2007年数学陕西中考预测试卷(一)_5
- 格式:doc
- 大小:125.50 KB
- 文档页数:6
2007年陕西省初中毕业生学业考试数学模拟试卷(十五)(满分150分.考试时间120分钟)一、填空题:(每小题3分,共30分)1.下列运算中,正确的是A.x3·x3=x6 B.3x2+2x3=5x2 C.(x2)3=x5 D.(x+y2)2=x2+y4 2.下列图形既是轴对称图形,又是中心对称图形的是3.若0<a<1,则点M(a-1,a)在第( )象限A.第一 B.第二 C.第三 D.第四4.不等式组2311xx-<⎧⎨>-⎩的解集在数轴上可表示为A BC D 5.某地连续10天的最高气温统计如下表:则这组数据的中位数和平均数分别为A .24.5,24.6B .25,26C .26,25D .24.266.如图,△AB C 是等边三角形,点P 是三角形内的任意一点,PD∥AB,PE∥BC ,PF∥AC,若ABC 的周长为12,则PD+PE+PF=A .12B .8C .4D .37.如图,D 、E 分别是⊙O 半径OA 、OB 上的点,CD ⊥OA 、CE ⊥OB 、CD=CE ,则弧AC 的长与弧CB 的长的大小关系是A .AC =BCB .AC >BC C .AC <BCD .不能确定8.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下部分剪拼成一个矩形(如图2),通过计算阴影部分的面积,可以验证的等式为A .a 2-ab=a(a-b)B .(a-b)2=a 2-2ab+b2 C .(a+b)2=a 2+2ab+b 2 D .a 2-b 2=(a+b)(a-b) 9.抛物线y=2x 2-3x+l 的顶点坐标为A .(-34,18)B .(34,-18)C .(34,18)D .(-34,-18) 10.正方形ABCD 中,E 、F 分别为AB 、BC 的中点,AF 与DE 相交于点O ,则AO DO=A .13B .5 C.23 D .12二、填空题:(每题4分,共20分)11.一只口袋中有红色、黄色和蓝色玻璃球共72个,小明通过多次摸球实验后发现摸到红色、黄色和蓝色球的概率依次为35%、25%和40%,则口袋中有红球、黄球和蓝球的数目很可能是____________个、____________个和____________个.12.如图,AB=4cm ,CD ⊥AB 于O ,则图中阴影部分的面积为_______cm 2.13.如图,Rt △AOB 是一钢架,且∠AOB=100,为了让钢架更加坚固,需要在其内部添加一些钢管EF 、FG 、GH…,添加的钢管长度都与OE 相等,那么最多能添加这样的钢管_______根.14.如右图,E 、F 、G 、H 分别是正方形ABCD 各边中点,要使中间阴影部分小正方形的面积是5,那么大正方形的边长应该是__________.15.科学研究发现:植物的花瓣、片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——裴波那契数列:1,1,2,3,5,8,13,21,34,55,…,仔细观察以上数列,则它的第11个数应该是_______.三、解答题:(16~18每题8分,19~22每题10分,23~25每题12分,共100分)16.(3- )0-3-2-12+|-19|+3cot600. 17.如图,圆心角都是900的扇形OAB 与扇形OCD 如图那样叠放在一起,连结AC 、BD .求证:△AOC ≌△BOD .18.九年级(3)班的一个综合实践活动小组去A 、B 两家超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景,根据他们的对话请你分别求出A 、B 两家超市今年“五一节”期间的销售额.19.小明想测量校园内一棵不可攀的树的高度,由于无法直接度量A 、B 两点间的距离,请你用学过的数学知识按以下要求设计一测量方案,(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算A、B的距离(写出求解或推理过程,结果用字母表示)20.同学:你去过黄山吗?在黄山的上山路上,有一些断断续续的台阶,如图是其中的甲、乙两段台阶路的示意图,图中的数字表示每一级台阶的高度(单位:cm).并且数d,e,e,c,c,d的方差为p,数b,d,g,f,a,h的方差为q(10cm<a<b<c<d<e<f<g<h<20cm.且p<q),请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.21.用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD,把一个含600角的三角尺与这个菱形重合,使三角尺的600角的顶点与点A重合,两边分别与AB、AC重合,将三角尺绕点A 按逆时针方向旋转;(1)当三角尺的两边分别与菱形的两边BC、CD相交于点E、F时(如图),通过观察或测量BE、CF的长度,你能得出什么结论?(2)当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F 时(如图),你在(1)中得到的结论还成立吗?简要说明理由.22.“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家时是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油1升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略9不计)23.如图,已知△ABC中,∠=900,∠B=600,AC=4,等边△DEF的一边在直角边AC上移动,当点E与点c重合时,点D恰好落在AB边上,(1)求等边△DEF的边长;(2)请你探索,在移动过程中,线段CE与图中哪条线段始终保持相等,并说明理由;(3)若设线段CE为x,在移动过程中,等边△BEF与Rt△ABC两图形重叠部分的面积为y。
学英语简单吗?肯定会有许多学生说:“难死了”。
为什么有好多学生对英语的学习都感到头疼呢?答案只有一个:“不得法。
” 英语与汉语一样都是一种语言,为什么你说汉语会如此流利?那是因为你置身于一个汉语环境中,如果你在伦敦呆上半年,保准说起英语来会非常流利。
但很多中学生没有很好的英语环境,那么你可以自己设置一个英语环境,坚持“多说”、“多听”、“多读”、“多写”,那么你的英语成绩肯定会很出色。
一、多“说”。
自己多创造机会与英语教师多讲英语,见了同学,尤其是和好朋友在一起时尽量用英语去问候,谈心情……这时候你需随身携带一个英汉互译小词典,遇到生词时查一下这些生词,也不用刻意去记,用的多了,这个单词自然而然就会记住。
千万别把学英语当成负担,始终把它当成一件有趣的事情去做。
或许你有机会碰上外国人,你应大胆地上去跟他打招呼,和他谈天气、谈风景、谈学校……只是别问及他的年纪,婚史等私人问题。
尽量用一些你学过的词汇,句子去和他谈天说地。
不久你会发现与老外聊天要比你与中国人谈英语容易的多。
因为他和你交谈时会用许多简单词汇,而且不太看重说法,你只要发音准确,准能顺利地交流下去。
只是你必须要有信心,敢于表达自己的思想。
如果没有合适的伙伴也没关系,你可以拿过一本书或其它什么东西做假想对象,对它谈你一天的所见所闻,谈你的快乐,你的悲伤等等,长此坚持下去你的口语肯定会有较大的提高。
