人教版九年级(上册)数学培优资料(一)
- 格式:doc
- 大小:85.50 KB
- 文档页数:3
九年级数学同步培优讲义(人教版)[培优目标]巩固加强学生对基本概念、性质、定理的理解掌握;提升学生的运算能力、分析能力、综合能力和创新能力;拓宽学生思路,开拓学生视野,培养学生学习兴趣。
[课时分析]每周两个课时。
第一课时以讲为主,讲练结合;第二课时以练为主,即时批阅反馈,个别辅导。
[课堂模式]20人以内的小班模式,精讲精练,力求每个学生掌握全部知识要点。
讲课过程注重对学生的引导,从“怎么做”提升到“为什么这么做”,把握题目核心要点,实现触类旁通;鼓励学生从讨论中相互学习;培养学生独立解决问题的能力,尤其是独立分析解决新题、难题的能力。
[讲义模块]讲义主要包含三个模块:章节知识结构、典型例题分析、精品练习巩固。
章节知识结构帮助学生梳理基本概念、性质、定理及相互间的联系;典型例题分析通过一题多解、一题多变等方式实现重难点突破;精品练习巩固以创新题目为主,在典型例题的基础上增加创新内容。
第二十一章二次根式1、下列各式中,不是二次根式的是()A B2、二次根式4122--xx有意义时的x的取值范围是。
3、已知:122+--++=xxy,则2001)(yx+= 。
类型二:考查二次根式的性质(非负性、化简)4、代数式243x--的最大值是。
5、实数在数轴上的位置如图1所示,化简|a-1|+2)2(-a= 。
6、把34-的根号外的因式移到根号内得;625-的平方根是。
7、化简:=--xx1;=-+-+-222)72()57(2)73(。
类型三:考查同类二次根式与最简二次根式(化简)8、把313,32,2721,7521按由大到小的顺序排列为:类型四:考查二次根式的运算(加减乘除混合运算、分母有理化)9、若32+=a,32-=b,则a与b的关系是()A.互为相反数;B.互为倒数;C.互为负倒数;D.以上均不对。
10、已知:,12(1x+1y)的值。
(想一想:有几种解法?)11、计算:100991431321211++++++++(图1)1,则它的边长为 。
九年级上册期末培优复习题(一)一.选择题1.张老师出示方程x 2﹣4=0,四位同学给出了以下答案:小丽:x =2;子航:x =﹣2;一帆:x 1=2,x 2=﹣2;萱萱:x =±4.你认为谁的答案正确?你的选择是( )A .小丽B .子航C .一帆D .萱萱2.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( )A .戴口罩讲卫生B .勤洗手勤通风C .有症状早就医D .少出门少聚集3.下列事件为必然事件的是( )A .射击一次,中靶B .12人中至少有2人的生日在同一个月C .画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上4.已知二次函数y =x 2﹣4x +5的顶点坐标为( )A .(2,1)B .(﹣2,﹣1)C .(2,﹣1)D .(﹣2,1)5.上蔡县是古蔡国所在地,有着悠久的历史,拥有很多重点古迹.某中学九年级历史爱好者小组成员小华和小玲两人计划在寒假期间从“蔡国故城、白圭庙、伏羲画卦亭”三个古迹景点随机选择其中一个去参观,两人恰好选择同一古迹景点的概率是( )A .B .C .D .6.如图,PA ,PB 切⊙O 于A ,B 两点,CD 切⊙于点E ,交PA 、PB 于C 、D ,若△PCD 的周长等于4,则线段PA 的长是( )A.4 B.8 C.2 D.17.如图,在Rt△ABC中,∠ACB=90°,∠ABC=25°.将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A'B'C使得点A′恰好落在AB边上,则α等于()A.55°B.50°C.65°D.60°8.用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.5 B.10 C.5πD.10π9.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为()A.﹣1,0 B.﹣1,1 C.1,3 D.﹣1,310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,分析下列四个结论:①abc<0;②b2﹣4ac>0;③2a﹣b=0;④a+b+c<0.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题11.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.12.有一人患了流感,假如平均一个人传染了x个人,经过两轮感染后共有121人患了流感,依题意可列方程为.13.在半径为5cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为2cm,则油槽面宽AB=cm.14.若代数式x2+4x﹣1的值比3x2﹣2x的值大3,则x的值为.15.设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为.16.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE =S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中不正确的有.三.解答题17.解方程:(1)(x﹣3)2=16(2)x2﹣2x﹣4=018.建立直角坐标系,解决以下问题:(1)画出下列各点,并把各点依次连接成封闭图形.A(﹣2,3),B(2,3),C(5,0),D(2,﹣3),E(﹣2,﹣3),F(﹣5,0).