单片机按键显示实验
- 格式:doc
- 大小:48.50 KB
- 文档页数:4
一、实验目的1. 理解按键扫描的基本原理,掌握按键扫描电路的设计方法。
2. 学习并运用单片机编程技术,实现按键的识别与处理。
3. 掌握按键防抖技术,提高按键识别的准确性。
4. 熟悉数码管显示电路的连接与编程,实现按键值的实时显示。
二、实验原理按键扫描是单片机应用中常见的一种输入方式,通过扫描电路检测按键状态,并转换为单片机可识别的信号。
本实验采用行列扫描法,通过单片机的I/O口输出低电平,逐行扫描按键,同时读取列线状态,判断是否有按键被按下。
三、实验设备1. 单片机实验板(如51单片机实验板)2. 按键(如按钮、触摸按键等)3. 数码管(如7段数码管)4. 电阻、电容等电子元件5. 编程软件(如Keil、IAR等)四、实验步骤1. 电路连接(1)将按键的行线连接到单片机的I/O口,列线连接到数码管的输入端。
(2)数码管的共阳极或共阴极连接到单片机的I/O口。
(3)在按键和数码管之间接入电阻和电容,实现防抖功能。
2. 编程实现(1)初始化单片机的I/O口,将行线设置为输出模式,列线设置为输入模式。
(2)编写按键扫描函数,逐行扫描按键,读取列线状态,判断是否有按键被按下。
(3)编写数码管显示函数,根据按键值显示对应的数字或字符。
(4)编写防抖函数,消除按键抖动干扰。
3. 实验测试(1)上电后,观察数码管显示是否正常。
(2)按下按键,观察数码管是否显示对应的数字或字符。
(3)多次按下按键,观察数码管显示是否稳定。
五、实验结果与分析1. 按键扫描结果实验结果表明,按键扫描电路能够正确识别按键状态,并转换为单片机可识别的信号。
按键按下时,数码管显示对应的数字或字符,按键释放时,数码管显示前一个数字或字符。
2. 防抖效果通过实验发现,防抖函数能够有效消除按键抖动干扰,提高按键识别的准确性。
在按键按下和释放过程中,数码管显示的数字或字符稳定,没有出现跳动现象。
3. 数码管显示实验结果表明,数码管显示电路能够正确显示按键值。
桂林电子科技大学
实验报告
2016-2017 学年第一学期
开课单位海洋信息工程学院
适用年级、专业 14级机械设计制造及其自动化
课程名称《单片微型计算机与接口技术-课内实验》
主讲教师周旋
课程序号 BS1615000_03
课程代码 BS1615000 实验名称《独立按键识别》
学号 1416010516 - 17 姓名林亦鹏卢炳荣
独立按键识别实验报告
电路采用无源蜂鸣器,从P1.5口形成脉冲来驱动。
因为单片机开机初始化瞬间,其I/O口为高电平,会有误响动作。
单片机的独立键盘使用的是P1口。
当有键按下时,P1口相应位为低电平。
、查找资料说明按键抖动的原因。
、延时程序是怎么实现延时的?