二、多“听”寻找一切可以听英语的机会。
别人用英语交谈时,你应该大胆地去参与,多听听各种各样人的发音,男女老少,节奏快的慢的你都应该接触到,如果这样的机会少的话,你可以选择你不知内容的文章去听,这将会对你帮助很大,而你去听学过的课文的磁带,那将会对你的语言语调的学习有很大的帮助。
三、多“读”。
“读”可以分为两种。
一种是“默读”。
每天给予一定时间的练习将会对你提高阅读速度有很大的好处,读的内容可以是你的课本,但最好是一些有趣的小读物,因为现在的英语高考越来越重视阅读量和阅读速度。
陕西省2007年初中毕业升学考试数学试题数 学 试 卷第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.2-的相反数为( ) A .2B .2-C .12D .12-2.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( )3.不等式组2030x x +>⎧⎨-⎩,≥的解集是( )A .23x -≤≤ B .2x <-,或3x ≥ C .23x -<< D .23x -<≤4.将我省某日11个市、区的最高气温统计如下: 最高气温 10℃ 14℃ 21℃ 22℃ 23℃ 24℃ 25℃ 26℃ 市、区个数 11311211该天这11个市、区最高气温的平均数和众数分别是( )A .2121℃,℃B .2021℃,℃C .2122℃,℃D .2022℃,℃5.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( )A .50005000 3.06%x -=⨯B .500020%5000(1 3.06%)x +⨯=⨯+C .5000 3.06%20%5000(1 3.06%)x +⨯⨯=⨯+D .5000 3.06%20%5000 3.06%x +⨯⨯=⨯ 6.如图,圆与圆之间不同的位置关系有( ) A .2种 B .3种C .4种D .5种A .B . D .(第2题图)(第6题图)7.如图,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+B .2y x =+ C .2y x =- D .y x =--8.抛物线247y x x =--的顶点坐标是( )A .(211)-,B .(27)-,C .(211),D .(23)-,9.如图,在矩形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,则图中全等的直角三角形共有( )A .3对B .4对C .5对D .6对10.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .8第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:221(3)3x y xy ⎛⎫-= ⎪⎝⎭.12.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 .13.如图,50ABC AD ∠=,垂直平分线段BC 于点D ABC∠,的平分线BE 交AD 于点E ,连结EC,则AEC∠的度数是 .14.选作题...(要求在(1)、(2)中任选一题作答) (1)用计算器计算:3sin 382-≈ (结果保留三个有效数字).(第7题图)C(第9题图)P B (第10题(第13题D 605213(第14题(2)小明在楼顶点A 处测得对面大楼楼顶点C 处的仰角为52,楼底点D 处的俯角为13.若两座楼AB 与CD 相距60米,则楼CD 的高度约为 米.(结果保留三个有效数字). sin130.2250cos130.9744tan130.2309sin520.7880cos520.6157≈≈≈≈≈,,,,tan52 1.2799≈)15.小说《达芬奇密码》中的一个故事里出现了一串神密排列的数,将这串令人费解的数按从小到大的顺序排列为:112358,,,,,,…,则这列数的第8个数是 . 16.如图,要使输出值y大于100,则输入的最小正整数x 是 .三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 设23111x A B x x ==+--,,当x 为何值时,A 与B 的值相等? 18.(本题满分6分)如图,横、纵相邻格点间的距离均为1个单位. (1)在格点中画出图形ABCD 先向右平移6个单位,再向上平移2个单位后的图形;(2)请写出平移前后两图形应对点之间的距离.19.(本题满分7分) 如图,在梯形ABCD中,45AB DC DA AB B ∠=∥,⊥,,延长CD 到点E ,使DE DA =,连接AE .(1)求证:AE BC ∥;(2)若31AB CD ==,,求四边形ABCE 的面积.20.(本题满分8分)2006年,全国30个省区市在我省有投资项目,投资金额如下表:省区市 广东 福建 北京 浙江 其它 金额(亿元)124676647119AB(第18题图)(第16题(第19根据表格中的信息解答下列问题: (1)求2006年外省区市在陕投资总额; (2)补全图①中的条形统计图;(3)2006年,外省区投资中有81亿元用于西安高新技术产业开发区,54亿元用于西安经济技术开发区,剩余资金用于我省其它地区.请在图②中画出外省区市在我省投资金额使用情况的扇形统计图(扇形统计图中的圆心角精确到1,百分比精确到1%).21.(本题满分8分)为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y (元)是原来价格每人x (元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元. (1)求y 与x 的函数关系式(不要求写出x 的取值范围); (2)王老师想参加该旅行社原价格为5600元的一条线路的 暑期旅游,请帮王老师算出这条线路的价格. 22.(本题满分8分) 在下列直角坐标系中, (1)请写出在ABCD 内.(不包括边界)横、纵坐标均为 整数的点,且和为零的点的坐标; (2)在ABCD 内.(不包括边界)任取一个横、纵坐标均为 整数的点,求该点的横、纵坐标之和为零的概率.23.(本题满分8分)如图,AB 是半圆O 的直径,过点O 作弦AD 的垂线交切线AC 于点C OC ,与半圆O 交于点E ,连结BE DE ,. (1)求证:BED C ∠=∠; (2)若58OA AD ==,,求AC 的长.(第22题图) CAOB ED(第23题图市图②2006年外省区市在陕投资金额使用情况统计图(第20题图)东建京江它2006年外省区市在陕投资金额统计图24.(本题满分10分)如图,在直角梯形OBCD 中,8110OB BC CD ===,,.(1)求C D ,两点的坐标;(2)若线段OB 上存在点P ,使PD PC ⊥,求过D P C ,, 三点的抛物线的表达式.25.(本题满分12分) 如图,O 的半径均为R .(1)请在图①中画出弦AB CD ,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦AB CD ,,使图②仍为中心对称图形;(2)如图③,在O 中,(02)AB CD m m R ==<<,且AB 与CD 交于点E ,夹角为锐角α.求四边形ACBD 面积(用含m α,的式子表示); (3)若线段AB CD ,是O的两条弦,且AB CD ==,你认为在以点A B C D ,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.(第24(第25题图①) (第25题图②)(第25题图③) (第25题图④)。