(2)指出上面各点所在的象限或坐标轴.(3)分别写出上面各点关于x 轴,y 轴和原点的对称点.19.在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同),其中白球2个、黄球1个,若从中任意摸出一个球是白球的概率是,(1)求暗箱中红球的个数;(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率.(用树形图或列表法求解)20.已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.21.如图,AB 是⊙O 的直径,弦EF ⊥AB 于点C ,点D 是AB 延长线上一点,∠A =30°,∠D =30°.(1)求证:FD 是⊙O 的切线;(2)取BE 的中点M ,连接MF ,若⊙O 的半径为2,求MF 的长.22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)23.如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B 两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.答案与解析一.选择题1.解:当x=2时,x2﹣4=0;当x=﹣2时,x2﹣4=0,所以方程的解为x1=2,x2=﹣2.故选:C.2.解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、既是中心对称图形也是轴对称图形,故此选项符合题意;D、不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.3.解:A.射击一次,中靶是随机事件;B.12人中至少有2人的生日在同一个月是随机事件;C.画一个三角形,其内角和是180°是必然事件;D.掷一枚质地均匀的硬币,正面朝上是随机事件;故选:C.4.解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴该函数的顶点坐标为(2,1),故选:A.5.解:把“蔡国故城、白圭庙、伏羲画卦亭”分别用A、B、C表示,用列表法表示所有可能出现的结果如下:共有9种可能出现的结果数,其中,两人选同一景点的有3种,∴两人恰好选择同一古迹景点的概率是=;故选:A.6.解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB∵△PCD的周长等于4,∴PC+CD+PD=4,∴PA +PB =4,∴PA =2.故选:C .7.解:∵∠ACB =90°,∠ABC =25°,∴∠A =90°﹣∠B =65°,由旋转的性质得:CA =CA ′,∴∠A =∠CA ′A =65°,∴α=∠ACA ′=180°﹣2×65°=50°,故选:B .8.解:设该圆锥底面圆的半径为r ,根据题意得2πr =,解得r =5,即该圆锥底面圆的半径为5.故选:A .9.解:由图象可知,该函数的对称轴是直线x =1,与x 的轴的一个交点是(3,0),则该函数与x 轴的另一个交点是(﹣1,0),即当y =0时,0=﹣x 2+2x +m 时x 1=3,x 2=﹣1,故关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=3,x 2=﹣1,故选:D .10.解:①∵二次函数图象开口向下,对称轴在y 轴左侧,与y 轴交于正半轴, ∴a <0,﹣<0,c >0, ∴b <0,∴abc >0,结论①错误;②∵二次函数图象与x 轴有两个交点,∴b 2﹣4ac >0,结论②正确;③∵﹣>﹣1,a <0, ∴b >2a ,∴2a ﹣b <0,结论③错误;④∵当x =1时,y <0;∴a+b+c<0,结论④正确.故选:B.二.填空题(共6小题)11.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.12.解:依题意,得:1+x+x(1+x)=121或(1+x)2=121.故答案为:1+x+x(1+x)=121或(1+x)2=121.13.解:连接OA,过O作OD⊥AB于D,交⊙O于D,∴AB=2AD,OD=OA﹣2=3,在Rt△AOD中,OA2=AD2+OD2,∴52﹣32=16,∴AD=4,∴AB=8,故答案为:8.14.解:根据题意得:x2+4x﹣1﹣3x2+2x=3,即x2﹣3x+2=0,分解因式得:(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,故答案为:1或215.解:∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.故答案为:1000.16.解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中,,∴△BOD≌△COE(ASA),∴BD=CE,OD=OE,∴①正确;∵△BOD≌△COE,∴S△BOD =S△COE,∴四边形ODBE的面积=S△OBC ═S△ABC==,故③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=OE OE=OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE ≠S△BDE;故②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,∴④正确.故答案为:②.三.解答题(共7小题)17.