定义蜂鸣器的连接端口--//。
键盘扫描实验实验报告一、实验目的1. 掌握线反转法键盘扫描原理。
2. 了解单片机的输入和输出过程,理解单片机的数据采集过程。
二、实验内容单片机外接4x4键盘,通过线反转法判断按下的键,并在数码管上显示按键对应的数字。
第一行从左到右分别是开关K0, K1, K2, K3,第二行从左到右分别是K4, K5, K6, K7以此类推。
当按下Kn时,在数码管上显示数字n。
三、实验原理线翻转法:先对行(R0-R3)置0,对列(R4-R7)置1。
当有键被按下时,会把按键所在的列的电位从1变0,记录下位置;然后再将行列翻转,记录下按下键的所在行,两数进行或运算,就可以得到一个唯一表示按下键的数字。
例如:假定R0-R7分别与单片机的P2.0-P2.7相连。
先把R4-R7置1,R0-R3置0(通过指令MOV P2, #0F0H实现)。
当键K5被按下时,R5电位被拉低为低电平。
此时,P2口表示的数为:1101 0000(0xD0);然后再置R4-R7为0,R0-R3为1,此时,R1电位被拉低为低电平,此时,P2口表示的数为:0000 1101(0x0D)。
将两数相与取反,得到:0010 0010。
四、实验过程1. 连接好单片机及其外围设备电路2. 编写汇编程序ORG LJMP KeyLJMP K7: CJNE R2, #82H, K8ORG 0100H MOV P0, #0F8H Init: CLR P1.3 LJMP KeyMOV P0, #0C0H K8: CJNE R2, #14H, K9 Key: MOV P2, #0F0H MOV P0, #080HMOV A, P2 LJMP KeyMOV R1, A K9: CJNE R2, #24H, K10MOV P2, #0FH MOV P0, #090HMOV A, P2 LJMP KeyORL A, R1 K10: CJNE R2, #44H, K11CPL A MOV P0, #088HMOV R2, A LJMP KeyJNZ KeyPro K11: CJNE R2, #84H, K12LJMP Key MOV P0, #083H KeyPro: CJNE R2, #11H, K1 LJMP KeyMOV P0, #0C0H K12: CJNE R2, #18H, K13LJMP Key MOV P0, #0C6H K1: CJNE R2, #21H, K2 LJMP KeyMOV P0, #0F9H K13: CJNE R2, #28H, K14LJMP Key MOV P0, #0A1H K2: CJNE R2, #41H, K3 LJMP KeyMOV P0, #0A4H K14: CJNE R2, #48H, K15LJMP Key MOV P0, #086H K3: CJNE R2, #81H, K4 LJMP KeyMOV P0, #0B0H K15: CJNE R2, #88H, K16LJMP Key MOV P0, #08EH K4: CJNE R2, #12H, K5 LJMP KeyMOV P0, #099H K16: LJMP KeyLJMP Key ENDK5: CJNE R2, #22H, K6MOV P0, #092HLJMP KeyK6: CJNE R2, #42H, K7MOV P0, #082H五、实验结果1. 当按下开关Kn时,数码管能够显示对应的数字。
主题:单片机独立按键控制LED灯实验原理目录1. 概述2. 单片机独立按键控制LED灯实验原理3. 实验步骤4. 结语1. 概述单片机在现代电子设备中起着至关重要的作用,它可以通过编程实现各种功能。
其中,控制LED灯是单片机实验中常见的任务之一。
本文将介绍单片机独立按键控制LED灯的实验原理及实验步骤,希望对初学者有所帮助。
2. 单片机独立按键控制LED灯实验原理单片机独立按键控制LED灯的实验原理主要涉及到单片机的输入输出端口及按键和LED的连接方式。
在单片机实验中,按键与单片机的输入端口相连,LED与单片机的输出端口相连。
通过按键的按下和松开来改变单片机输出端口电平,从而控制LED的亮灭。
3. 实验步骤为了完成单片机独立按键控制LED灯的实验,需要按照以下步骤进行操作:步骤一:准备材料- 单片机板- 按键- LED灯- 连线- 电源步骤二:搭建电路- 将按键与单片机的输入端口相连- 将LED与单片机的输出端口相连- 连接电源步骤三:编写程序- 使用相应的单片机开发软件编写程序- 程序中需要包括按键状态检测和LED控制的部分步骤四:烧录程序- 将编写好的程序烧录到单片机中步骤五:运行实验- 按下按键,观察LED的亮灭情况- 确保按键可以正确控制LED的亮灭4. 结语通过上述实验步骤,我们可以实现单片机独立按键控制LED灯的功能。
