2.4线段、角的轴对称性(4)
- 格式:pptx
- 大小:192.73 KB
- 文档页数:13
lQABP§线段,角的轴对称性(1)教学案主备人:赵廷尧自主学习问题1:如图,线段AB ,通过折叠,能否是使点A 与点B 重合问题2:线段是轴对称图形吗上面操作中的折痕是什么 <问题3:在折痕上任意取一点C ,连接AC 、BC ,AC 与BC 的数量关系怎样你能证明吗通过以上三个问题的解决你知道了什么 几何语言:∵MN ⊥AB ,AC =BC ,∴_______(线段垂直平分线上的点到线段两 端的距离相等). "探究活动例1、线段的垂直平分线外的点,到这条线段两端的距离相等吗为什么变形:在例1的条件下:1、若AP=6,BP=4,求△QPB 的周长;2、若△QPB 的周长为12,△APB 的周长为17,求AB ; %3、若△QPB 的周长为12,AB =7,求△APB 的周长。
4、若△QCB 的周长为24,△APB 的周长与四边形BPQC 的周长之差为12,求CQA BC例2、如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若BC=25cm ,求△AEG的周长D FC ·例3、如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂线分别与AD、BC相交于点E、F,连接AF.求证:AE=AF.(【课堂练习】:已知:如图,AB=AC=12 cm,AB的垂直平分线分别交AC、AB于D、E,△ABD的周长等于29 cm,求DC的长.\§线段,角的轴对称性(1)达 标 自 测班级 学号 姓名自测内容1.线段垂直平分线上的点到 距离相等。
2、如图,直线MN 是线段AB 的垂直平分线,垂足为D ,点P 是MN 上一点.若AB =10 cm ,则BD =_______cm ;若PA =10 cm ,则PB =_______cm .3.如图,在ΔABC 中,AB 的中垂线交AC 与点E ,若AC=9,AE:CE=2:1,则B 、E 两点间的距离是 。
数学教学设计教材:义务教育教科书·数学(八年级上册)2.4 线段、角的轴对称性(4)1.能利用所学知识提出问题并能解决实际问题;2.能利用角平分线性质定理和逆定理证明相关结论,做到每一步有根有据;3.经历探索角的轴对称应用的过程,在解决问题的过程中培养思考的严谨性和表达的条理性.综合运用角平分线的性质定理和逆定理解决问题.学会证明点在角平分线上.教学过程(教师)学生活动设计思路上节课我们知道了“角平分线上的点到角两边距离相等”,部到角两边距离相等的点在角的平分线上”.这两个定理能问题呢?回忆、思考.点明课题,制造悬念,习热情.知:△ABC的两内角∠ABC、∠ACB的角平分线相交于点P.求的角平分线上.证明点P在∠A的角平分线上,根据角的内部到角两边距离平分线上,只要点P到∠A两边的距离相等,所以过点P做PD、PE,证出PD=PE,而要证PD=PE,因为点P是∠ABC、分线的交点,根据角平分线的性质,点P到∠ABC、∠ACB两等,所以只要做出BC边上的垂线段PF,就可得PD=PF,PE =PE,所以得证.上述问题,你发现三角形的三个内角的角平分线有什么位置1.结合图形认真审题.2.分析、讨论证明思路.3.口述证明思路及证明过程.4.讨论归纳得到结论:三角形的三个内角的角平分线相交于一点.运用例题引导学生逐渐性质定理和逆定理.采用“要证,只要证”导学生逐步学会“分析法”问题解决完后及时进行出三角形“内心”,为学习三打好基础.知:如图2-28,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.证AD垂直平分EF,,.AD=∠CAD, DE⊥AB,DF⊥AC,,.学生利用分析法填空;阐述证明思路;完成证明过程.利用分析法引导学生学培养学生良好的思考习惯.开放的分析过程,提供考路径.完成练习.,说说你的发现,提出你的问题.练习:课本P56练习.学生发现:三角形两外角的角平分线与第三个角的角平分线所在的直线相交于一点;可能提出“三角形三个外角的角平分线所在直线是否相交于一点的问题”.本题是角平分线性质定综合应用,实际上是例2的学生“一折,二画,三学生动手操作,获得成功,的积极性,再次鼓励学生使寻找证明方法.59习题2.4,分析第9、10、11题的思路,任选2题写出学生根据自身实际情况,选题作业.实行作业分层,便于不学生自我发展.。
