延长线段OM与椭圆C交于点P,若四边形OAPB为平行四边形,求此时直线l 的斜率.20.已知函数,f(x)=x2(x>0),g(x)=alnx(a>0).(Ⅰ)若f(x)>g(x)恒成立,求实数a的取值范围;(Ⅱ)当a=1时,过f(x)上一点(1,1)作g(x)的切线,判断:可以作出多少条切线,并说明理由.21.有限个元素组成的集合A={a1,a2,…,a n},n∈N*,记集合A中的元素个数为card (A),即card(A)=n.定义A+A={x+y|x∈A,y∈A},集合A+A中的元素个数记为card(A+A),当card(A+A)=时,称集合A具有性质P.(Ⅰ)A={1,4,7},B={2,4,8},判断集合A,B是否具有性质P,并说明理由;(Ⅱ)设集合A={a1,a2,a3,2020}.a1<a2<a3<2020,且a i∈N*(i=1,2,3),若集合A具有性质P,求a1+a2+a3的最大值;(Ⅲ)设集合A={a1,a2,…,a n},其中数列{a n}为等比数列,a i>0(i=1,2,…,n)且公比为有理数,判断集合A是否具有性质P并说明理由.参考答案一、单选题(共10小题).1.复数i(3+i)=()A.1+3i B.﹣1+3i C.1﹣3i D.﹣1﹣3i【分析】直接利用复数代数形式的乘除运算化简得答案.解:i(3+i)=3i+i2=﹣1+3i.故选:B.2.函数f(x)=tan(x+)的最小正周期为()A.B.C.πD.2π【分析】由题意利用函数f(x)=A tan(ωx+φ)的最小正周期为,得出结论.解:函数f(x)=tan(x+)的最小正周期为=π,故选:C.3.已知向量=(1,﹣),=(﹣2,m),若与共线,则||=()A.B.C.D.2【分析】根据题意,由向量平行的坐标表示方法可得m=(﹣)×(﹣2)=1,即可得=(﹣2,1);由向量模的计算公式计算可得答案.解:根据题意,向量=(1,﹣),=(﹣2,m),若与共线,则有m=(﹣)×(﹣2)=1,则=(﹣2,1);则||==;故选:B.4.在二项式(1﹣2x)5的展开式中,x3的系数为()A.40B.﹣40C.80D.﹣80【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得展开式中的x3系数.解:(1﹣2x)5展开式的通项公式为•(﹣2x)r,故令r=3,可得其中的x3系数为•(﹣2)3=﹣80,故选:D.5.下列函数中,既是偶函数又在(0,+∞)上单调递减的是()A.y=x﹣2B.y=|lnx|C.y=2﹣x D.y=x sin x【分析】根据函数性质,分别判断两个函数的奇偶性和单调性即可.解:A.f(x)是偶函数,且在(0,+∞)上是减函数,满足条件B.函数的定义域为(0,+∞),函数为非奇非偶函数,不满足条件.C.函数为非奇非偶函数,不满足条件.D.f(﹣x)=﹣x sin(﹣x)=x sin x=f(x),f(x)为偶函数,在(0,+∞)不具备单调性,不满足条件.故选:A.6.将函数f(x)=cos2x图象上所有点向左平移个单位长度后得到函数g(x)的图象,如果g(x)在区间[0,a]上单调递减,那么实数a的最大值为()A.B.C.D.【分析】根据条件先求出g(x)的解析式,结合三角函数的单调性进行求解即可.解:将函数f(x)=cos2x图象上所有点向左平移个单位长度后得到函数g(x)的图象,则g(x)=cos2(x+)=cos(2x+),设θ=2x+,则当0<x≤a时,0<2x≤2a,<2x+≤2a+,即<θ≤2a+,要使g(x)在区间[0,a]上单调递减,则2a+≤π得2a≤,得a≤,即实数a的最大值为,故选:B.7.设点A,B,C不共线,则“”是“”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【分析】由于点A,B,C不共线,则⇔(+)•=0⇔(+)•(﹣)=﹣=0⇔=⇔“”,根据充分必要条件的定义判断即可.解:由于点A,B,C不共线,则⇔(+)•=0⇔(+)•(﹣)=﹣=0⇔=⇔“”;故“”是“”的充分必要条件.故选:C.8.有一改形塔几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8B.7C.6D.4【分析】则从下往上第二层正方体的棱长为:=4,从下往上第三层正方体的棱长为:=4,从下往上第四层正方体的棱长为:=2,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.