这个实验不仅可以帮助学习者了解单片机的输入输出端口控制,还可以培养动手能力和程序设计能力。
希望本文对单片机实验初学者有所帮助,谢谢阅读!实验步骤在进行单片机独立按键控制LED灯实验时,需要按照一定的步骤进行操作,以确保实验能够顺利进行并取得预期的效果。
下面将详细介绍实验步骤,帮助读者更好地理解和掌握这一实验过程。
1. 准备材料在进行单片机独立按键控制LED灯实验前,首先需要准备相应的材料。
这些材料包括单片机板、按键、LED灯、连线和电源。
在选择单片机板时,需要根据具体的实验需求来确定,常见的有51单片机、Arduino等,不同的单片机板具有不同的特性和使用方法,因此需要根据实验要求来选择适合的单片机板。
单片机实验报告信息处理实验实验二矩阵键盘专业:电气工程及其自动化指导老师:***组员:明洪开张鸿伟张谦赵智奇学号:152703117 \152703115\152703118\152703114室温:18 ℃日期:2017 年10 月25日矩阵键盘一、实验内容1、编写程序,做到在键盘上每按一个键(0-F)用数码管将该建对应的名字显示出来。
按其它键没有结果。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
3、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。
4、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。
5、掌握利用Keil51软件对程序进行编译。
6、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
三、实验原理1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
一、实验目的1. 理解单片机按键的工作原理和电路连接方法;2. 掌握按键消抖原理及其实现方法;3. 学会使用单片机编程控制按键功能,实现简单的输入控制;4. 提高单片机实验操作能力和编程能力。
二、实验仪器及设备1. 单片机开发板(如STC89C52);2. 按键;3. 万用表;4. 电脑;5. Keil C编译器。
三、实验原理1. 按键原理:按键是一种电子开关,按下时导通,松开时断开。
在单片机应用中,按键常用于输入控制信号。
2. 按键消抖原理:由于按键机械弹性,闭合和断开时会有一连串的抖动。
若直接读取按键状态,容易导致误操作。
因此,需要进行消抖处理。
3. 消抖方法:主要有软件消抖和硬件消抖两种方法。
本实验采用软件消抖方法,即在读取按键状态后,延时一段时间再读取,若两次读取结果一致,则认为按键状态稳定。
四、实验步骤1. 硬件连接:将按键一端接地,另一端与单片机的某个I/O口相连。
2. 编写程序:使用Keil C编译器编写程序,实现以下功能:(1)初始化I/O口,将按键连接的I/O口设置为输入模式;(2)读取按键状态,判断按键是否被按下;(3)进行消抖处理,若按键状态稳定,则执行相应的功能。
3. 编译程序:将编写好的程序编译成HEX文件。
4. 烧录程序:将编译好的HEX文件烧录到单片机中。
5. 实验验证:观察实验现象,验证按键功能是否实现。
五、实验结果与分析1. 硬件连接正确,程序编译无误。
2. 实验现象:当按下按键时,单片机执行相应的功能;松开按键后,按键功能停止。
3. 分析:通过软件消抖处理,有效避免了按键抖动导致的误操作。
六、实验总结1. 本实验成功实现了单片机按键控制功能,掌握了按键消抖原理及实现方法。
2. 通过实验,提高了单片机编程和实验操作能力。
3. 在后续的单片机应用中,可以灵活运用按键控制功能,实现各种输入控制需求。
4. 本次实验为单片机应用奠定了基础,为进一步学习单片机技术打下了良好基础。
单片机的键盘和显示实验报告㈠实验目的1.掌握单片机I/O的工作方式;2.掌握单片机以串行口方式0工作的LED显示;3.掌握键盘和LED显示的编程方法。
㈡实验器材1.G6W仿真器一台2.MCS—51实验板一台3.PC机一台4.电源一台㈢实验内容及要求实验硬件线路图见附图从线路图可见,8051单片机的P1口作为8个按键的输入端,构成独立式键盘。
四个LED显示器通过四个串/并移位寄存器74LS164接口至8051的串行口,该串行口应工作在方式0发送状态下,RXD端送出要显示的段码数据,TXD则作为发送时钟来对显示数据进行移位操作。