课时练2.4线段、角的轴对称性1.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点2.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对3.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.4.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为cm.5.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,:S△BCO:S△CAO=.则S△ABO6.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.7.如图,△ABC的周长是12,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD =3,则△ABC的面积是.8.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是.9.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.10.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.11.如图,在△ABC中,∠A=60°,∠ABC=2∠C,BC边的垂直平分线交AC边于点D,交BC边于点E,连接BD,求∠ADB的度数.12.在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分线段AB.(1)求∠A;(2)若DE=2cm,BD=4cm,求AC的长.13.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若AB=21cm,则△CMN的周长=;(第一问直接写答案)(2)若∠MFN=80°,求∠MCN的度数.14.如图,在四边形ABCD中,点E是BC的中点,点F是CD的中点,且AE⊥BC,AF ⊥CD.(1)求证:AB=AD;(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.15.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为;(2)若△ABC的面积为70,求DE的长.16.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.△ABC的面积为70,AB=16,BC=12.求DE的长.17.已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.18.如图,△ABC中,BC=10,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.19.如图,某学校(A点)与公路(直线l)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等.(1)试用直尺和圆规在图中作出点C(不写作法,保留痕迹);(2)求出商店C与车站D之间的距离.20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连接OA、OB、OC,若△OBC的周长为16cm,求OA的长.参考答案1.D.2.D.3.15.4.6.5.4:5:6.6.15.7.18.8.6.9.19.10.解:(1)∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣30°﹣50°=100°,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,∵FG是AC的垂直平分线,∴F A=FC,∴∠F AC=∠ACB=50°,∴∠DAF=∠BAC﹣(∠DAB+∠F AC)=20°;(2)∵△DAF的周长为10,∴AD+DF+F A=10,∴BC=BD+DF+FC=AD+DF+FC=10.11.解:∵∠ABC=2∠C,∴设∠C=α,则∠ABC=2α,∵∠A=60°,∴∠ABC+∠C=120°,∴2α+α=120°,∴α=40°,∴∠C=40°,∵BC边的垂直平分线交AC边于点D,∴BD=CD,∴∠DBC=∠DCB=40°,∴∠ABD=40°,∴∠ADB=180°﹣60°﹣40°=80°.12.解:(1)∵DE是线段AB的垂直平分线,∴AD=BD,∴∠A=∠DBE.∵BD平分∠ABC,∴∠CBD=∠DBE.∵∠C=90°,∴∠A=∠DBE=∠CBD,∴∠A=30°;(2)∵∠C=90°,∴DC⊥BC,∵DE⊥BA,BD平分∠ABC,DE=DC=2cm,∴BD=AD=4cm,∴AC=AD+DC=6cm.13.