2007年陕西省初中毕业生学业考试数学模拟试卷(四)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算2(3) ,结果正确的是A .-9B . 9C .-6D . 62.图1是由几个相同的小正方体搭建的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是3.一个盒子中装有标号为1,2,3,4的四张卡片,采用有放回的方式取出两张卡片,下列事件中,是必然事件的是A .和为奇数B .和为偶数C .和大于5D .和不超过8 4.如图2,数轴上点A ,B ,C ,D 表示的数中, 表示互为相反数的两个点是 A .点A 和点C B .点B 和点C C .点A 和点D D .点B 和点D 5.“神舟”五号载人飞船,绕地球飞行了14圈,共飞行约590200km,用科学记数法表示图1A B C D 图2 D A C590200,结果正确的是A .5.902×104B .5.902×105C .5.902×106D .0.5902×106 6.如图3,在宽为20m ,长为30m 的矩形地面上修建两条 同样宽的道路,余下部分作为耕地.根据图中数据,耕地的面积应为A .600m 2B .551m 2C .550 m 2D .500m 27.如图4,两个正方体形状的积木摆成如图所示的塔形平放 于桌面上,上面正方体下底的四个顶点恰好是下面相邻正方体的上底各边的中点,并且下面正方体的棱长为1,则能 够看到部分的面积为A .8B .172C .182 D .78.方程(3)3x x x +=+的解是A .1x =B .10x =,23x =-C .11x =,23x =D .11x =,23x =-9.如图5,⊙O 的半径OA =6,以点A 为圆心,OA⊙O 于B ,C 两点,则BC 等于A .B .C .D .10.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图 6所示,根据图中提供的信息,有下列说法: (1)他们都行驶了18千米;(2)甲在途中停留了0.5小时; (3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度; (5)甲、乙两人同时到达目的地. 其中,符合图象描述的说法有A .2个B .3个C .4个D .5个t (小时)图6 图3 图42007年陕西省初中毕业生学业考试数学模拟试卷(四)卷II (非选择题,共100分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共5个小题;每小题3分,共15分.把答案写在题中横线上)114的相反数是.12.如图7,有两棵树,一棵高10m ,另一棵高4m ,两树相距8m .一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行 m .13.某商店购进一批运动服,每件的售价为120元时,可获利20%,那么这批运动服的进价为是 .14.如图8,△ABC 是等腰直角三角形,BC 是斜边,点P 是 △ABC 内一定点,延长BP 至P /,将△ABP 绕点A 旋转后, 与△ACP /重合,如果AP =2,那么PP /= .15.图9是小明用火柴搭的1条、2条、3条“金鱼”……, 则搭n 条“金鱼”需要火柴 根.图`7 图81条2条3条图9……三、解答题(本大题共10个小题;共85分)16.(本小题满分7分)已知:13x=,求22()111x x xx x x-÷---的值.17.(本小题满分7分)(1)一木杆按如图10—1所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段CD表示);(2)图10—1是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点P 表示);并在图中画出人在此光源下的影子(用线段EF表示).试试基本功解答应写出文字说明、证明过程或演算步骤.请你一定要注意噢!木杆图10—1 图10—218.(本小题满分7分)观察下面的图形(大正方形的边长为1)和相应的等式,探究其中的规律:①11122=-,②221111222+=-,③233111112222++=-,④234411111122222+++=-,(1)在下面的空格上写出第五个等式,并在右边给出的正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式.19.(本小题满分8分)某电视台的娱乐节目有这样的翻奖游戏,正面为数字,背面写有祝福语或奖金数,如下面的表格.游戏的规则是:参加游戏的人可随意翻动一个数字牌,看背面对应的内容,就可以知道是得奖还是得到祝福语.(1)写出“翻到奖金1000元”的概率;(2)写出“翻到奖金”的概率;(3)写出“翻不到奖金”的概率.归纳与猜想表中有规律!判断与决策…………20.(本小题满分8分)某学校为选派一名学生参加全市劳动技能竞赛,准备从A ,B 两位同学中选定一名.A ,B 两位同学在学校实习基地进行现场加工直径为20mm 的零件的测试,他俩各加工的10个零件的相关数据如图11和下面的表格所示(单位:mm ).根据测试得到的有关数据,请解答下面的问题:(1)考虑平均数与完全符合要求的零件的个数,你认为 的成绩好些; (2)计算出2B S 的大小,考虑平均数与方差,你认为 的成绩好些;(3)根据折线图的走势,你认为派谁去参赛较合适?说明你的理由.21.(本小题满分8分)如图12,已知:一抛物线形拱门,其地面宽度=18m ,小明站在门内,在离门脚B 点1m 远的点D 垂直地面立起一根1.7m 物线形门上C 处.建立如图10所示的坐标系.(1)求出拱门所在抛物线的解析式; (2)求出该大门的高度OP .图象与信息B (件数) 图11 A22.(本小题满分8分)一位同学拿了两块450三角尺△MNK 、△ACB 做了一个探究活动:将△MNK 的直角顶点M 放在△ABC 的斜边AB 的中点处,设AC =BC =4.(1)如图13—1,两三角尺的重叠部分为△ACM ,则重叠部分的面积为 ,周长为 .(2)将图13—1中的△MNK 绕顶点M 逆时针旋转450,得到图13—2,此时重叠部分的面积为 , 周长为 .(3)如果将△MNK 绕M 旋转到不同于图13—1和图13—2的图形,如图13—3,请你猜想此时重叠部分的面积为 .(4)在如图13—3的情况下,若AD = 1,求出重叠部分图形的周长.操作与探究图13—2KNK 图13—1 图13—3N23.(本小题满分8分)阅读与理解:图14—1是边长分别为a 和b (a >b )的两个等边三角形纸片ABC 和C ′DE 叠放在一起(C 与C ′重合)的图形.操作与证明:(1)操作:固定△ABC ,将△C ′DE 绕点C 按顺时针方向旋转30°,连结AD ,BE ,如图14—2;在图14—2中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论.