编写一个计算器程序,当某一键按下时可执行相应的加、减、乘、除运算方式,在四个显示器上显示数学算式和最终计算结果。
注:①通过按键来选择加、减、乘、除四种运算方式。
②输入两个数字均为一位十进制数,可预先放在内存中。
㈣实验框图(见下页)㈤思考题1.当键盘采用中断方式时,硬件电路应怎样连接?P1.4~P1.7是键输出线,P1.0~P1.3是扫描输入线。
输入与门用于产生按键中断,其输入端与各列线相连,再通过上拉电阻接至+5 V电源,输出端接至8051的外部中断输入端。
2.74LS164移位寄存器的移位速率是多少?实验中要求计算的式子和结果之间相差一秒,移位寄存器的移位速率应该是每秒一位吧。
其实这个问题确实不知道怎么回答。
LED 显示用的段码与教科书所提供的不同,本实验采用如下段码:显示数符段码显示数符段码0BBH A DBH109H B F1H2EAH C B2H36BH D E9H459H E F2H573H F D2H否有否P1口置输入读P1口开 始显示“0000”是否有键按下?延迟消抖是否有键按下?是读键码加法运算减法运算除运算6F3H—40H70BH.04H8FBH┗┛A1H97BH┗┛1AH灭00H P DAH实验代码:ORG 0000HAJMP MAINORG 0030HMAIN:MOV 41H,#0BBH ;对几个存放地址进行初始化MOV 42H,#0BBHMOV 43H,#0BBHMOV 44H,#0BBHMOV SCON,#00H ;初始化串行口控制寄存器,设置其为方式0 LCALL DISPLAY ;初始化显示KEY:MOV R3,#08H;用来存放两个数据MOV R4,#02HMOV P1,#0FFH ;初始化P1口MOV A,P1 ;读取按键状态CPL A ;取正逻辑,高电平表示有键按下JZ KEY ;A=0时无键按下,重新扫描键盘LCALL DELAY1;消抖MOV A,P1 ;再次读取按键状态CPL AJZ KEY ;再次判别是否有键按下PUSH AKEY1:MOV A,P1CPL AANL A,#0FH ;判别按键释放JNZ KEY1 ;按键未释放,等待LCALL DELAY1;释放,延时去抖动POP AJB ACC.0,ADD1 ;K1按下转去ADD1JB ACC.1,SUB1 ;K1按下转去SUB1JB ACC.2,MUL1 ;K1按下转去MUL1JB ACC.3,DIV1 ;K1按下转去DIV1LJMP KEYADD1:LCALL BUFFER ;显示加数和被加数MOV 43H,#049HLCALL DISPLAY ;显示加号MOV A,R3ADD A,R4DA AMOV R3,A ;相加结果放入R6ANL A,#0FHMOV R4,A ;结果个位放入R7MOV A,R3SWAP A ;半字节交换,高四位放入低四位ANL A,#0FHMOV R3,A ;结果的高位放入R6LCALL L;显示缓存区设置LCALL DELAY2;延时一秒后显示LCALL DISPLAYLJMP KEYSUB1:LCALL BUFFER ;显示减数和被减数MOV 43H,#40HLCALL DISPLAY ;显示减号MOV A,R3CLR CY ;CY清零SUBB A,R4 ;做减法PUSH ARLC A ;带进位循环左移,最高位放入CYJC F ;判断最高位,若为1则跳转到负数ZHENG: POP AMOV R4,AMOV R3,#00H ;高位清零SJMP OUTFU:POP ACPL A ;取绝对值INC AMOV R4,AMOV R3,#11H ;显示负号OUT: LCALL L ;显示缓存区设置LCALL DELAY2 ;延时1s后显示LCALL DISPLAYLJMP KEYMUL1:LCALL BUFFER ;显示两位乘数MOV 43H,#99HLCALL DISPLAY ;显示乘号MOV A,R3MOV B,R4MUL AB ;结果放入AB,A中是低8位,B中是高8位MOV B,#0AHDIV AB ;十进制转换MOV R4,B ;结果个位放入R7MOV R3,A ;结果的十位放入R6LCALL LLCALL DELAY2LCALL DISPLAY ;延时1s后显示LJMP KEYDIV1:LCALL BUFFER ;显示除数和被除数MOV 43H,#62HLCALL DISPLAY ;显示除号MOV A,R3MOV B,R4DIV AB ;A除以BMOV R4,B ;余数放在R4中MOV R3,A ;商放在R3中MOV A,R4MOVC A,@A+DPTR ;调用段选号MOV 41H,A ;显示余数MOV A,R3MOVC