基于递归最小二乘支持向量机的动态系统建模研究
- 格式:pdf
- 大小:457.51 KB
- 文档页数:6
《基于最小二乘支持向量机的短时交通流预测方法研究》篇一一、引言随着城市化进程的加快和交通网络复杂性的提升,准确预测短时交通流量对于智能交通系统的建设和交通规划显得愈发重要。
准确的短时交通流预测能够提高交通运行效率、降低交通拥堵程度、改善城市居民出行体验,并有助于实现智能交通系统的智能化和自动化。
然而,由于交通流量的动态变化性、非线性和不确定性,传统的预测方法往往难以满足实际需求。
因此,本文提出了一种基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的短时交通流预测方法。
二、最小二乘支持向量机理论最小二乘支持向量机是一种基于统计学习理论的机器学习方法,它通过构建一个高维空间中的超平面来对数据进行分类或回归。
与传统的支持向量机相比,LSSVM在处理回归问题时具有更好的泛化能力和更高的预测精度。
此外,LSSVM还具有算法简单、计算量小等优点,适用于处理大规模数据集。
三、短时交通流预测模型的构建1. 数据预处理:首先,收集历史交通流量数据,并对数据进行清洗、去噪和标准化处理,以消除异常值和噪声对预测结果的影响。
2. 特征提取:从历史交通流量数据中提取出与短时交通流预测相关的特征,如时间、天气、节假日等。
3. 模型构建:利用LSSVM构建短时交通流预测模型。
具体地,将历史交通流量数据作为输入,将预测的目标值(如未来某一时刻的交通流量)作为输出,通过优化算法求解得到模型参数。
4. 模型训练与优化:利用训练数据集对模型进行训练,通过交叉验证等方法对模型进行优化,以提高模型的预测精度。
四、实验与分析1. 数据集与实验环境:本文采用某城市实际交通流量数据作为实验数据集,实验环境为高性能计算机。
2. 实验方法与步骤:将实验数据集分为训练集和测试集,利用训练集对模型进行训练和优化,利用测试集对模型进行测试和评估。
3. 结果与分析:通过对比LSSVM与其他传统预测方法的预测结果,发现LSSVM在短时交通流预测方面具有更高的预测精度和更强的泛化能力。
递归最小二乘法
递归最小二乘法( Recursive least squares,
RLS )是一种常用的滤波器,它与传统的最小二乘法(Least Squares)相比,在处理动态变化的系统参数时,具有较快的收敛性、鲁棒性以及计算的实时性。
RLS算法的基本思想是利用历史数据来更新系统参数,这个过程可以看作是对模型参数的一种不断优化,即在每一步更新中,都是从历史数据中学习出最佳模型参数,从而达到预测和控制的目的。
因此,RLS算法可以将误差信号最小化,并得到最优的模型参数。
RLS算法的基本步骤如下: 1. 首先,根据输入和输出的历史数据,初始化模型参数; 2. 然后,求解系统的输出误差; 3. 根据计算的误差,更新模型参数,使得误差最小; 4. 重复上述三个步骤,直到模型参数收敛为止。
基于梯度信息的最小二乘支持向量回归机周晓剑;马义中;刘利平;汪建均【摘要】To solve the problem of the larger number of samples being required to improve the regression accuracy in the least squares support vector regressions (LS-SVR), a model of gradient-en hanced least squares support vector regression (GE-LSS-VR)is proposed. After changing the objective functions and constraint conditions, the gradient is introduced into the model, and the decision function is reconstructed. Three benchmark functions are used to verify the model. Three commonly-used measurement criterions are used to compare the experimental results. The results show that the model presented here can achieve an ideal regression accuracy at the cost of smaller samples.%为了解决传统最小二乘支持向量回归机(LS-SVR)对训练样本量要求过高的问题,提出了基于梯度信息的支持向量回归机(GE-LS-SVR)模型.通过修改目标函数及约束条件,将梯度信息引入模型的构建中,重新构造了决策函数.采用了三个基准函数对模型进行了验证,并用三个常用度量准则对实验结果进行了比较.结果表明提出的模型能在较少样本的情况下达到较为理想的回归精度.【期刊名称】《南京理工大学学报(自然科学版)》【年(卷),期】2011(035)001【总页数】6页(P138-143)【关键词】支持向量机;最小二乘支持向量回归机;梯度信息;计算机试验【作者】周晓剑;马义中;刘利平;汪建均【作者单位】南京理工大学,经济管理学院,江苏,南京,210094;南京理工大学,经济管理学院,江苏,南京,210094;南京理工大学,经济管理学院,江苏,南京,210094;南京理工大学,经济管理学院,江苏,南京,210094【正文语种】中文【中图分类】TP18在许多工程分析中都要求运行复杂的且计算代价很高的分析和模拟代码,如有限元分析和计算流体力学。
支持向量机和最小二乘支持向量机的比较及应用研究一、本文概述随着和机器学习技术的迅速发展,支持向量机(Support Vector Machine, SVM)和最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)作为两类重要的分类和回归算法,在诸多领域都取得了显著的应用成果。
本文旨在对SVM和LSSVM进行深入研究,对比分析两者的理论原理、算法特性以及应用效果,探讨各自的优势和局限性,从而为实际问题的求解提供更为精准和高效的算法选择。
本文首先回顾SVM和LSSVM的基本理论和算法实现,阐述其在处理分类和回归问题时的基本思想和方法。
随后,通过对比分析,探讨两者在算法复杂度、求解效率、泛化性能等方面的差异,并结合具体应用场景,评估两种算法的实际表现。
在此基础上,本文将进一步探索SVM和LSSVM在实际应用中的优化策略,如参数选择、核函数设计、多分类处理等,以提高算法的性能和鲁棒性。
本文将总结SVM和LSSVM的优缺点,并对未来研究方向进行展望。
通过本文的研究,希望能够为相关领域的研究者和实践者提供有益的参考,推动SVM和LSSVM在实际应用中的进一步发展。
二、支持向量机(SVM)的基本原理与特点支持向量机(Support Vector Machine, SVM)是一种基于统计学习理论的机器学习算法,它主要用于分类、回归和异常检测等任务。
SVM 的基本思想是通过寻找一个最优超平面来对数据进行分类,使得该超平面能够最大化地将不同类别的数据分隔开。
这个超平面是由支持向量确定的,这些支持向量是离超平面最近的样本点。
稀疏性:SVM 的决策函数仅依赖于少数的支持向量,这使得模型具有稀疏性,能够处理高维数据并减少计算复杂度。
全局最优解:SVM 的优化问题是一个凸二次规划问题,这意味着存在唯一的全局最优解,避免了局部最优的问题。
核函数灵活性:SVM 可以通过选择不同的核函数来处理不同类型的数据和问题,例如线性核、多项式核、径向基函数(RBF)核等。