解:(1)∵(x﹣3)2=16,∴x﹣3=±4,∴x=﹣1或x=7;∴x1=﹣1,x2=7.(2)∵x2﹣2x﹣4=0,∴x2﹣2x+1=5,∴(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.18.解:(1)如图所示;(2)A(﹣2,3)在第二象限,B(2,3)在第一象限,C(5,0)在x轴的正半轴上,D(2,﹣3)在第四象限,E(﹣2,﹣3)在第三象限,F(﹣5,0)在x轴的负半轴上;(3)A(﹣2,3),B(2,3),C(5,0),D(2,﹣3),E(﹣2,﹣3),F(﹣5,0)关于x轴的对称点分别为:(﹣2,﹣3),(2,﹣3),(5,0),(2,3),(﹣2,3),(﹣5,0);A(﹣2,3),B(2,3),C(5,0),D(2,﹣3),E(﹣2,﹣3),F(﹣5,0)关于y轴的对称点分别为:(2,3),(﹣2,3),(﹣5,0),(﹣2,﹣3),(2,﹣3),(5,0);A(﹣2,3),B(2,3),C(5,0),D(2,﹣3),E(﹣2,﹣3),F(﹣5,0)关于原点的对称点分别为:(2,﹣3),(﹣2,﹣3),(﹣5,0),(﹣2,3),(2,3),(5,0);19.解:(1)设红球有x个,由题意得:,∴x=1即暗箱中红球个数为1个;(2)画树状图如图:共有16种等可能情况,其中两次颜色不同有10种情况,∴P(两次颜色不同)=.20.解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k+8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.21.解:(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴,.∵∠DOF=60°,∴∠MOF=90°.∴MF===.22.解:(1)当销售单价为70元时,每天的销售利润=(70﹣50)×[50+5×(100﹣70)]=4000元;(2)由题得y=(x﹣50)[50+5(100﹣x)]=﹣5x2+800x﹣27500(x≥50).∵销售单价不得低于成本,∴50≤x.且销量>0,5(100﹣x)+50≥0,解得x≤110,∴50≤x≤100.(3)∵该企业每天的总成本不超过7000元∴50×[50+5(100﹣x)]≤7000(8分)解得x≥82.由(2)可知y=(x﹣50)[50+5(100﹣x)]=﹣5x2+800x﹣27500∵抛物线的对称轴为x=80且a=﹣5<0∴抛物线开口向下,在对称轴右侧,y随x增大而减小.∴当x=82时,y有最大,最大值=4480,即销售单价为82元时,每天的销售利润最大,最大利润为4480元.23.解:(1)将二次函数与一次函数联立得:k(x﹣1)2+2=kx﹣k+2,解得:x=1和2,故点A、B的坐标横坐标分别为1和2;(2)OA==,①当OA=AB时,即:1+k2=5,解得:k=±2(舍去2);②当OA=OB时,4+(k+2)2=5,解得:k=﹣1或﹣3;故k的值为:﹣1或﹣2或﹣3;(3)存在,理由:①当点B在x轴上方时,过点B作BH⊥AE于点H,将△AHB的图形放大见右侧图形,过点A作∠HAB的角平分线交BH于点M,过点M作MN⊥AB于点N,过点B作BK⊥x轴于点K,图中:点A(1,2)、点B(2,k+2),则AH=﹣k,HB=1,设:HM=m=MN,则BM=1﹣m,则AN=AH=﹣k,AB=,NB=AB﹣AN,由勾股定理得:MB2=NB2+MN2,即:(1﹣m)2=m2+(+k)2,解得:m=﹣k2﹣k,在△AHM中,==k+==k+2,解得:k=,此时k+2>0,则﹣2<k<0,故:舍去正值,故k=﹣;②当点B在x轴下方时,同理可得:==k+==﹣(k+2),解得:k=或,此时k+2<0,k<﹣2,故舍去,故k的值为:﹣或.亲爱的读者:纸上得来终觉浅,绝知此事要躬行!+读书不觉已春深,一寸光阴一寸金;少壮不努力,老大徒伤悲。
初三数学培优资料(一)1、如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米,现以O为原点,OM所在直线为x轴建立直角坐标系。
(1)直接写出点M及抛物线顶点P的坐标。
(2)求出这条抛物线的函数解析式。
(3)若要搭建一个矩形“支撑架”AD—DC—CB,使才C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?解:(1)由题意得:M(12,0),P(6,6).(2)此函数解析式为:y= (x-6)2+6= x2+x+3.(3)设A(m,0),则B(12-m,0),C(12-m,m2+m+3),D(m,m2+m+3)∴“支撑架”总长AD+DC+CB=(m2+m+3)+(12-2m)+(m2+m+3)=∵此二次函数的图象开口向下.∴当m=0时,AD+DC+CB有最大值为182、如图,抛物线2212-+=bx y x 与交于A 、B 两点,与Y 轴交于C 点,且A(-1,0)(1) 求抛物线的解析式及顶点D 的坐标(2) 判断△ABC 的形状,证明你的结论。
(3) 点M(m,0)是x 轴上的一个动点,当MC+MD 的值最小时,求m 的值。
解:(1)∵点A (-1,0)在抛物线y= x 2+bx-2上,∴ ×(-1)2+b×(-1)-2=0,b=-∴抛物线的解析式为y= x 2- x-2.2y= x 2- x-2= (x 2-3x-4)= (x- )2-,∴顶点D 的坐标为( ,-). (2)当x=0时y=-2,∴C (0,-2),OC=2.当y=0时, x 2- x-2=0,∴x 1=-1,x 2=4,∴B (4,0). ∴OA=1,OB=4,AB=5.∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小. 解法一:设抛物线的对称轴交x 轴于点E .∵ED ∥y 轴,∴∠OC′M=∠EDM ,∠C′OM=∠DEM∴△C′OM∽△DEM.∴∴,∴m=解法二:设直线的解析式为y=kx+n,则,解得n=-2,k=- .∴y=- x+2.∴当y=0时,- x+2=0,x= .∴m= .。