解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB=21cm,故答案为:21cm;(2)∵∠MFN=80°,∴∠MNF+∠NMF=180°﹣80°=100°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=100°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣100°=80°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×80°=20°.14.(1)证明:连接AC,∵点E是BC的中点,AE⊥BC,∴AB=AC,∵点F是CD的中点,AF⊥CD,∴AD=AC,∴AB=AD.(2)∴∠EAF=∠BAE+∠DAF.证明∵由(1)知AB=AC,即△ABC为等腰三角形.∵AE⊥BC,(已知),∴∠BAE=∠EAC(等腰三角形的三线合一).同理,∠CAF=∠DAF.∴∠EAF=∠EAC+∠F AC=∠BAE+∠DAF.15.解:(1)∵BD是△ABC的角平分线,∴△ABD与△CBD的面积之比为4:3;(2)∵△ABC的面积为70,△ABD与△CBD的面积之比为4:3,∴△ABD的面积为40,又AB=16,则DE=5.16.解:如图,过点D作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,∴DE=DF,S△ABC=×16•DE+×12•DF=70,所以,14DE=70,解得DE=5.17.解:(1)如图所示,DE即为所求作的边AC的垂直平分线;(2)如图,连接CE,∵DE是AC的垂直平分线,∴AE=CE,∴∠A=∠ACE,∵AE=BC,∴CE=BC,∴∠B=∠CEB,设∠A=x,则∠CEB=∠A+∠ACE=x+x=2x,在△BCE中,∠BCE=180°﹣2×2x=180°﹣4x,∴∠ACB=∠ACE+∠BCE=x+180°﹣4x=120°,解得x=20°,即∠A=20°.18.解:∵DE是AB的垂直平分线,∴AE=BE,同理AG=CG,∴△AEG的周长为AE+AG+EG=BE+EG+CG=BC=10.19.解:(1)如图所示:(2)作AB⊥l于B点,则AB=300米.连接AC.∵点C在AD的垂直平分线上,∴CD=CA.∵AB=300,AD=500,∴BD=400.设CD=x,则AC=x,BC=400﹣x.∴3002+(400﹣x)2=x2.解得x=312.5.即商店C与车站D之间的距离CD=312.5米.20.解:(1)如图,∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10cm,∴OC=5cm,∴OA=OC=OB=5cm.。
苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.1 轴对称与轴对称图形一、自主先学1. 观察下列各种图形,判断是否为轴对称图形?如果是,并找出该轴对称图形的对称轴。
2. 下列图片有什么共同特性?二、合作助学3. 折纸印墨迹:在纸的一侧滴一滴墨水后,对折,压平.(1)你发现折痕两边的墨迹形状一样吗?为什么?(2)两边墨迹的位置与折痕有什么关系?(3)归纳:把一个图形沿着某一条直线翻折,如果它能够与另一个图形,那么称这两个图形关于这条直线,也称这两个图形成,这条直线叫做,两个图形中的对应点叫做.4. 观察下列图案,它们有什么共同特征?(1)归纳:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相,那么称这个图形是图形,这条直线叫做.(2)画出上面各图的对称轴.5. 轴对称与轴对称图形的区别与联系.如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个;如果把一个轴对称图形位于轴对称两旁的部分看成两个图形,那么这两部分就成.三、拓展导学6. (1) 正五边形(各边相等且各角也相等的五边形,如图①)有几条对称轴?(2)在图中画一条对角线得到图②,图②有几条对称轴?(3 ) 如果在图②中再画一条对角线,那所得的图形有几条成轴对称?①②四、检测促学7. 下列图形中,是.轴对称图形的为()A. B. C. D.8. 如图,由4个全等的正方形组成L形图案,(1)请你在图案中改变1个正方形的位置,使它变成轴对称图案;(2)请你在图中再添加一个小正方形,使它变成轴对称图案.五、反思悟学9. (1)剪两个全等的三角形,并把它们叠合在一起;(2)把其中的一个三角形沿一边翻折,所得的图形是轴对称图形吗?如果是,指出它的对称轴;(3)再改变其中一个三角形的位置,使这两个三角形成轴对称.lA'B'C'A BCCBAAA'B'苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(1)一、自主先学1. 