A,@A+DPTRMOV 43H,A ;显示商MOV 42H,#00HMOV 44H,#00HLCALL DELAY2 ;延时1S后显示LCALL DISPLAYLJMP KEYBUFFER: MOV 41H,#22H ;显示初始化,在做计算之前显示两个操作数,显示等号MOV DPTR,#TABLMOV A,R4MOVC A,@A+DPTRMOV 42H,AMOV A,R3MOVC A,@A+DPTRMOV 44H,ARETDISPLAY:MOV R5,#04H;共四位需要显示MOV R0,#41HDISPLAY1:MOV A,@R0MOV SBUF,ADISPLAY2:JNB TI,DISPLAY2;是否传完了CLR TIINC R0DJNZ R5,DISPLAY1RETL:MOV A,R4MOVC A,@A+DPTRMOV 41H,A ;R4对应的段码MOV A,R3MOVC A,@A+DPTRMOV 42H,A ;R3对应的段码MOV 43H,#00HMOV 44H,#00HRETDELAY1: ;普通延时MOV R1,#20HDS1:MOV R2,#0FFHDS2:DJNZ R2,DS2DJNZ R1,DS1RETDELAY2:MOV R6,#14H ;定时1SMOV TMOD,#01HDS3:MOV TH0,#3CHMOV TL0,#0B0H ;50msSETB TR0LOOP:JNB TF0,LOOPCLR TF0CLR TR0DJNZ R6,DS3 ;1s到,中断返回RETTABL:DB 0BBH 09H 0EAH 6BH ;段码表DB 59H 73H 0F3H 0BHDB 0FBH 7BH 00H 0DBHDB 0F1H 0B2H 0E9H 0F2HDB 0D2H 40H实验结果及分析按键1:8+2= 结果:10按键2:8-2= 结果: 6按键3:8*2= 结果:16按键4:8/2= 结果:4从上面的结果可以看出,本次实验基本完成了实验要求。
宁德师范学院计算机系
实验报告
(2014—2015学年第 2学期)
课程名称单片机原理
实验名称独立按键识别
专业计算机科学与技术(软工)年级 2012级
学号 B2012103145 姓名冯武
指导教师杨烈君
实验日期 2015.5.27
实验步骤、实验结果及分析:
1 实验步骤:
1、使用Proteus ISIS 7 Professional
应用程序,建立一个.DSN文件
2、在“库”下拉菜单中,选中“拾取元件”(快捷键P),分别选择以下元件:AT89C51、CAP、CAP-ELEC、CRYSTAL、RESPACK-8。
3、构建仿真电路
图1 按键识别1、2
图2 按键识别3
图3按一下暂停
图4归零
图5时钟调整
电路图
注:1、报告内的项目或设置,可根据实际情况加以补充和调整 2、教师批改学生实验报告应在学生提交实验报告10日内。
实验三基于MCS-51单片机的独立按键和矩阵按键检测实验一、支撑课程目标目标1:掌握微机和单片机的基本原理、编程技术、中断技术、系统扩展、定时器、串行接口和其他输入/输出接口技术,并且了解典型的单片机应用系统的设计思想和实现方法。
目标2:初步具备自行拟定实验步骤、检查和故障排除、分析和综合实验结果以及撰写实验报告的能力。
目标4:掌握MCS-51单片机/STM32F103单片机系统仿真工具和仿真流程,了解常用实验仪器、设备的基本工作原理,了解其正确使用方法,具备利用电子仪器设备和专业仿真软件对复杂工程问题进行分析和设计的能力。
二、实验类型:验证型( )、设计型(√)、研究创新型()三、预期学生学习的成果1、具有典型按键检测电路原理及消除抖动的必要性的认知。
2、理解程序设计消除抖动的实现过程。
3、掌握独立按键的程序查询检测编程实现。
4、掌握独立按键的中断检测编程实现。
5、理解矩阵键盘的行列扫描检测原理,具有矩阵键盘软硬件设计综合能力。
四、实验原理1、典型按键检测电路典型的按键检测电路具备检测按键的条件:检测引脚处在键按下前和后,要有电平变化,否则按键无法检测。
电路组成包括电源、上拉电阻、按键、接地组成,按下前,检测引脚高电平,按下后检测引脚低电平。
电阻防止按下电源短路,如图1(a)。
GND(a)(b)图 1 按键典型电路及对应检测电压2、按键抖动及消除如图1(b),理想条件下,按键未按下,在检测I/O端口是高电平,按下以后,检测I/O端口是低电平,手松后,按键弹起,检测I/O端口是高电平。
整个按键过程出现高电平到低电平又到高电平,有下降沿,也有上升沿。
实际过程中,由于人手的抖动,检测端电压如图1(c),检测电压出现“毛刺”抖动,假设单片机检测高电平阈值为VH,低电平阈值为VL,一次按键就会出现多次高电平到低电平变化,存在按键误检测可能。