数学培优习题1某市自来水公司为了鼓励市民节约用水,于2011年4月开始采用以用户为单位按月分段收费办法收取水费,2011年3月底以前按原收费标准收费.两种收费标准见下表:(1)居民甲三月份、四月份各用水20吨,但四月份比三月份多交水费6元,求上表中a 的值; (2)若居民甲五月份用水x (吨),应交水费y (元),求y 与x 之间的函数关系式,并注明自变量x 的取值范围;(3)试问居民甲五月份用水量x (吨)在什么范围内时,按新分段收费标准交的水费少于按原收费标准交的水费?2某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x (1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量) (1)求y 1与y 2的函数表达式;(2)求每天的销售利润w 与x 的函数关系表达式;(3)销售这种文化衫的第多少天,每天销售利润最大,最大利润是多少?3 A 城有某种农机30台,B 城有该农机40台,现要将这些农机全部运往C ,D 两乡,调运任务承包给某运输公司。
已知C 乡需要农机34台,D 乡需要农机36台。
从A 城往C ,D 两乡运送农机的费用分别为250元/台和200元/台,从B 城往C ,D 两乡运送农机的费用分别为150元/台和240元/台。
(1)设A 城运往C 乡该农机x 台,运送全部农机的总费用为W 元,求W 关于x 的函数关系式,并写出自变量x 的取值范围。
(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来。
(3)现该运输公司决定对A 城运往C 乡的农机,从运输费中每台减免a 元(a ≤200)作为优惠,其它费用不变,如何调运,使总费用最少。
4某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元。
第一二章 检测题一、选择题1.下列关于的方程:①;②;③;④();⑤1x +=-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .4 2.用配方法解一元二次方程x 2-4x =5时,此方程可变形为( ) A.(x +2)2=1 B.(x -2)2=1 C.(x +2)2=9 D.(x -2)2=9 3.若为方程的解,则的值为( )A.12B.6C.9D.16 4.若26930,x x y +++-=则x y -的值为( )A.0B.-6C.6D.以上都不对5. 目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( ) A.438=389B.389=438C .389(1+2x )=438D .438(1+2x )=389 6.根据下列表格对应值:x3.24 3.25 3.26 2ax bx c ++-0.020.010.03判断关于x 的方程20(0)ax bx c a ++=≠的一个解x 的范围是( )A.x <3.24B.3.24<x <3.25C.3.25<x <3.26D.3.25<x <3.28 7.已知分别是三角形的三边长,则一元二次方程的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 8.已知12x x ,是一元二次方程122+=x x 的两个根,则2111x x +的值为( A.21-B.2C.21D.9. 关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )A . k 为任何实数,方程都没有实数根B . k 为任何实数,方程都有两个不相等的实数根C . k 为任何实数,方程都有两个相等的实数根D . 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种10. 某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( ) A .19% B .20% C .21% D .22%11如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下: 甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )A . 甲正确,乙错误B . 乙正确,甲错误C . 甲、乙均正确D . 甲、乙均错误二、填空题12.对于实数a ,b ,定义运算“*”:例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2= . 13.若x 1=-1是关于x 的方程x 2+mx -5=0的一个根,则此方程的另一个根x 2= . 14.若(是关于的一元二次方程,则的值是________.15.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m 的值是 .16.如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,那么c 的取值范围是 .17.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = .18顺次连接四边形各边中点,所得的图形是 ;顺次连接平行四边形各边中点,所得的图形是 ;顺次连结矩形四边中点所得四边形是_________;顺次连结菱形四边中点所得四边形是_________;顺次连结等腰梯形四边中点所得四边形是_________。