(2)操作:若将图14—1中的△C ′DE ,绕点C 按顺时针方向任意旋转一个角度α,连结AD ,BE ,如图14—3;在图14—3中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论. 猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD 的长度最大?是多少?当α为多少度时,线段AD 的长度最小?是多少?实验与推理EB A 图14—2 (C /) DC E 图14—1 C B AD (C /) E24.(本小题满分12分)某玩具厂工人的工作时间:每月25天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资100元,按月结算.该厂生产A ,B 两种产品,工人每生产一件A 种产品,可得报酬0.75元,每生产一件B 种产品,可得报酬1.4元.下表记录的是工人小李的工作情况:根据上表提供的信息,请回答下列问题:(1)小李每生产一件A 种产品、每生产一件B 种产品,分别需要多少分钟?(2)设小李某月生产一件A 种产品x 件,该月工资为y 元,求y 与x 的函数关系. (3)如果生产各种产品的数目没有限制,那么小李该月的工资数目最多为多少?25.(本小题满分12分)已知:如图15,四边形ABCD 是等腰梯形,其中AD ∥BC ,AD =2,BC =4,AB =CD点M 从点B 开始,以每秒2个单位长的速度向点C 运动;点N 从点D 开始,以每秒1个单位长的速度向点A 运动,若点M ,N 同时开始运动,点M 与点C 不重合,运动时间为t (t >0).过点N 作NP 垂直于BC ,交BC 于点P ,交AC 于点Q ,连结MQ .(1)用含t 的代数式表示QP 的长;(2)设△CMQ 的面积为S ,求出S 与t 的函数关系式; (3)求出t 为何值时,△CMQ 为等腰三角形.(说明:问题(3)是额外加分题,加分幅度为1~4分)2007年陕西省初中毕业生学业考试数学模拟试题(四)参考答案及评分标准一、选择题(每小题2分,共20分)11.412.10;13.100元;14.2;15.6n +2.三、解答题(本大题共10个小题,共80分)16.解:原式=x-2.………………………………………………………………………(4分)当13x =时,原式=53-.………………………………………………………(7分)17.解:(1)如图1,CD 是木杆在阳光下的影子;……………………………………(3分)(2)如图2,点P 是影子的光源;………………………………………………(5分)EF 就是人在光源P 下的影子.……………………………………………(7分)图1518.答:(1)234551111111222222++++=-……………(4分) (2)2311111122222n n++++=-. ……………………………………………(7分) 19.解:(1)P (翻到奖金1000元)=19;…………………………………………………(2分) (2)P (翻到奖金)=13;…………………………………………………………(4分) (3)P (翻不到奖金)=23.………………………………………………………(8分) 20.解:(1)解:(1)B ; ………………………………………………………………(2分)(2)2B S =0.008,B ; …………………………………………………………(6分)(3)从图中折线图的走势可知,A 的成绩前面的起伏比较大,但后来逐渐稳定,误差也小,所以,A 的潜力大,可选派去参赛.………………………………(8分)21.解:(1)设拱门所在抛物线的解析式为2y ax c =+.将C (8,1.5)、B (9,0)两点的坐标代入2y ax c =+中,得 1.764,081.a c a c =+⎧⎨=+⎩解得110a =-,8.1c =.∴18.110y x =-+.………(4分) (2)当x =0时, 8.1y =(m ).所以,该大门的高度OP 为8.1m .………………………………………(8分)22.解:(1)4;4+2分)(2)4;8.…………………………………………………………………………(4分)(3)4.……………………………………………………………………………(6分)(4)过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F . 在Rt △DFM 和Rt △GEM 中,∵∠DMF =∠GME ,MF =ME , 图 3N∴Rt △DFM ≌ Rt △GEM .∴GE =DF ,∴CG =AD .∵AD =1,∴DF =1.∴DM =∴四边形DMGC 的周长为:CG +CD +2DM=4+8分)23.解:操作与证明:(1)BE =AD .……………………………………………………………………(1分)∵△C ′DE 绕点C 按顺时针方向旋转30°,∴∠BCE =∠ACD =30°.∵△ABC 与△C ′DE 是等边三角形,∴CA =CB ,CE =CD .∴△BCE ≌△ACD .∴BE =AD .…………………………………………(3分)(2)BE =AD .……………………………………………………………………(4分)∵△C ′DE 绕点C 按顺时针方向旋转的角度为α,∴∠BCE =∠ACD =α.∵△ABC 与△C ′DE 是等边三角形,∴CA =CB ,CE =CD .∴△BCE ≌△ACD .∴BE =AD .…………………………………………(6分)猜想与发现:当α为180°时,线段AD 的长度最大,等于a +b ;当α为0°(或360°)时,线段AD 的长度最小,等于a -b .………………………………………………(8分)24.解:(1)设小李生产一个A 种产品用a 分钟,生产一个B 种产品用b 分钟.…(1分)根据题意得 35,3285.a b a b +=⎧⎨+=⎩解得15,20.a b =⎧⎨=⎩ ………………………………(3分) 即小李生产一个A 种产品用15分钟,生产一个B 种产品用20分钟. (4分)(2)25860150.75 1.410020x y x ⨯⨯-=+⨯+, ………………………………(7分) 即0.3940y x =-+.………………………………………………………(8分)(3)由解析式0.3940y x =-+可知:x 越小,y 值越大,…………………(10分)并且生产A ,B 两种产品的数目又没有限制,所以,当x =0时,y =940.即小李该月全部时间用来生产B 种产品,最高工资为940元. ……(12分)25.解:(1)过点A 作AE ⊥BC ,交BC 于点E ,如图4.由AD =2,BC =4,AB =CD得AE =2.………………………………(3分) ∵ND =t ,∴PC =1+t . ∴PQ PC AE EC=.图4P即123PQ t +=.∴223t PQ +=.………(6分) (2)∵点M 以每秒2个单位长运动,∴BM =2t ,CM =4—2t .……………(8分)∴S △CMQ =1122(42)223t CM PQ t +⋅=⋅-⋅=2224333t t -++. 即S =2224333t t -++.……………………………………………………(12分) (3)①若QM =QC ,∵QP ⊥MC ,∴MP =CP .而MP =4—(1+t +2t )=3—3t ,即1+t =3—3t ,∴t =21.…………………………………………(加1分) ②若CQ =CM ,∵CQ 2=CP 2+PQ 2=222)1(913)322()1(t t t +=+++, ∴CQ =)1(313t +.∵CM =4—2t ,∴)1(313t +=4—2t .∴t =.……………………………………………………(加2分) ③若MQ =MC ,∵MQ 2=MP 2+PQ 2=222228515485(33)()3999t t t t +-+=-+, ∴98591549852+-t t =2)24(t -,即09599109492=--t t . 解得t =4959或t =—1(舍去).∴t =4959.………………………(加3分) ∴当t 的值为21,23131885-,4959时,△CMQ 为等腰三角形。