操作:把一张纸折叠后,用针扎一个孔,再把纸展开,两针孔分别记为点A 、点A ’,折痕记为l . (1) 在下面空白处画出你得到的图形 . (2)连接AA ’, AA ’与 l 相交于点O , 线段AA ’与 l 有什么关系?(可以从位置、数量两个角度考虑)二、合作助学2. 操作:将一张长方形的纸片对折;在纸上画△ABC ;用针尖沿△ABC 各顶点扎小孔将纸展开,连接AA ’、BB ’、CC ’ .① ② ③(1)线段AA ’、BB ’、CC ’与折痕l 有什么关系?(2)图中,线段AB 与''A B 有什么关系?BC 与''B C 呢?(3)图中ABC ∆与'''C B A ∆有什么关系?(4)归纳:垂直并且 一条线段的直线,叫做这条线段的 .如图,直线l 交线段AB 于点O ,∠1 = 90º , AO = BO ,直线l 是线段AB 的垂直平分线. (5) 轴对称的性质:成轴对称的两个图形 , 对应点的连线被对称轴 .3. 如图,线段AB 与''A B 关于直线l 对称. 连接AA ’、BB ’,设它们分别与l 相交于点P 、Q.(1)在所画的图形中,相等的线段有: ; (2)AA ’与BB ’ 平行吗?为什么?三、拓展导学4. 你能求出这7个角的和吗?321BCDA 第5题第6题四、检测促学5.下列说法中,正确的是 ( ) A .关于某直线对称的两个三角形是全等三角形; B .两个全等的三角形是关于某直线对称的;C .两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧;D .若点A 、B 关于直线MN 对称,则AB 垂直平分MN .6.如图,所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°则∠3=_ __°. 7.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积是 cm 2. 8.分别画出下列各图中成轴对称的两个图形的对称轴.① ② ③五、反思悟学9.如何画成轴对称的两个图形或轴对称图形的对称轴?lAlllBAABABl ABC苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(2)一、自主先学1. 思考:如图,点 A 、B 、C 都在方格纸的格点上. 请你再找一个格点D ,使点 A 、B 、C 、D 组成一个轴对称图形.小结:画轴对称图形,应先确定 ,再找出 .2. 如果直线l 外有一点A ,那么怎样画出点A 的对称点A ’?画法图形1. 画AO ⊥l , 垂足为O.2. 在AO 的延长线上截取OA ’,使 OA ’ =AO.点A ’ 就是点A 关于直线l 对称的点.二、合作助学3. 操作:(1)在图①中,用三角尺画线段AB 关于直线l 对称的线段A ’B ’; (2)在图②中,用三角尺画△ABC 关于直线l 对称的△A ’B ’C ’.① ②小结:画一个图形关于一条直线对称的图形,关键是确定 .4. 讨论:在图中,四边形ABCD 与四边形EFGH 关于直线l 对称.连接AC 、BD .设它们相交于点P .怎样找出点P 关于l 的对称点Q ?C ABll BCAOA'B'BAl 第6题第7题DACB小结:成轴对称的两个图形的 也成轴对称. 三、拓展导学5. 如图,三角形Ⅰ的2个顶点分别在直线上1l 和2l 上 ,且1l ⊥2l .画三角形Ⅱ,使它与三角形Ⅰ关于直线2l 对称; 画三角形Ⅲ,使它与三角形Ⅱ关于直线1l 对称; 画三角形Ⅳ,使它与三角形Ⅲ关于直线2l 对称. 所画的三角形Ⅳ与三角形Ⅰ成轴对称吗? 四、检测促学6. 用三角尺画△ABC 关于直线l 对称的三角形.① ②7. 如图,线段AB 与A ’B ’关于对称,AA ’ 交直线 l 于点O.(1)把线段AB 沿直线 l 翻折,重合的线段有: .(2)因为 △OAB 与 △O ’A ’B ’关于直线 l ,所以△OAB ≌△O ’A ’B ’,直线 l 垂直平分线段 ,∠ABO = ,∠AOB ’= . 五、反思悟学8. 如图,长方形的台球桌CDEF 内有黑、白两 球分别位于A 、B 两点,试问怎样撞击白球 A 才能使A 先碰到桌边DE ,反弹后再击中 黑球B?苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.3设计轴对称图案一、自主先学观察、欣赏课本上的绿色食品标志、中国环境标志、国家免检产品标志等,说出这些标志的含义,判断它们是否是轴对称图形,它们是怎么样设计的?你还见过哪些在生活中见过的图案,成轴对称的?(可从一些商标、会徽、车标等方面去发挥)二、合作助学1.对称的美术图案,除图形对称外,有时颜色也要“对称”。