九年级数学培优讲义第一讲几何动点问题与一元二次方程1.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.2.如图,在△ABC中,∠B=90°,AB=12cm,BC=16cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为t秒.(1)当t为何值时,△PBQ的面积等于35cm2(2)当t为何值时,PQ的长度等于8cm?(3)若点P,Q的速度保持不变,点P在到达点B后返回点A,点Q在到达点C后返回点B,一个点停止,另一个点也随之停止.问:当t为何值时,△PBQ的面积等于32cm2?3.等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.4.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD、BC的中点G、H,再折出线段AN,然后通过沿线段AN折叠使AD落在线段AH上,得到点D的新位置P,并连接NP、NH,此时,在下列四个选项中,有一条线段的长度恰好是方程x2+x﹣1=0的一个正根,则这条线段是()A.线段BH B.线段DN C.线段CN D.线段NH5.如图,在矩形ABCD中,AB=6cm,BC=8cm.点P从点B出发沿边BC向点C以2cm/s的速度移动,点Q从C 点出发沿CD边向点D以1cm/s的速度移动.如果P、Q同时出发,几秒钟后,可使△PCQ的面积为五边形ABPQD 面积的?6.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向B移动,点Q从点B 开始以2cm/s的速度沿BC边向点C移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,P、Q两点同时停止运动.(1)是否存在某一时刻使得△PQD的面积等于8cm2?若存在,求出运动的时间;若不存在,说明理由.(2)几秒后,△PQD是以DP为斜边的直角三角形.7.如图,已知正方形ABCD的边长为4cm,动点P从点B出发,以2cm/s的速度沿B→C→D方向向点D运动,动点Q从点A出发,以1cm/s的速度沿A→B方向向点B运动,若P、Q两点同时出发运动时间为ts.(1)连接PD、PQ、DQ,求当t为何值时,△PQD的面积为7cm2?(2)当点P在BC上运动时,是否存在这样的t使得△PQD是以PD为一腰的等腰三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由.8.如图,在长方形ABCD中,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发,沿折线A﹣B﹣C向点C 运动,同时点Q以1cm/s的速度从顶点C出发,沿CD向点D运动,当其中一个动点到达终点时,另一点也随之停止运动.(1)两动点运动几秒时,四边形PBCQ的面积是长方形ABCD面积的?(2)是否存在某一时刻,使得点P与点Q之间的距离为cm?若存在,求出该时刻;若不存在,请说明理由.9.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE为多少米时,有DC2=AE2+BC2.九年级数学培优讲义第一讲几何动点问题与一元二次方程(参考答案)1.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:(6﹣x)•2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;(2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:(6﹣y)•2y=××6×8y2﹣6y+12=0.△=36﹣4×12<0.方程无解,所以不存在.2.如图,在△ABC中,∠B=90°,AB=12cm,BC=16cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为t秒.(1)当t为何值时,△PBQ的面积等于35cm2?(2)当t为何值时,PQ的长度等于8cm?(3)若点P,Q的速度保持不变,点P在到达点B后返回点A,点Q在到达点C后返回点B,一个点停止,另一个点也随之停止.问:当t为何值时,△PBQ的面积等于32cm2?【解答】解:根据题意知BP=AB﹣AP=12﹣t,BQ=2t.(1)根据三角形的面积公式,得PB•BQ=35,t(12﹣t)=35,t2﹣12t+35=0,解得t1=5,t2=7.故当t为5或7时,△PBQ的面积等于35cm2.(2)设t秒后,PQ的长度等于8cm,根据勾股定理,得PQ2=BP2+BQ2=(12﹣t)2+(2t)2=128,5t2﹣24t+16=0,解得t1=,t2=4.故当t为或4时,PQ的长度等于8cm.(3)当0<t≤8时,PB•BQ=32,即×2t×(12﹣t)=32,则t2﹣12t+32=0,解得t1=4,t2=8.则CQ=2t﹣16,BQ=BC﹣CQ=16﹣(2t﹣16)=32﹣2t,PB=12﹣t,则△PBQ的面积=PB•BQ=×(12﹣t)×(32﹣2t)=32,解得:t=20或8(均舍去);当12<t≤16时,PB•BQ=32,(16﹣t)(t﹣12)=32,t2﹣28t+224=0,△=282﹣4×1×224=﹣112<0,故方程无实数根.