C2007学年度中考模拟考试数学试卷 (考试时间:120分,满分:120分)一、填空题(本题满分16分,共有8空,每空2分)1. 点A (-2,1)在第______ _象限.2. 分解因式:a 2-1=______ _. 3. 不等式组2030x x ->⎧⎨+>⎩的解集为_______ _.4. 5. 678他要沿着圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是 .二、选择题(本题满分24分,共有8道题,每小题3分)9、若每人每天浪费水0.32升,那么100万人每天浪费的水,用科学记数法表示为( )(1) (A )3.2×105升 (B )3.2×104升(C )3.2×106升 (D )3.2×107升10、如图所示,晚上小亮在路灯下散步,在小亮由A中,他在地上的影子( )(A )逐渐变短 (B )逐渐变长(C )先变短后再变长 (D )先变长后再变短11、李刚同学用四种正多边形 的瓷砖图案,在这四种瓷砖中, 可以密铺平面的( )(A )(1)(2)(4) (B )(2)(3)(4) (C )(1)(3)(4) (D )(1)(2)(3)12、一个均匀的立方体面上分别标有数字1,2,3个正方体表面的展开图,抛掷这个立方体,(13 )14一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( ). A.24d h πB.22d h πC.2d h πD.24d h π15、下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处), 则甲的体重的取值范围在数轴上表示正确的是( )A16、在正方体的表面上画有如图⑴中所示的粗线,图⑵ 是其展开图的示意图,但只在A 面上画有粗线, 那么将图⑴中剩余两个面中的粗线画入图⑵中, 画法正确的是( !)171818、(5分)已知11222-+-=x x x y ÷x x x +-21-x ,试说明在右边代数式有意义的条件下,不论x 为何值,y 的值不变。
2007年陕西省初中毕业生学业考试数学模拟试卷(十七)(本卷共三个大题,考试时间:120分钟;全卷满分120分)6个小题,每题3分,满分18分)1、-31=2、函数y=2-x 的自变量取值范围是3、观察下列各式:212212+=⨯, 323323+=⨯, 434434+=⨯, 545545+=⨯…想一想,什么样的两数之积等于这两数之和?设n 表示正整数,用关于n 的等式表示这个规律为 4、如果反比例函数y=xk的图象经过点P (-3,1)那么k= 5、如果一个角的补角是1200,那么这个角的余角是6、如图:AB ∥CD ,直线EF 分别交AB 、CD 于E ∠1=720,则∠2= A B 二、选择题:(本大题共8个小题,每小题4分,满分32分)7、下列计算正确的是( ) A 、(-4x 2)(2x 2+3x -1)=-8x 4-12x 2-4x B 、(x+y )(x 2+y 2)=x 3+y 3 C 、(-4a -1)(4a -1)=1-16a 2 D 、(x -2y )2=x 2-2xy+4y 2 8、把x 2-1+2xy+y 2的分解因式的结果是( )A 、(x+1)(x -1)+y(2x+y)B 、(x+y+1)(x -y -1)C 、(x -y+1)(x -y -1)D 、(x+y+1)(x+y -1) 9、已知关于x 的方程x 2-2x+k=0有实数根,则k 的取值范围是( ) A 、k <1 B 、k ≤1 C 、k ≤-1 D 、k ≥110、某电视台举办的通俗歌曲比赛上,六位评委给1号选手的评分如下:90 96 91 96 95 94这组数据的众数和中位数分别是( )A 、94.5,95B 、95,95C 、96,94.5D 、2,9611、面积为2的△ABC ,一边长为x,这边上的高为y,则y 与x 的变化规律用图像表示大致是( )12、有如下结论(1)有两边及一角对应相等的两个三角形全等;(2)菱形既是轴对称图形又是中心对称图形;(3)对角线相等的四边形是矩形;(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧;(5)两圆的公切线最多有4条,其中正确结论的个数为( ) A 、1个B 、2个C 、3个D 、4个13、已知:如图梯形ABCD 中,AD ∥BC ,AB=DC,,AC 与BD 相交于点O ,那么图中全等三角形共有( )对。
2007年陕西省初中毕业生学业考试数学模拟试卷(六)班级: 姓名: 座号: 评分:一、 选择题(每小题2分,共20分) 1、︱-32︱的值是( )A 、-3B 、3C 、9D 、-9 2、下列二次根式是最简二次根式的是( ) A 、21B 、8C 、7D 、以上都不是 3、下列计算中,正确的是( ) A 、X 3+X 3=X6B 、a 6÷a 2=a 3C 、3a+5b=8abD 、(—ab)3=-a 3b 34、1mm 为十亿分之一米,而个体中红细胞的直径约为0.0000077m ,那么人体中红细胞直径的纳米数用科学记数法表示为( )A 、7.7×103mm B 、7.7×102mm C 、7.7×104mm D 、以上都不对 5、如图2,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m(g)的取值范围,在数轴上可表示为( )6、如图3,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A ’D 重合,A ’E 与AE 重合,若∠A =300,则∠1+∠2=( ) A 、500B 、60C 、450D 、以上都不对7、某校九(3)班的全体同学喜欢的球类运动用图4所示的统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系。
8、下列各式中,能表示y 是x 的函数关系式是( )A 、y=x x -+-12B 、y=x3C 、y=x x21- D 、y=x ±9、如图5,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA =8,OA =6,则tan ∠APO 的值为( )A 、43 B 、53 C 、54 D 、34 10、在同一直角坐标系中,函数y=kx+k ,与y=xk-(k 0≠)的图像大致为( )二、 填空题(每小题2分,共20分)11、(-3)2-(л-3.14)0= 。