常用消除办法之一:一旦检测到低电平,延迟u毫秒,u选择大于20,再次判断检测端是否是低电平,如果是,就判定为1次按键。
按键显示
OUTBIT EQU 08002H ; 位控制口
OUTSEG EQU 08004H ; 段控制口
IN EQU 08001H ; 键盘读入口
LEDBUF EQU 60H ; 显示缓冲
LJMP START
LEDMAP:DB 3FH, 06H, 5BH, 4FH, 66H, 6DH, 7DH, 07H ; 八段管显示码DB 7FH, 6fH, 77H, 7CH, 39H, 5EH, 79H, 71H
DELAY:MOV R7,#01H ; 延时子程序
MOV R6,#01H
DELAYLOOP:DJNZ R7,DELAYLOOP
DJNZ R6,DELAYLOOP
RET
DISPLAYLED:MOV R0,#LEDBUF
MOV R1,#06H ; 共6个八段管
MOV R2,#00100000B ; 从左边开始显示LOOP:MOV DPTR,#OUTBIT
MOV A,#0H
MOVX @DPTR,A; 关所有八段管
MOV A,@R0
MOV DPTR,#OUTSEG
MOVX @DPTR,A
MOV DPTR,#OUTBIT
MOV A,R2
MOVX @DPTR,A; 显示一位八段管
MOV R6,#01H
CALL DELAY
MOV A,R2 ; 显示下一位
RR A
MOV R2,A
INC R0
DJNZ R1,LOOP
RET
TESTKEY:MOV DPTR,#OUTBIT
MOV A,#00H
MOVX @DPTR,A; 输出线置为0
MOV DPTR,#IN
MOVX A,@DPTR ; 读入键状态
CPL A
ANL A,#0FH ; 高四位不用
RET
KEYTABLE: DB 16H,15H,14H,0FFH ; 键码定义
DB 13H,12H,11H,10H
DB 0DH,0CH,0BH,0AH
DB 0EH,03H,06H,09H
DB 0FH,02H,05H,08H
DB 00H,01H,04H,07H
GETKEY:MOV DPTR, #OUTBIT
MOV P2, DPH
MOV R0, #LOW(IN)
MOV R1, #00100000B
MOV R2, #06H
KLOOP:MOV A, R1 ; 找出键所在列CPL A
MOVX @DPTR, A
CPL A
RR A
MOV R1,A; 下一列
MOVX A , @R0
CPL A
ANL A, #0FH
JNZ LOOP1 ; 该列有键入
DJNZ R2, KLOOP
MOV R2, #0FFH ;没有键按下, 返回0ffh
SJMP EXIT
LOOP1: MOV R1,A; 键值= 列X 4 + 行MOV A,R2
DEC A
RL A
RL A
MOV R2,A; r2 = (r2-1)*4
MOV A,R1 ; r1 中为读入的行值
MOV R1,#04H
LOOP2:RRC A; 移位找出所在行JC EXIT
INC R2 ; r2 = r2+ 行值
DJNZ R1,LOOP2
Exit:MOV A, R2 ; 取出键码
MOV DPTR, #KEYTABLE
MOVC A,@A+DPTR
MOV R2,A
WAIT:MOV DPTR,#OUTBIT ; 等键释放
CLR A
MOVX @DPTR, A
MOV R6, #10H
CALL DELAY
CALL TESTKEY
JNZ W AIT
MOV A, R2
RET
START:MOV SP, #50H
MOV LEDBUF+0, #3FH ; 显示8.8.8.8.
MOV LEDBUF+1, #6DH
MOV LEDBUF+2, #5BH
MOV LEDBUF+3, #07H
MOV LEDBUF+4, #0
MOV LEDBUF+5, #0
MAIN:CALL DISPLAYLED ; 显示CALL TESTKEY; 有键入?
JZ MAIN ; 无键入, 继续显示CALL GETKEY
MOV R5,A; 读入键码
ANL A, #0FH ; 显示键码
MOV DPTR, #LEDMAP
MOVC A, @A+DPTR
MOV LEDBUF+5,A
MOV A,R5
RR A
RR A
RR A
RR A
ANL A, #0FH
MOVC A, @A+DPTR
MOV LEDBUF+4,A
LJMP MAIN
END
主程序流程图
读键输入子程序
显示子程序流程图见八段码显示流程图。