综上所述,当t为4或8时,△PBQ的面积等于32cm2.3.等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.【解答】解:(1)当t<10秒时,P在线段AB上,此时CQ=t,PB=10﹣t,∴S=×t(10﹣t)=(10t﹣t2),当t>10秒时,P在线段AB得延长线上,此时CQ=t,PB=t﹣10,∴S=×t(t﹣10)=(t2﹣10t).(2)∵S△ABC=,∴当t<10秒时,S△PCQ=,整理得t2﹣10t+100=0,此方程无解,当t>10秒时,S△PCQ=,整理得t2﹣10t﹣100=0,解得t=5±5(舍去负值),∴当点P运动秒时,S△PCQ=S△ABC.(3)当点P、Q运动时,线段DE的长度不会改变.证明:过Q作QM⊥AC,交直线AC于点M,易证△APE≌△QCM,∴AE=PE=CM=QM=t,∴四边形PEQM是平行四边形,且DE是对角线EM的一半.又∵EM=AC=10∴DE=5∴当点P、Q运动时,线段DE的长度不会改变.同理,当点P在点B右侧时,DE=5综上所述,当点P、Q运动时,线段DE的长度不会改变.4.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x ﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD、BC的中点G、H,再折出线段AN,有一条线段的长度恰好是方程x2+x﹣1=0的一个正根,则这条线段是()A.线段BH B.线段DNC.线段CN D.线段NH【解答】解:设DN=m,则NC=1﹣m.由题意可知:△ADN≌△APN,H是BC的中点,∴DN=NP=m,CH=0.5.∵S正方形=S△ABH+S△ADN+S△CHN+S ANH,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=﹣±,∴取正值为x=.∴这条线段是线段DN.故选:B.5.如图,在矩形ABCD中,AB=6cm,BC=8cm.点P从点B出发沿边BC向点C以2cm/s的速度移动,点Q从C 点出发沿CD边向点D以1cm/s的速度移动.如果P、Q同时出发,几秒钟后,可使△PCQ的面积为五边形ABPQD面积的?积的,【解答】解:设x秒钟后,可使△PCQ的面积为五边形ABPQD面∵点P从点B出发沿边BC向点C以2cm/s的速度移动,点Q从C点出发沿CD边向点B以1cm/s的速度移动,∴CP=BC﹣BP=(8﹣2x)cm,CQ=xcm,∴S△CPQ=CP•CQ=(8﹣2x)•x,∴五边形ABPQD面积=6×8﹣(8﹣2x)•x,由题意可得:6×8﹣(8﹣2x)•x=(8﹣2x)•x×11,解得:x=2,∴2秒钟后,可使△PCQ的面积为五边形ABPQD面积的.6.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向B移动,点Q从点B 开始以2cm/s的速度沿BC边向点C移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,P、Q两点同时停止运动.(1)是否存在某一时刻使得△PQD的面积等于8cm2?若存在,求出运动的时间;若不存在,说明理由.(2)几秒后,△PQD是以DP为斜边的直角三角形.【解答】解:(1)不存在.设出发秒x时△DPQ的面积等于8cm2.∵S矩形ABCD﹣S△APD﹣S△BPQ﹣S△CDQ=S△DPQ,∴6×12﹣×12×x﹣×(6﹣x)•2x﹣(12﹣2x)×6=8,∴x2﹣6x+28=0,∵△=b2﹣4ac=36﹣4×28=﹣76<0,∴原方程无实数根,即不存在某一时刻使得△PQD的面积等于8cm2.(2)∵∠A=∠B=∠C=90°,∵△PQD是以DP为斜边的直角三角形,∴PD2=PQ2+QD2,即t2+122=(6﹣t)2+(2t)2+(12﹣2t)2+62,整理得2t2﹣15t+18=0,解之得t1=6,t2=,即当t为秒或6秒时,△PQD是以PD为斜边的直角三角形.7.如图,在长方形ABCD中,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发,沿折线A﹣B﹣C向点C 运动,同时点Q以1cm/s的速度从顶点C出发,沿CD向点D运动,当其中一个动点到达终点时,另一点也随之停止运动.(1)两动点运动几秒时,四边形PBCQ的面积是长方形ABCD面积的?(2)是否存在某一时刻,使得点P与点Q之间的距离为cm?若存在,求出该时刻;若不存在,请说明理由.的.【解答】解:(1)设两动点运动t秒,使四边形PBCQ的面积是矩形ABCD面积根据题意,得BP=6﹣2t,CQ=t,矩形的面积是12.则有(t+6﹣2t)×2=2×6×,解得t=;(2)设两动点经过t秒使得点P与点Q之间的距离为.①当0<t≤3时,如图1,则有(6﹣2t﹣t)2+4=5,解得t=或;②当3<t≤4时,如图2,则有(8﹣2t)2+t2=5,得方程5t2﹣32t+59=0,此时△<0,此方程无解.综上所述,当t=或时,点P与点Q之间的距离.8.如图,已知正方形ABCD的边长为4cm,动点P从点B出发,以2cm/s的速度沿B→C→D方向向点D运动,动点Q从点A出发,以1cm/s的速度沿A→B方向向点B运动,若P、Q两点同时出发运动时间为ts.(1)连接PD、PQ、DQ,求当t为何值时,△PQD的面积为7cm2?(2)当点P在BC上运动时,是否存在这样的t使得△PQD是以PD为一腰的等腰三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由.