2007年数学中考预测试卷(十三)一、选择题:(每题只有一个正确答案,请将正确答案的字母代号填入答题框内相应题号的下面,不填、填错或填写的答案不只一个都得0分,每题3分,本题满分30分) 1、 下列各组数中,相等的是( )A 、()31-和1 B 、()112--和 C 、()11---和 D 、()112--和2、对有理数230800精确到万位,用科学计数法表示为( )A 、23B 、2.3×105C 、2.31×105D 、2.30×1053、若方程()0422=+--m x m x 的两个实根互为相反数,则m 的值是( )A .0B .2C .-2D .-2或2 4、如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D '、C '的位置,若65EFB ∠=︒,则AED '∠等于( )A 、50︒B 、55︒C 、60︒D 、65︒5、两圆的半径分别为3cm 和4cm ,且两圆的圆心距为7cm ,则这两圆的公切线条数共有( )A 、1条B 、2条C 、3条D 、4条6、已知两个相似三角形的对应中线比为1:3,较大的三角形的周长为18cm ,则较小的三角形的周长为( )A 、6cmB 、2cmC 、9cmD 、63cm 7、在直角坐标系中,函数y= -3x 与y=x 2-1的图象大致是( )A B C D8、为了美化城市,建设中的某休闲广场准备用边长相同的正三角形与正方形两种地转镶嵌地面,在每一个顶点的周围,正三角形、正方形地转的个数分别是( )A 、3,2B 、2,3C 、4,1D 、2、29、在一个V 字形支架上摆放了两种口径不同的试管,如图,是它的轴截面,已知⊙O 1的半径是1,⊙O 2的半径是3,则图中阴影部分的面积是( ) A 、π438- B 、π61134- C 、π234- D 、π31138-10、抛物线c bx ax y ++=2的图象大致如图所示,有下列说法:①000<<>c ,b ,a ;②函数图象可以通过抛物线2ax y =向下平移,再向左平移得到;③直线y =ax +b 必过第一、EBC 'FCD65︒D 'A5题图二、三象限;④直线c ax y +=与此抛物线有两个交点,其中正确的有( )个 A 、1 B 、2 C 、3 D 、4二、填空题:(直接将答案填写在横线上,每题3分,共24分) 11、分解因式:xy y x 2422++-=_________________________. 12、函数312-++=x x y 的自变量x 的取值范围是___________________. 13、请你写出两个图象与x 轴没有公共点的函数解析式(不同类型)___________________. 14、圆锥的母线长为8cm ,底面半径为2cm ,则圆锥的表面积为____________________。
2007年陕西省初中毕业生学业考试数学模拟试卷(十七)(本卷共三个大题,考试时间:120分钟;全卷满分120分)6个小题,每题3分,满分18分)1、-31=2、函数y=2-x 的自变量取值范围是3、观察下列各式:212212+=⨯, 323323+=⨯, 434434+=⨯, 545545+=⨯…想一想,什么样的两数之积等于这两数之和?设n 表示正整数,用关于n 的等式表示这个规律为 4、如果反比例函数y=xk的图象经过点P (-3,1)那么k= 5、如果一个角的补角是1200,那么这个角的余角是6、如图:AB ∥CD ,直线EF 分别交AB 、CD 于E ∠1=720,则∠2= A B 二、选择题:(本大题共8个小题,每小题4分,满分32分)7、下列计算正确的是( ) A 、(-4x 2)(2x 2+3x -1)=-8x 4-12x 2-4x B 、(x+y )(x 2+y 2)=x 3+y 3 C 、(-4a -1)(4a -1)=1-16a 2 D 、(x -2y )2=x 2-2xy+4y 2 8、把x 2-1+2xy+y 2的分解因式的结果是( )A 、(x+1)(x -1)+y(2x+y)B 、(x+y+1)(x -y -1)C 、(x -y+1)(x -y -1)D 、(x+y+1)(x+y -1) 9、已知关于x 的方程x 2-2x+k=0有实数根,则k 的取值范围是( ) A 、k <1 B 、k ≤1 C 、k ≤-1 D 、k ≥110、某电视台举办的通俗歌曲比赛上,六位评委给1号选手的评分如下:90 96 91 96 95 94这组数据的众数和中位数分别是( )A 、94.5,95B 、95,95C 、96,94.5D 、2,9611、面积为2的△ABC ,一边长为x,这边上的高为y,则y 与x 的变化规律用图像表示大致是( )yyyy12、有如下结论(1)有两边及一角对应相等的两个三角形全等;(2)菱形既是轴对称图形又是中心对称图形;(3)对角线相等的四边形是矩形;(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧;(5)两圆的公切线最多有4条,其中正确结论的个数为( )A 、1个B 、2个C 、3个D 、4个13、已知:如图梯形ABCD 中,AD ∥BC ,AB=DC,,AC 与BD 相交于点O ,那么图中全等三角形共有( )对。
O 1 2 3 4 5 76 13 2 -1 -2 -3-4C第6题2007年初三数学中考模拟试卷(2007、6)命题人:陈华荣注意事项:1.全卷满分120分,考试时间120分钟,共8页,28题.2.用蓝色或黑色钢笔、圆珠笔直接填写在试卷上.3.考生在答题过程中,不能使用计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π).一、填空题(本大题每个空格1分,共18分.把答案填在题中横线上) 1.13-的相反数是 , 13-的绝对值是 ,13-的倒数是 .2.= ,212-⎛⎫ ⎪⎝⎭= ,=-2)5( .3.一粒纽扣式电池能够污染60万升水,我市每年报废的纽扣式电池约400000粒,如果废旧电池不回收,我县一年报废的纽扣式电池所污染的水约有 升(用科学记数法表示). 4.sin45°= , 锐角A 满足cosA=23,∠A= .5.小明五次测试成绩如下:91,89,88,90,92,则这五次测试成绩的平均数是 ,极差是 . 6.如图,正方形ABCD 的周长为16cm ,顺次连接它各边中点,得到四边形EFGH , 则四边形EFGH 的周长等于 cm ,四边形EFGH 的面积等于 cm 2. 7. 有3张卡片分别写有0、1、2三个数字,将它们放入纸箱后,任意摸出 一张(不放回),甲先摸,则甲摸到1的概率是 ,乙后摸,则乙摸到1的概率是 . 8.已知抛物线265y x x =-+的部分图象如图,⑴当0≤x ≤4时,y 的取值范围是 ,⑵当0≤y ≤5时,x 的取值范围是 ,⑶当1≤x ≤a 时,-4≤y ≤0,则a 的取值范围是.二、选择题(本大题共9小题,每小题2分,共18分.目要求的,把所选项前的字母填在题后括号内)9.在下列实数中,无理数是---------------------------------------------------------【 】 A .5 B .0 C D .145第 1 页 共 8 页A B CG FDEl第12题第16题C第13题ABC D 第15题10.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是----------【 】A .x 2+130x -1400=0B .x 2+65x -350=02 D .x 2-65x -350=0第11题11. 