解:最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:=4,从下往上第三层正方体的棱长为:=4,从下往上第四层正方体的棱长为:=2,从下往上第五层正方体的棱长为:=2,从下往上第六层正方体的棱长为:=,从下往上第七层正方体的棱长为:=1,从下往上第八层正方体的棱长为:=,∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.9.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1B.2C.3D.0【分析】由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.解:由三视图还原原几何体如图,其中△ABC,△BCD,△ADC为直角三角形.∴该三棱锥的表面中直角三角形的个数为3.故选:C.10.在声学中,声强级L(单位:dB)由公式给出,其中I为声强(单位:W/m2).L1=60dB,L2=75dB,那么=()A.10B.10C.﹣D.10【分析】由得lgI=﹣12,分别算出I1和I2的值,从而得到的值.解:∵,∴L=10(lgI﹣lg10﹣12)=10(lgI+12),∴lgI=﹣12,当L1=60时,lgI1===﹣6,∴I1=10﹣6,当L2=75时,lgI2===﹣4.5,∴I2=10﹣4.5,∴=10,故选:D.二、填空题(共5题,每题5分,共25分)11.已知抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则抛物线的焦点坐标为(2,0);准线方程为x=﹣2.【分析】由双曲线方程求得双曲线的右顶点坐标,可得抛物线的焦点坐标,进一步求得抛物线的准线方程.解:双曲线﹣y2=1的右顶点坐标为(2,0),即抛物线y2=2px的焦点坐标为(2,0);则抛物线的直线方程为x=﹣2.故答案为:(2,0);x=﹣2.12.(x+1)7的展开式中x3的系数是35.【分析】利用二项式定理求得(x+1)7的展开式的通项公式,进而求得结果.解:∵(x+1)7的展开式的通项公式为T r+1=C x7﹣r,r=0,1, (7)∴(x+1)7的展开式中x3的系数为C=35.故填:35.13.在△ABC中,∠ABC=60°,BC=2AB=2,E为AC的中点,则=﹣1.【分析】先在△ABC中,利用余弦定理,算出,确定△ABC是以A为直角的直角三角形,然后=,结合平面向量数量积的运算法则求解即可.解:由于∠ABC=60°,BC=2AB=2,根据余弦定理可知,AC2=AB2+BC2﹣2AB•BC•cos∠ABC=,∴,△ABC为直角三角形,且A为直角,∴=.故答案为:﹣1.14.已知两点A(﹣1,0),B(1,0),若直线x﹣y+a=0上存在点P(x,y)满足•=0,则实数a满足的取值范围是[﹣,].【分析】问题转化为求直线l与圆x2+y2=1有公共点时,a的取值范围,利用数形结合思想能求出结果.解:∵直线l:x﹣y+a=0,点A(﹣1,0),B(1,0),直线l上存在点P满足•=0,∴P的轨迹方程是x2+y2=1.∴如图,直线l与圆x2+y2=1有公共点,∴圆心O(0,0)到直线l:x﹣y+a=0的距离:d=≤1,解得﹣≤a.∴实数a的取值范围为[﹣,].故答案为:[﹣,].15.集合A={(x,y)||x|+|y|=a,a>0},B={(x,y)||xy|+1=|x|+|y|},若A∩B是平面上正八边形的顶点所构成的集合,则下列说法正确的为②③.①a的值可以为2;②a的值可以为;③a的值可以为2+;【分析】根据曲线性质求出集合A,B对应的图象,结合两角和差的正切公式进行求解即可.解:A={(x,y)||x|+|y|=a,a>0},x≥0,y≥0时,即x+y=a表示在第一象限内的线段将x,y分别换成﹣x,﹣y方程不变,因此|x|+|y|=a关于x轴对称,也关于y轴对称那么,集合A={(x,y)||x|+|y|=a,a>0}表示点集为正方形,∵|xy|+1=|x|+|y|∴|xy|﹣|x|﹣|y|+1=0即(|x|﹣1)(|y|﹣1)=0∴|x|=1或|y|=1即x=±1,y=±1B={(x,y)|x=±1,或x=±1},表示2组平行线,A∩B为8个点,构成正八边形①如图1,∠AOB=45°又A(1,a﹣1),∴tan∠xOA=a﹣1,tan∠AOB=tan2∠xOA===1,即2a﹣2=2a﹣a2,∴a2=2∵a>0,∴a=②如图2,∠AOB=45°又A(a﹣1,1)∴tan∠xOA=,tan∠AOB=tan2∠xOA====1,即2a﹣2=﹣2a+a2,∴a2﹣4a+2=0,解得a=2+或a=2﹣(舍),综上a=或a=2+.