【解答】解:(1)当P在BC上时如图:根据题意,得AB=BC=CD=AD=4AQ=t,QB=4﹣t,BP=2t,PC=4﹣2t,S△PQD=S正方形ABCD﹣S△ADQ﹣S△BPQ﹣S DPC=7,16﹣=7整理,得t2﹣2t+1=0,解得t1=t2=1.当P在CD上时,此时2<t≤4DP=4﹣(2t﹣4)=8﹣2t∴S△PQD=(8﹣2t)×4=7 ∴t=答:当t为1秒或秒时,△PQD的面积为7cm2.(2)①当PD=DQ时,根据勾股定理,得16+(4﹣2t)2=16+t2,解得t1=,t2=4(不符合题意,舍去).②当PD=PQ时,根据勾股定理,得16+(4﹣2t)2=(4﹣t)2+(2t)2,整理得:t2+8t﹣16=0解得t1=4﹣4,t2=﹣4﹣4(不符合题意,舍去).答:存在这样的t=秒或(4﹣4)秒,使得△PQD是以PD为一腰的等腰三角形.9.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE=米时,有DC2=AE2+BC2.【解答】解:如图,连接CD,设AE=x米,∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12﹣x)米,∵正方形DEFH的边长为2米,即DE=2米,∴DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,∵DC2=AE2+BC2,∴4+(12﹣x)2=x2+36,解得:x=米.故答案为:.。
人教版九年级(上册)数学培优资料(一)第二十二章 一元二次方程一、一元二次方程根判别式的应用已知关于x 的一元二次方程)0(02≠=++a c bx ax(1)⊿=b 2-4ac>0↔一元二次方程有两个不相等的实根;(2)⊿=b 2-4ac=0↔一元二次方程有两个相等的实数;(3)⊿=b 2-4ac<0↔一元二次方程没有实根.练习:1、不解方程,试判定下列方程根的情况:2+5x=3x 22、k 的何值时?关于x 的一元二次方程x 2-4x+k-5=0有实数根3、不解方程,判别关于x 的方程x 2-2kx+(2k-1)=0的根的情况.4、求证方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。
二、一元二次方程根与系数的关系的应用(韦达定理)已知关于x 的一元二次方程)0(02≠=++a c bx ax 的根是x 1和x 2,那么21x x += ;21x x =练习:1、已知方程x 2074-=-x 的根是x 1和x 2,则21x x += ;21x x =2、已知方程x 2+3x -5=0的根是x 1和x 2,则21x x += ;21x x =3、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= (x 1+1)(x 2+1)= ;|x 1-x 2|= 。
4、关于x 的方程x 2-ax -3=0有一个根是1,则a= ,另一个根是 。
A B C Q D P AB C D 三、一元二次方程的应用1、如图,某小区规划在长32米,宽20米的矩形场地ABCD 上修建三条同样宽的3条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?2、如图,在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发.几秒后△PBQ 的面积等于8cm 2?3、某商店经销一批季节性小家电,每个成本40元.经市场预测,定价为50元时,可销售200个,定价如果每个增加1元,销售量将减少10个.如果商店进货后全部销售完,赚了2000元,问该商店进了多少个小家电?定价是多少?4、在一块长为32m 、宽为24m 的矩形绿地上,要围出一个花圃,使花圃面积为矩形面积的一半.你能给出设计方案吗?5、如图,客轮沿折线A —B —C 从A 出发经B 再到C 匀速航行,货轮从AC 的中点D 出发沿直线匀速航行,将一批物品送达客轮.两船同时起航,并同时到达折线A —B —C 上的某点E 处.已知AB =BC =200海里,∠ABC =90°,客轮速度是货轮速度的2倍.求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)。
九年级数学同步培优讲义(人教版)[培优目标]巩固加强学生对基本概念、性质、定理的理解掌握;提升学生的运算能力、分析能力、综合能力和创新能力;拓宽学生思路,开拓学生视野,培养学生学习兴趣。
[课时分析]每周两个课时。
第一课时以讲为主,讲练结合;第二课时以练为主,即时批阅反馈,个别辅导。
[课堂模式]20人以内的小班模式,精讲精练,力求每个学生掌握全部知识要点。
讲课过程注重对学生的引导,从“怎么做”提升到“为什么这么做”,把握题目核心要点,实现触类旁通;鼓励学生从讨论中相互学习;培养学生独立解决问题的能力,尤其是独立分析解决新题、难题的能力。
[讲义模块]讲义主要包含三个模块:章节知识结构、典型例题分析、精品练习巩固。
章节知识结构帮助学生梳理基本概念、性质、定理及相互间的联系;典型例题分析通过一题多解、一题多变等方式实现重难点突破;精品练习巩固以创新题目为主,在典型例题的基础上增加创新内容。
1、下列各式中,不是二次根式的是()A B2、二次根式4122--xx有意义时的x的取值范围是。
3、已知:122+--++=xxy,则2001)(yx+= 。
类型二:考查二次根式的性质(非负性、化简)4、代数式243x--的最大值是。
5、实数在数轴上的位置如图1所示,化简|a-1|+2)2(-a= 。
6、把34-的根号外的因式移到根号内得;625-的平方根是。
7、化简:=--xx1;=-+-+-222)72()57(2)73(。