如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =30°,则∠CAD 等于------------【 】A.30°B.40°C.50°D.60°12.如图,已知AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠EFG=40°,则∠EGF 的度数是------------------------------------------------------------【 】 A .60° B .70° C .80° D .90°13.如图,等腰三角形ABC 中,A B A C =,44A ∠= ,CD AB D ⊥于,则D C B ∠等于--【 】A . 44°B . 68°C .46°D . 22° 14.若t 是一元二次方程20(0)ax bx c a ++=≠的根,则判别式△=b 2-4ac 和完全平方M=(2at +b )2的关系是-----------------------------------------------------------------------------【 】A.△=MB.△>MC.△<MD.大小关系不确定15.如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是--------【 】 A . B . C ..16.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的表面积超过7,则正方体的个数至少是--------------------------------------------------------------【 】 A .1 B .2 C .3 D .4第2 页 共 8 页第10题AB EFD17. 如图,一圆柱体的底面周长为24cm ,高AB 为4cm ,BC 是直径,一只蚂蚁从点A 出发沿着圆柱体的表面..爬行到点C 的最短路程是(注:16.310≈,π≈3.14)--------------------------------------【 】A .6cm B.12cm C .13cm D.16cm三、解答题(本大题共2小题,共18分.解答应写出文字说明、证明过程或演算步骤) 18. (本小题满分 10 分)化简:(1sin 45-; (2)()2333xx x x +--.19. (本小题满分 8 分)解方程(组):(1)132x x=-; (2) 5,28.x y x y +=⎧⎨+=⎩四、解答题(本大题共2小题,共12分.解答应写出文字说明、证明过程或演算步骤) 20. (本小题满分5分)如图,在△ABC 中,点D 、E 、F 分别在AB 、AC 、BC 上,DE ∥BC ,EF ∥AB ,且F 是BC 的中点. 求证:DE=CF .第 3 页 共 8 页C如图,已知□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于点E 、F ,与AC 相交于点O .求证:四边形AFCE 是菱形.五、解答题(本大题共2小题,共13分.解答应写出文字说明、证明过程或演算步骤) 22. (本小题满分6分)阅读下列材料:为解方程04)1(5)1(222=+---x x ,我们可以将12-x 看作一个整体,设y x =-12,则原方程可化为0452=+-y y ,解得11=y ,42=y 。
2007年数学陕西中考预测试卷(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷120分,时间:120分钟。
第Ⅰ卷(选择题共30分)一、选择题 (共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.小马虎在下面的计算中只做对了一道题,他做对的题目是( ) A .(a -b )2=a 2-b 2 B .(-2a 3)2=4a 6C .a+a =2aD .-(a -1)=-a -1 2.如图1是小明用八块小正方体搭的积木,该几何体的俯视图是 ( ).图13.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ). A .106元 B .105元 C .118元 D .108元4.如图2,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C . 若CE =2,则图中阴影部分的面积是( ).A .34π-3 B .32πC .32π-3D .31π 图25.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形的生日礼帽.如图3,圆锥帽底半径为9 cm ,母线长为36 cm ,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( )A .648π cm 2B .432π cm 2C .324π cm 2D .216π cm 2 图36.数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图4),根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为( )A .8,8B .8,9C .9,9D .9,8 图47.已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为( )A B CD8.已知二次函数y =ax 2+bx +c 的图象如图5所示,则在“①a <0,②b >0,③c <0,④b 2-4ac >0”中正确的判断是( )A .①②③④B .④C .①②③D .①④ 图5 9.将矩形ABCD 沿AE 折叠,得到如图6所示的图形,已知∠CED =60°,则∠AED 的大小是( )A .60°B .50°C .75°D .55° 图610.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则!98!100的值为( ) A .4950 B .99! C .9 900 D .2!第Ⅱ卷(非选择题共90分)二、填空题 (共6小题,每小题3分,计18分)11.某公司成立3年以来,积极向国家上缴利税,由第一年的200万元增长到800万元,则平均每年增长的百分数是 12.不等式3+2x ≤-1的解集是 .13.小芳画一个有两边长分别为5 cm 和6 cm 的等腰三角形,则这个等腰三角形的周长是 . 14.如图6,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式 .15.点M 既在一次函数y =-x -2的图象上,又在反比例函数y =-x3(x >0)的图象上,则M 点的坐标是 . 16.下图是一组数据的折线统计图,这组数据的极差是 ,平均数是 .三、解答题(共9小题,计72分,解答应写出解题过程) 17.(5分)解方程:1+x x +1=xx 22+. 18.(6分)(1)如图7,在方格纸中如何通过平移或旋转置这两种变换,由图形A 得到图形B ,再由图形B 得到图形C ?(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度)(2)如图7,如果点P 、P 3的坐标分别为(0,0)、(2,1),写出点P 2的坐标. (3)图8是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O 顺时针依次旋转90°、180°、270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!