2.4 线段、角的轴对称性(1)一、选择题1.下列命题正确的有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN 是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个2.如图,AC=AD,BC=BD,则()A.CD垂直平分AB B.AB垂直平分CDC.CD平分∠ACB D.以上结论都不正确3.如图,在△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6 cm B.7 cm C.8 cm D.9 cm二、填空题4.在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是______°.5.已知:如图,∠BAC=120°,AB=AC,AC的垂直平分线交BC于D,则∠ADC=______.6.在△ABC中,AB=AC=6cm,AB的垂直平分线与AC相交于E点,且△BCE的周长为10cm,则BC=______ cm.7.在Rt△ABC中,∠C=90°,AC>BC,AB的垂直平分线与AC相交于E点,连结BE,若∠CBE:∠EBA=1:4,则∠A=______度,∠ABC=______度.8.底边AB=a的等腰三角形有______个,符合条件的顶点C在线段AB的______上.三、解答题9.如图所示,在△ABC中,∠C=90°,AB的垂直平分线交AC于D点,垂足为E,且∠1=2∠2,求∠A的度数.10.已知:如图,在△ABC中,边AB,BC的垂直平分线交于P.求证:PA=PB=PC.11.如图,在△ABC中,BC边上的垂直平分线DE交BC于点D,交AC于点E,△ABC的周长为18厘米,△ABE的周长为10厘米,求BD的长.12.如图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线.(1)若BC=13,求△AEG的周长.(2)若∠BAC=126°,求∠EAG的度数.参考答案一、A 解析:①线段垂直平分线上任一点到线段两端距离相等,是线段垂直平分线的性质,符合逆定理,正确;②错误;这是对线段垂直平分线的误解;③有无数条,错误;④点P在线段AB外且PA=PB,过P作直线MN⊥AB,则MN是线段AB的垂直平分线,错误;如图.⑤错误,这是对线段垂直平分线的误解.故选A.2.B 解析:AC=AD,BC=BD.根据线段垂直平分线的性质可得:AB垂直平分CD.故选B.3.D 解析:∵DE是AB的垂直平分线,∴AD=BD.∵AC=5cm,BC=4cm,∴△DBC的周长是:BD+CD+BC=AD+CD+BC=AC+BC=5+4=9(cm).故选D.二、4.15解析:∵AB=AC,∠A=50°,∴∠ABC=∠C=(180°﹣50°)÷2=65°.∵DE为AB 的中垂线,∴AD=BD.∴∠ABD=∠A=50°,∴∠CBD=∠ABC﹣∠ABD=15°.5.120° 解析:∵AB=AC,∠BAC=120°,∴∠C=∠B==30°,∵AC的垂直平分线交BC于D,∴AD=CD,∴∠DAC=∠C=30°,∴∠ADC=180°﹣∠DAC﹣∠C=120°.6.4解析:∵AB=AC=6cm,DE垂直且平分AB,∴BE=AE.∵△BCE的周长为10cm,BE+CE=AC=AB=6,∴BC=10﹣6=4(cm).7.40 50解析:如图.∵DE是线段AB的垂直平分线,∴∠A=∠EBA.∵∠CBE:∠EBA=1:4,∴可设∠CBE=x,则∠A=∠EBA=4x,∵∠C=90°,∴∠CBE+∠A+∠EBA=90°,即9x=90°,解得x=10°,∴∠A=4x=40°,∠ABC=5x=50°.8.无数垂直平分线解析:如图,作线段AB的垂直平分线,在该垂直平分线上任取两点M、N,则有MA=MB、NA=NB,即△MAB、△NAB均为等腰三角形,∴底边AB=a的等腰三角形有无数个,符合条件的顶点C在线段AB的垂直平分线上.三、9.解:∵AB的垂直平分线交AC于D点,∴DB=DA,∠2=∠A(设为α),∴∠BDC=∠2+∠A=2α;∵∠C=90°,∠1=2∠2,∴∠1+∠BDC=90°,即4α=90°,∴α=22.5°,即∠A=22.5°.10.证明:∵点P是边AB,BC的垂直平分线的交点,∴PA=PB,PB=PC,∴PA=PB=PC.11.解:∵C△ABC=18cm,∴AB+AC+BC=18cm. 2分∵DE垂直平分BC,∴EB=EC,BD=BC 4分∵C△ABE=10cm,∴AB+AE+EB=AB+AC=10cm. 5分∴BC=C△ABC﹣C△ABE=8cm. 7分∴BD=BC=4cm. 8分12.