故答案为:②③.三、解答题(共6小题,共85分,每题必须写出详细的解答过程)16.已知△ABC,满足,b=2,______,判断△ABC的面积S>2是否成立?说明理由.从①,②这两个条件中任选一个,补充到上面问题条件中的空格处并作答.注:如果选择多个条件分别解答,按第一个解答计分.【分析】选①,先利用余弦定理可解得c=3,从而求得三角形面积为,由此作出判断;选②,先利用余弦定理可得,结合已知条件可知△ABC是A为直角的三角形,进而求得面积为,此时S>2不成立.解:选①,△ABC的面积S>2成立,理由如下:当时,,所以c2﹣2c﹣3=0,所以c=3,则△ABC的面积,因为,所以S>2成立.选②,△ABC的面积S>2不成立,理由如下:当时,,即,整理得,,所以,因a2=7,b2+c2=4+3=7,所以△ABC是A为直角的三角形,所以△ABC的面积,所以不成立.17.2019年1月1日,我国开始施行《个人所得税专项附加扣除操作办法》,附加扣除的专项包括子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人.某单位有老年员工140人,中年员工180人,青年员工80人,现采用分层抽样的方法,从该单位员工中抽取20人,调查享受个人所得税专项附加扣除的情况,并按照员工类别进行各专项人数汇总,数据统计如表:子女教育继续教育大病医疗住房贷款利息住房租金赡养老人专项员工人数老员工402203中年员工821518青年员工120121(Ⅰ)在抽取的20人中,老年员工、中年员工、青年员工各有多少人;(Ⅱ)从上表享受住房贷款利息专项扣除的员工中随机选取2人,记X为选出的中年员工的人数,求X的分布列和数学期望.【分析】(Ⅰ)先算出该单位的所有员工数量,再根据分层抽样的特点,逐一求解样本中老年、中年、青年员工的数量即可.(Ⅱ)随机变量X的可取值为0,1,2,结合超几何分布计算概率的方式逐一求取每个X的取值所对应的概率即可得分布列,进而求得数学期望.解:(Ⅰ)该单位员工共140+180+80=400人,抽取的老年员工人,中年员工人,青年员工人.(Ⅱ)X的可取值为0,1,2,,,.所以X的分布列为X012P数学期望E(X)=.18.如图,已知四边形ABCD为菱形,且∠A=60°,取AD中点为E.现将四边形EBCD 沿BE折起至EBHG,使得∠AEG=90°.(Ⅰ)求证:AE⊥平面EBHG;(Ⅱ)求二面角A﹣GH﹣B的余弦值;(Ⅲ)若点F满足,当EF∥平面AGH时,求λ的值.【分析】(Ⅰ)只需证明GE⊥AE,BE⊥AE,GE∩BE=E,由线面垂直的判定定理可得证明;(Ⅱ)以E为原点,EA,EB,EG所在直线分别为x,y,z轴,求得平面AGH的法向量和平面EBHG的法向量.设二面角A﹣GH﹣B的大小为θ(θ<900),即可得到所求值;(Ⅲ)由,则,由.计算可得所求值.解:(Ⅰ)证明:在左图中,△ABD为等边三角形,E为AD中点所以BE⊥AD,所以BE⊥AE.因为∠AEG=90°,所以GE⊥AE.因为GE⊥AE,BE⊥AE,GE∩BE=E所以AE⊥平面EBHG.(Ⅱ)设菱形ABCD的边长为2,由(Ⅰ)可知GE⊥AE,BE⊥AE,GE⊥BE.所以以E为原点,EA,EB,EG所在直线分别为x,y,z轴,建立如图空间坐标系可得A(1,0,0),,G(0,0,1),.,设平面AGH的法向量为,所以,即.令x=1,则.平面EBHG的法向量为.设二面角A﹣GH﹣B的大小为θ(θ<900).(Ⅲ)由,则,所以.因为EF∥平面AGH,则.即1﹣2λ=0.所以.19.已知椭圆的右焦点为F(1,0),离心率为.直线l过点F且不平行于坐标轴,l与C有两交点A,B,线段AB的中点为M.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:直线OM的斜率与l的斜率的乘积为定值;(Ⅲ)延长线段OM与椭圆C交于点P,若四边形OAPB为平行四边形,求此时直线l 的斜率.