类型三:考查同类二次根式与最简二次根式(化简)8、把313,32,2721,7521按由大到小的顺序排列为:类型四:考查二次根式的运算(加减乘除混合运算、分母有理化)9、若32+=a,32-=b,则a与b的关系是()A.互为相反数;B.互为倒数;C.互为负倒数;D.以上均不对。
10、已知:x=23,y=23,求12(1x+1y)的值。
(想一想:有几种解法?)11、计算:100991431321211++++++++(图1)1,则它的边长为 。
人教版九年级数学上册中段培优资料(一)1、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片.如果全班有x名同学,根据题意,列出方程为_______________________。
2、二次函数y=+bx+c的图像如图所示,若点A(-4,),B(-1,),是它图像上的两点,则与的大小关系是________________。
3、要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为_______________________________。
4、有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染了____________个人;如果不及时控制,第三轮将又_______人被传染。
5、将抛物线y=3向左平移2个单位,得到抛物线的解析式__________________。
6、已知是关于x的一元二次方程-mx+2m-1=0的两个实数根,且+﹦14,则m﹦___________。
7、第一象限的点(m,6)在抛物线y=2-4上,则m的值为_______。
8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△A的位置,使得点C、A、在同一条直线上,那么旋转角等于_______。
9、从一块正方形木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是______m2.10、如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△O,则点坐标为______。
11、如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O逆时针旋转90°后得到△O,则点坐标为______。
12、若m,n是方程+x-1=0的两个实数根,则+2m+n的值为_______。
1
人教版九年级(上册)数学培优资料(一)
第二十二章 一元二次方程
一、一元二次方程根判别式的应用
已知关于x 的一元二次方程)0(02≠=++a c bx ax
(1)⊿=b 2-4ac>0↔一元二次方程有两个不相等的实根;
(2)⊿=b 2-4ac=0↔一元二次方程有两个相等的实数;
(3)⊿=b 2-4ac<0↔一元二次方程没有实根.
练习:
1、不解方程,试判定下列方程根的情况:2+5x=3x 2
2、k 的何值时?关于x 的一元二次方程x 2-4x+k-5=0有实数根
3、不解方程,判别关于x 的方程x 2-2kx+(2k-1)=0的根的情况.
4、求证方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。
二、一元二次方程根与系数的关系的应用(韦达定理)
已知关于x 的一元二次方程)0(02≠=++a c bx ax 的根是x 1和x 2,那么
21x x += ;21x x =
练习:
1、已知方程x 2074-=-x 的根是x 1和x 2,则21x x += ;21x x =
2、已知方程x 2+3x -5=0的根是x 1和x 2,则21x x += ;21x x =
3、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;
x 1·x 2= ;2111x x +
;x 21+x 22= (x 1+1)(x 2+1)= ;|x 1-x 2|= 。
4、关于x 的方程x 2-ax -3=0有一个根是1,则a= ,另一个根是 。
2 A B C Q D P A
B
C D 三、一元二次方程的应用
1、如图,某小区规划在长32米,宽20米的矩形场地ABCD 上修建三条同样宽的3条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为566米2
,问小路应为多宽?
2、如图,在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 开始沿AB 边向点B 以1cm/s
的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、
B 同时出发.几秒后△PBQ 的面积等于8cm 2
3、某商店经销一批季节性小家电,每个成本40元.经市场预测,定价为50元时,可销售200
个,定价如果每个增加1元,销售量将减少10个.如果商店进货后全部销售完,赚了2000元,问该商店进了多少个小家电?定价是多少?
4、在一块长为32m 、宽为24m 的矩形绿地上,要围出一个花圃,使花圃面积为矩形面积的一
半.你能给出设计方案吗?
5、如图,客轮沿折线A —B —C 从A 出发经B 再到C 匀速航行,货轮从AC 的中点D 出发沿直
线匀速航行,将一批物品送达客轮.两船同时起航,并同时到达折线A —B —C 上的某点E 处.已知AB =BC =200海里,∠ABC =90°,客轮速度是货轮速度的2倍.求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)
3。