半导体光电子学 §3.1 光波的电磁场理论
- 格式:ppt
- 大小:266.50 KB
- 文档页数:9
光的电磁理论光的本性认识微粒说波动说电磁说16001700180019002000光子说伽森荻牛顿托马斯·杨惠更斯菲涅耳法拉第麦克斯韦赫兹爱因斯坦电磁波谱第二节基本物理量:E, D, H, B电磁场的场矢量电场强度矢量E,单位是每米伏特(v/m)电位移矢量D,单位是每平方米库伦(C/m2)磁感应强度矢量B,单位是特斯拉(T)磁场强度矢量H,单位是每米安培(A/m)E和B是电磁场的基本构成量,D和H是描述电磁场与物质之间相互作用的辅助量。
静电场和稳恒磁场规律关于静电场和稳恒磁场的基本规律,可总结归纳成四条基本定理:* 静电场的高斯定理* 静电场的环路定理* 稳恒磁场的高斯定理* 磁场的安培环路定理上述这些定理都是孤立地给出了静电场和稳恒磁场的规律,对变化电场和变化磁场并不适用。
•由麦克斯韦的假设可知,变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。
这就是麦克斯韦电磁场理论的基本概念。
•在麦克斯韦电磁场理论中,自由电荷可激发电场,变化磁场也可激发电场。
又由于稳恒电流可激发磁场,变化电场也可激发磁场。
因此,在电磁场的基本规律中,应该既包含稳恒电、磁场的规律,也包含变化电磁场的规律。
根据麦克斯韦提出的涡旋电场和位移电流的概念,变化的磁场可以在空间激发变化的涡旋电场,而变化的电场也可以在空间激发变化的涡旋磁场。
因此,电磁场可以在没有自由电荷和传导电流的空间单独存在。
变化电磁场的规律是:1.电场的高斯定理:在没有自由电荷的空间,由变化磁场激发的涡旋电场的电场线是一系列的闭合曲线。
通过场中任何封闭曲面的电位移通量等于零。
2.电场的环路定理:涡旋电场是非保守场,满足安培环路定理。
3.磁场的高斯定理:变化的电场产生的磁场和传导电流产生的磁场相同,都是涡旋状的场,磁感线是闭合线。
因此,磁场的高斯定理仍适用。
4.由磁场的安培环路定理可知变化的电场和它所激发的磁场满足此环路定理。
《半导体光电子学》教学大纲一、课程信息课程名称:半导体光电子学课程类别:素质选修课/专业基础课课程性质:选修/必修计划学时:64计划学分:4先修课程:无选用教材:《半导体光电子学》,黄德修,黄黎蓉,洪伟编著,电子工业出版社教材,2018.6。
适用专业:本课程可作为大学理科光学专业、工科物理电子学、光学工程和光电信息工程等专业本科生的教学课程和相关专业研究生的参考课程,也可供相关科技工作者参考。
课程负责人:二、课程简介半导体光电子学是研究半导体中光子与电子相互作用、光能与电能相互转换的一门科学,涉及量子力学、固体物理、半导体物理等一些基础物理,也关联着半导体光电子材料及其相关器件,在信息和能源等领域有着广泛的应用。
半导体光电子器件的性能改善无不是通过不断优化半导体材料和器件结构以增强电子与光子的相互作用、实现高效电能与光能相互转换的结果,其中异质结所形成的电子势垒和光波导的双重效应起到了关键作用。
本课程分10个单元,各单元内容相互关联,形成当今半导体光电子学较为完整的、理论和实际应用相结合的体系。
三、课程教学要求注:“课程教学要求”栏中内容为针对该课程适用专业的专业毕业要求与相关教学要求的具体描述。
“关联程度”栏中字母表示二者关联程度。
关联程度按高关联、中关联、低关联三档分别表示为“H”“M”或“L”。
“课程教学要求”及“关联程度”中的空白栏表示该课程与所对应的专业毕业要求条目不相关。
四、课程教学内容五、考核要求及成绩评定注:此表中内容为该课程的全部考核方式及其相关信息。
六、学生学习建议(一)学习方法建议1.依据专业教学标准,结合岗位技能职业标准,通过案例展开学习,将每个项目分成多个任务,系统化地学习。
2.了解行业企业技术标准,注重学习新技术、新工艺和新方法,根据教材中穿插设置的半导体光电子器件应用相关实例,对已有技术持续进行更新。
3.通过开展课堂讨论、实践活动,增强的团队协作能力,学会如何与他人合作、沟通、协调等等。
电磁理论基础知识点总结1. 电磁场基本概念电磁场是指电荷和电流周围的空间中存在的一种物理场。
它由电场和磁场组成。
电场是由电荷产生的,以电荷为源的电场遵循库仑定律,其力的方向与电荷的性质有关。
磁场是由电流产生的,以电流为源的磁场遵循安培定律,其力的方向与电流的方向有关。
2. 电场基本概念电场是由电荷引起的物理场。
在一个电场中,对于一个电荷,该电荷所受到的力与电场的强度和电荷本身的性质有关。
电场强度(E)描述了电场的强弱,单位为伏/米(V/m)。
在电场中,正电荷和负电荷具有不同的电势能,电势能与电场强度和电荷的位置有关。
电势(V)描述了电场中的电势能,单位为伏特(V)。
3. 磁场基本概念磁场是由电流引起的物理场。
在一个磁场中,对于一个电流,该电流所受到的力与磁场的强度和电流本身的性质有关。
磁感应强度(B)描述了磁场的强弱,单位为特斯拉(T)。
在磁场中,电流所受到的力与磁感应强度、电流的方向和长度有关。
磁感应强度也可以描述为单位长度上的磁场强度。
磁感应强度的方向由右手定则确定。
4. 麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程。
它由四个方程组成:高斯定律(电场)、高斯定律(磁场)、法拉第电磁感应定律和安培环路定理。
通过这四个方程,可以描述电磁场的分布和相互作用。
5. 电磁波电磁波是由电场和磁场相互作用而产生的一种能量传播形式。
根据频率的不同,电磁波可以分为不同的种类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
电磁波的传播速度为光速,即299,792,458米/秒。
6. 电磁辐射电磁辐射是指电磁场在空间中传播的过程。
电磁辐射可分为两种类型:自发辐射和感应辐射。
自发辐射是物质在一个激发能源的作用下产生的辐射。
感应辐射是一个变化的电磁场诱导出的辐射。
电磁辐射具有一定的频率和波长,可以通过调节频率和波长来产生不同种类的辐射。
7. 电磁频谱电磁频谱是描述不同类型电磁波的频率和波长范围的分布图。