【分析】(Ⅰ)由题可知,c=1,,再结合a2=b2+c2,解出a和b的值即可得解;(Ⅱ)设直线l的方程为y=k(x﹣1)(k≠0),A(x1,y1),B(x2,y2),联立直线l的方程和椭圆的方程,消去y得到关于x的一元二次方程,写出两根之和与系数的关系;由于M为线段AB的中点,利用中点坐标公式可用k表示点M的坐标,利用可求出直线OM的斜率,进而得解;(Ⅲ)若四边形OAPB为平行四边形,则,利用平面向量的线性坐标运算可以用k表示点P的坐标,再将其代入椭圆方程即可得到关于k的方程,解之即可得解.解:(Ⅰ)由题意可知,c=1,,∵a2=b2+c2,∴,∴椭圆的方程为.(Ⅱ)设直线l的方程为y=k(x﹣1)(k≠0),A(x1,y1),B(x2,y2),联立,消去y得,(2k2+1)x2﹣4k2x+2k2﹣2=0,则,∵M为线段AB的中点,∴,,∴,∴为定值.(Ⅲ)若四边形OAPB为平行四边形,则,∴,,∵点P在椭圆上,∴,解得,即,∴当四边形OAPB为平行四边形时,直线l的斜率为.20.已知函数,f(x)=x2(x>0),g(x)=alnx(a>0).(Ⅰ)若f(x)>g(x)恒成立,求实数a的取值范围;(Ⅱ)当a=1时,过f(x)上一点(1,1)作g(x)的切线,判断:可以作出多少条切线,并说明理由.【分析】(Ⅰ)令h(x)=f(x)﹣g(x)=x2﹣alnx(x>0),则h′(x)=,利用当x变化时,h′(x),h(x)的变化情况可得当0<a<2e时,h(x)>0恒成立,即f(x)>g(x)恒成立;(Ⅱ)当a=1时,g(x)=lnx,设过点(1,1)的直线l与g(x)=lnx相切于点P(x0,y0),则=,整理得x0lnx0﹣2x0+1=0,令m(x)=xlnx﹣2x+1,则m(x)在(0,+∞)上的零点个数与切点P的个数一一对应,m′(x)=lnx﹣1,令m′(x)=lnx﹣1=0解得x=e.通过对x变化时,m′(x),m(x)的变化情况的分析,可得答案.解:令h(x)=f(x)﹣g(x)=x2﹣alnx(x>0),所以h′(x)=2x ﹣=,令h′(x )==0,解得x =,当x变化时,h′(x),h(x)的变化情况如下表:x(0,)(,+∞)h′(x),﹣0+h (x),减极小值增所以在(0,+∞)的最小值为h ()=﹣aln =﹣ln,令h ()>0,解得0<a<2e,所以当0<a<2e时,h(x)>0恒成立,即f(x)>g(x)恒成立.(Ⅱ)可作出2条切线.理由如下:当a=1时,g(x)=lnx,设过点(1,1)的直线l与g(x)=lnx相切于点P(x0,y0),g′(x0)=,即=,整理得x0lnx0﹣2x0+1=0,令m(x)=xlnx﹣2x+1,则m(x)在(0,+∞)上的零点个数与切点P的个数一一对应,m′(x)=lnx﹣1,令m′(x)=lnx﹣1=0解得x=e.当x变化时,m′(x),m(x)的变化情况如下表:x(0,e)e(e,+∞)m′(x)﹣0+m(x)减极小值增所以m(x)在(0,e)上单调递减,在(e,+∞)上单调递增,且m ()=ln ﹣+1=﹣+1>0,m(e)=elne﹣2e+1=﹣e+1<0,m(e2)=e2lne2﹣2e2+1=1>0,所以m(x )在(,e)和(e,e2)上各有一个零点,即xlnx﹣2x+1=0有两个不同的解,所以过点(1,1)可以作出2条切线.21.有限个元素组成的集合A={a1,a2,…,a n},n∈N*,记集合A中的元素个数为card (A),即card(A)=n.定义A+A={x+y|x∈A,y∈A},集合A+A中的元素个数记为card(A+A),当card(A+A )=时,称集合A具有性质P.(Ⅰ)A={1,4,7},B={2,4,8},判断集合A,B是否具有性质P,并说明理由;(Ⅱ)设集合A={a1,a2,a3,2020}.a1<a2<a3<2020,且a i∈N*(i=1,2,3),若集合A具有性质P,求a1+a2+a3的最大值;(Ⅲ)设集合A={a1,a2,…,a n},其中数列{a n}为等比数列,a i>0(i=1,2,…,n)且公比为有理数,判断集合A是否具有性质P并说明理由.【分析】(Ⅰ)由已知集合结合定义求得A+A与B+B,再由性质P的概念判断;(Ⅱ)首先说明若三个数a,b,c成等差数列,则A={a,b,c}不具有性质P,由a1<a2<a3<2020,得a3≤2019,结合集合A具有性质P依次求出a3=2019,a2=2017,a1=2014,可得a1+a2+a3的最大值;(Ⅲ)设等比数列的公比为q ,得(a1>0)且q为有理数,假设当i<k≤l<j时有a i+a j=a k+a l成立,则有q j﹣i=q k﹣i+q l﹣i﹣1,设q=(m,n∈N*且m与n互质),因此有﹣1,整理后出现矛盾,说明a i+a j=a k+a l不成立,得到card(A+A)=,说明集合A具有性质P.