注:方格纸中的小正方形的边长为1个单位长度.19.(7分)以下是小明本月的流水账:午餐:80元零食和点心:30元车费:60元书籍:35元水果:10元文具:5元看电影:5元足球:20元请对小明本月的支出进行分类,再设计一个统计图或统计表来反映他这个月的分类支出情况.从中你获得了哪些信息?20.(8分)某校需要添置某种教学仪器,有两种方案:方案1:到商家购买,每件需要8元;方案2:学校自己制作,每件4元,另外需要制作工具的租用费120元.设需要仪器x件,方案1与方案2的费用分别为y1,y2(元).(1)分别写出y1,y2的函数表达式.(2)当购置仪器多少件时,两种方案的费用相同?(3)需要仪器50件,采用哪种方案便宜?请说明理由.21.(8分)如图,在四边形ABCD中,对角线AC、BD相交于点O,已知∠ADC=∠BCD,AD=BC,求证:BO=CO.22.(8分)有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢.(1)这个游戏是否公平?请说明理由;(2)如果你认为个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏.23.(本题满分8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,CE切⊙O于点C,AE⊥CE且交⊙O于点D.求证:(1)DC=BC;(2)BC2=AB·DE.24.(本题满分10分)某自行车厂今年生产销售一种新型自行车,现向你提供以下有关的信息:(1)该厂去年已备有这种自行车车轮10 000只,车轮车间今年平均每月可生产车轮1 500只,每辆自行车需装配2只车轮;(2)该厂装配车间(自行车最后一道工序的生产车间)每月至少可装配这种自行车1 000辆,但不超过1 200辆;(3)该厂已收到各地客户今年订购这种自行车14 500 辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a 万元.请你根据上述信息,判断a 的取值范围是多少?25.(本题满分12分)正方形ABCD 的边长为4,P 是BC 上一动点,QP ⊥AP 交DC 于Q ,设PB =x ,△ADQ 的面积为y . (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围. (2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积,若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标.(3)画出这个函数的图象.(4)点P 是否存在这样的位置,使△APB 的面积是△ADQ 的面积的32,若存在,求出BP 的长,若不存在,说明理由.2007年陕西省中考数学预测试卷参考答案(一)一、选择题1.B 2.D 3.D 4.A 5.C 6.D 7.A 8.D 9.A 10.C 二、填空题11.200(1+x )2=800,(1+x )2=4.x =1=100%. 12.x ≤-2,13.16或17.14.a 2-b 2=(a +b )(a -b ) 15.(1,-3).16.31 46.5 三、解答题17.解:两边都乘以x (x +1)得: x 2+x (x +1)=2(x +1)2 x =-32检验:x =-32是原方程的根. 18. [分析](1)读懂题目要求,抓住图形关键点,分析图形变换的形式.由A →B 是平移,由B →C 是先旋转再平移.(2)确定P 2点的坐标,主要是由P 、P 3的坐标为依据建立坐标系.(3)图案设计先确定关键点旋转后的位置,再画出全图.[解](1)将图形,A 向上平移4个单位长度,得到图形B .将图形B 以点P 1为旋转中心顺时针旋转90°,再向右平移4个单位长度得到图形C (或先平移、再旋转)(2)P 2 (4,4). (3) 如图11.19.从分类后得出的统计图表可以发现:小明本月的支出主要用于饮食,占了一半;其次是交通,占了24%;娱乐支出最少,只有10%;学习和娱乐合起来约占26%.点评:记账的主要目的是通过分类统计,了解收入和支出情况,以便调控,本题也可以作其他的分类或作其他的统计图表.20.解:(1)y 1=8x ;y 2=4x +120. (2)若y 1=y 2,即8x =4x +120. ∴x =30.∴当需要的仪器为30件时,两种方案所需费用相同. (3)把x =50分别代入y 1=8x ,y 2=4x +120,得 y 1=8×50=400, y 2=4×50+120=320. ∵y 1>y 2,∴当仪器为50件时第二种方案便宜.21.证明:∵AD =BC ,∠ADC =∠BCD ,DC=DC ,∴△ADC ≌△BCD ,∠1=∠2,DO =CO . 22.[分析](1)计算甲赢、乙赢的概率即可.(2)只要使两人赢的概率相等即可. [解](1)抛两枚硬币共有四种等可能情况:(正,正)、 (正、反)、(反、正)、(反、反),其中出现两个正面仅一种情况,出现一正一反有两种情况. ∴P (甲赢)=31,P (乙赢)=2142=.∵P (甲赢)<P (乙赢),∴这个游戏不公平. (2)设计规则为:“若出现两个相同的面甲赢,若出现一正一反的面乙赢”或“出现两个正面则甲赢,出现两个反面则乙赢,出现一正一反面则甲、乙都不赢”.[点拨]关键弄清游戏的公平性原则.23.证明:(1)连接BD .∵AB 是⊙O 直径,∴∠ADB =90°.又∵∠AEC =90°,∴BD ∥CE ,∠ECD =∠BDC .∵弧DC =弧BC ,∴DC =BC .(2)∵弧DC =弧BC ,CE 切⊙O 于C ,∴∠DCE =∠BAC . BC DE =ABDC,而DC =BC ,∴又AB 是⊙O 直径,∴∠CED =∠ACB =90°,△DCE ~△BCA 即BC 2=AB ·DE .24.解:由题意可知,全年共生产车轮1500×12=18 000(只),再加上原有车轮10 000只,共28 000只,能装配14 000辆自行车.根据装配车间的生产能力,全年至少可装配这种自行车12 000辆,但不超过14 400辆,当然也满足不了订户14 500辆的要求.因此,按实际生产需要,该厂今年这种自行车的销售金额a 万元应满足:12 000×500≤a ×104≤14 000×500,解得:600≤a ≤700.25.解:(1)画出图形,设QC =z ,由Rt △ABP ~Rt △PCQ ,x -44=z x , z =4)4(x x -,①y =21×4×(4-z ),② 第25题图(1)把①代入② y=21x 2-2x +8(0<x <4).(2)y=21x 2-2x +8=21(x -2)2+6.∴对称轴为x =2,顶点坐标为(2,6).(3)如图所示 第25题图(2) (4)存在,由S △APB =32S △ADQ ,可得y =3x , ∴21x 2—2x +8=3x , ∴x =2,x =8(舍去),∴当P 为BC 的中点时,△P AB 的面积等于△ADQ 的面积的32. 点评:本题是几何与代数的综合应用,同时也是一道探索性问题.在实际问题中,自变量的取值应结合实际意义确定.。