解:(1)∵DE、FG分别是边AB、AC的垂直平分线,BC=13,∴BE=AE,CG=AG,∴△AEG的周长=AE+AG+EG=BE+CG+EG=BC=13;(2)在△ABC中,∠BAC=120°,∴∠B+∠C=180°﹣120°=60°,∵DE是AB的垂直平分线,∴EB=EA,∴∠1=∠B,同理可得∠2=∠C,又∵∠1+∠2+∠B+∠C+∠EAG=180°,∴2(∠B+∠C)+∠EAG=180°,∴∠EAG=60°.2.4 线段、角的轴对称性(2)一、选择题1.到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点 D.三条垂直平分线的交点2.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,有下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个B.3个C.2个D.1个二、填空题3.如图,在△ABC中,DE垂直平分AC,与AC交于E,与BC交于D,∠C=15°,∠BAD=60°,则△ABC是______三角形.4.如图,∠ABC=70°,∠A=50°,AB的垂直平分线交AC于D,则∠DBC=______°.5.如图,在△ABC中,AB=AC=17,BC=16,DE垂直平分AC,则△ABD的周长是______.6.如图,在锐角三角形ABC中,∠A=50°,AC、BC的垂直平分线交于点O,则∠1______∠2,∠3______∠4,∠5______∠6,∠2+∠3=______度,∠1+∠4=______度,∠5+∠6=______度,∠BOC=______度.7.在△ABC中,∠C=90°,AB的中垂线交直线BC于D,若∠BAD﹣∠DAC=22.5°,则∠B 的度数是______.三、解答题8.(1)分别作出点P,使得PA=PB=PC;(2)观察各图中的点P与△ABC的位置关系,并总结规律:当△ABC为锐角三角形时,点P在△ABC的______;当△ABC为直角三角形时,点P在△ABC的______;当△ABC为钝角三角形时,点P在△ABC的______;反之也成立,且在平面内到三角形各顶点距离相等的点只有一个.9.如图,已知AE=CE,BD⊥AC.求证:AB+CD=AD+BC.10.如图,△ABC中,AB=AC,O是△ABC内一点,且∠OBC=∠OCB,求证:AO⊥BC.11.已知:如图∠ABC=∠ACB,AD平分∠BAC,点P在直线AD上,求证:PB=PC.参考答案1.D;2.B;3.直角;4.20;5.33;6.=;=;=;50;50;80;100;7.37.5°或67.5°;8.内部;斜边的中点;外部;9.10.11.。
课时NO: 主备人:审核人用案时间:年月日星期教学课题 2.4 线段、角的轴对称性(2)教学目标1.探索并证明线段垂直平分线的性质定理的逆定理,会用尺规作线段的垂直平分线;2.能利用所学知识提出问题并解决实际问题;3.经历探索线段的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性.教学重点利用线段的轴对称性探索线段垂直平分线的性质定理的逆定理.教学难点灵活运用线段垂直平分线的性质解决实际问题.教学方法教具准备教学课件教学过程个案补充一.自主先学:实践探索一在一张薄纸上画一条线段AB,你能找出与线段AB的端点A、B距离相等的点吗?这样的点有多少个?实践探索二如果一个点在一条线段的垂直平分线上,那么这个点到这条线段两端的距离相等.反过来,如果一个点到一条线段的两端的距离相等,那么这个点在这条线段的垂直平分线上吗?如图2-21(1),若点Q在线段AB上,且QA=QB,则Q是线段AB的中点,则点Q在线段AB的垂直平分线上.如图2-21(2),若点Q是线段AB外任意一点,且QA=QB,那么点Q在线段AB的垂直平分线上吗?为什么?通过上述探索,你得到了什么结论?分析:全等三角形的判定与性质,线段垂直平分线的性质五.小结与反思:课外作业:布置作业板书设计教后札记实践探索四如果任意一个点在角平分线上,那么这个点到这个角的两边距离相等.反过来,结合上节课所学,你有什么猜想?如图2-26,若点Q 在∠AOB 内部,QD ⊥OA ,QE ⊥OB ,且QD =QE ,点Q 在∠AOB 的角平分线上吗?为什么?通过上述探索,你得到了什么结论?二.探究交流如图,△ABC 中,P 是角平分线AD ,BE 的交点。
求证:点P 在∠C 的平分线上。
三.交流展示OAB Q DE 2-26如图,AD∥BC,CD⊥AD,AE平分∠BAD,且E是DC的中点,EF⊥AB 于点F,判断AD、BC与AB之间的数量关系并说明理由。