解:(Ⅰ)集合A不具有性质P,集合B具有性质P.事实上,∵A={1,4,7},∴A+A={2,5,8,11,14},card(A+A)=5≠,故A不具有性质P;∵B={2,4,8},∴B+B={4,6,8,10,12,16},card(B+B)=6=,故B 具有性质P.(Ⅱ)若三个数a,b,c成等差数列,则A={a,b,c}不具有性质P,理由是a+c=2b.∵a1<a2<a3<2020,且a i∈N*(i=1,2,3),∴a3≤2019,要使a1+a2+a3取最大,则a3=2019,a2≤2018,易知{2018,2019,2020}不具有性质P,要使a1+a2+a3取最大,则a2=2017,a1≤2016,要使a1+a2+a3取最大,检验可得a1=2014;∴(a1+a2+a3)max=6050;(Ⅲ)集合A具有性质P.设等比数列的公比为q,∴(a1>0)且q为有理数.假设当i<k≤l<j时有a i+a j=a k+a l成立,则有q j﹣i=q k﹣i+q l﹣i﹣1.∵q为有理数,设q=(m,n∈N*且m与n互质),因此有﹣1,即m j﹣i=m k﹣i n j﹣k+m l﹣i n j﹣l﹣n j﹣i.上式左边是m的倍数,右边是n的倍数,而m与n互质,显然a i+a j=a k+a l不成立.∴card(A+A)=,故集合A具有性质P.。
2019-2020年高三3月第一次综合练习(一模)数学文试题 含答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知全集,集合,,则A .B . C. D . 2.已知为虚数单位,则复数=A .B .C .D . 3.已知非零平面向量,“”是“”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.执行如图所示的程序框图,输出的值为 A. B. C. D.5.在中,角所对的边分别为,若,则 A. B. C.D.6.已知某四棱锥的三视图如图所示,则该四棱锥的侧面积是A. B. C. D.正视图俯视图侧视图7. 某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是B. 结余最高的月份是7月份C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)8. 若圆与曲线的没有公共点,则半径的取值范围是 A .B .C .D .第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知函数则 .10.已知双曲线过抛物线的焦点,则此双曲线的渐近线方程为 .11.已知递增的等差数列的首项,且,,成等比数列,则数列的通项公式 ;____.12.已知不等式组表示的平面区域为.若直线与区域有公共点,则实数a 的取值范围是 . 13.已知圆,过圆心的直线交圆于两点,交轴于点. 若恰为的中点,则直线的方程为 . 14.甲乙两人做游戏,游戏的规则是:两人轮流从1(1必须报)开始连续报数,每人一次最少要报一个数,最多可以连续报7个数(如,一个人先报数“1,2”,则下一个人可以有“3”, “3,4”,…,“3,4,5,6,7,8,9”等七种报数方法),谁抢先报到“100”则谁获胜.月如果从甲开始,则甲要想必胜,第一次报的数应该是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()的最小正周期为. (Ⅰ)求的值;(Ⅱ)求在区间上的最大值和最小值. 16.(本小题满分13分) 已知数列的前项和,. (Ⅰ)求数列的通项公式; (Ⅱ)若,求数列的前项和. 17. (本小题满分13分)某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如下表:(Ⅰ)试根据上述数据,求这个班级女生阅读名著的平均本数;(Ⅱ)若从阅读5本名著的学生中任选2人交流读书心得,求选到男生和女生各1人的概率; (Ⅲ)试判断该班男生阅读名著本数的方差与女生阅读名著本数的方差的大小(只需写出结论).(注:方差2222121[()()()]n s x x x x x x n=-+-++-,其中为,…… 的平均数) 18.(本小题共14分)如图,在三棱柱中,底面,,,.分别为和的中点,为侧棱上的动点. (Ⅰ)求证:平面平面;(Ⅱ)若为线段的中点,求证:平面;(Ⅲ)试判断直线与平面是否能够垂直. 若能垂直,求的值;若不能垂直,请说明理由. 19.(本小题共14分)已知椭圆的焦点分别为. (Ⅰ)求以线段为直径的圆的方程;(Ⅱ)过点任作一条直线与椭圆交于不同的两点.在轴上是否存在点,使得?若存在,求出NA MPCB A 1C 1B 1点的坐标;若不存在,请说明理由.20. (本题满分13分)已知函数.(Ⅰ)若求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)设,若函数在区间上存在极值点,求的取值范围.北京市朝阳区高三年级第一次综合练习数学答案(文史类)xx.3 一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15. (本小题满分13分)解:(Ⅰ).因为的最小正周期为,则. …………………6分(Ⅱ)由(Ⅰ)可知.因为所以.则.当,即时,取得最大值是; 当,即时,取得最小值是.在区间的最大值为,最小值为. …………………13分16. (本小题满分13分) 解:(Ⅰ)由,当时,()()221=22114 3.-⎡⎤=------=-⎣⎦n n n a S S n n n n n当时,而,所以数列的通项公式,. ………………………6分 (Ⅱ)由(Ⅰ)可得当为偶数时,()159********,2n nT n n =-+-+-++-=⨯= 当为奇数时,为偶数,112(1)(41)2 1.n n n T T b n n n ++=-=+-+=-+ 综上, …………………………13分 17.(本小题满分13分) 解:(Ⅰ)女生阅读名著的平均本数本.…………………………3分 (Ⅱ)设事件={从阅读5本名著的学生中任取2人,其中男生和女生各1人}.男生阅读5本名著的3人分别记为,女生阅读5本名著的2人分别记为 从阅读5本名著的5名学生中任取2人,共有10个结果,分别是: ,,,,,,,,,.其中男生和女生各1人共有6个结果,分别是: ,,,,,.则. …………………………10分(III ). …………………………13分 18. (本小题满分14分) 证明:(Ⅰ)由已知,为中点,且,所以.又因为,且底面,所以底面. 因为底面,所以, 又, 所以平面. 又因为平面,所以平面平面. ……………………5分(Ⅱ)取中点,连结,,,. 由于,分别为,的中点, 所以,且.则四边形为平行四边形,所以. 又平面,平面, 所以平面.由于,分别为,的中点, 所以.又,分别为,的中点, 所以. 则.又平面,平面, 所以平面.由于,所以平面平面. 由于平面,所以平面. ……………10分 (III )假设与平面垂直, 由平面,则. 设,. 当时,,所以∽,所以. 由已知, 所以,得. 由于,因此直线与平面不能垂直. …………………………………………14分19. (本小题满分13分) 解:(I )因为,,所以.所以以线段为直径的圆的方程为.……………………………3分 (II )若存在点,使得,则直线和的斜率存在,分别设为,. 等价于.NAMPCBA 1C 1B 1 D依题意,直线的斜率存在,故设直线的方程为.由,得.因为直线与椭圆有两个交点,所以.即,解得.设,,则,,,.令,Array ,当时,,所以,化简得,,所以.当时,也成立.所以存在点,使得 (14)分20. (本小题满分13分)解:(Ⅰ)若,函数的定义域为,.则曲线在点处切线的斜率为.而,则曲线在点处切线的方程为.……………3分(Ⅱ)函数的定义域为,.(1)当时,由,且此时,可得.令,解得或,函数为减函数;令,解得,但,所以当,时,函数也为增函数.所以函数的单调减区间为,,单调增区间为,.(2)当时,函数的单调减区间为,.当时,函数的单调减区间为,.当时,由,所以函数的单调减区间为,.即当时,函数的单调减区间为,.(3)当时,此时.令,解得或,但,所以当,,时,函数为减函数;令,解得,函数为增函数.所以函数的单调减区间为,,,函数的单调增区间为. …………9分(Ⅲ)(1)当时,由(Ⅱ)问可知,函数在上为减函数,所以不存在极值点;(2)当时,由(Ⅱ)可知,在上为增函数,在上为减函数.若函数在区间上存在极值点,则,解得或,所以.综上所述,当时,函数在区间上存在极值点.…………13分。