2016北京159中初一(上)期中数学
- 格式:doc
- 大小:117.50 KB
- 文档页数:8
北京156中学2015—2016学年度第一学期初一年级数学期中测试班级 姓名 学号 成绩第Ⅰ卷(选择题共30分)一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1. -2的相反数是( )A. 21- B. 2 C.21 D .-22. 全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为( ) A .1.5×107B .15×106C .1.5×108D .0.15×1083. 在数8,6-,0,|2|--,5.0-,32-,2015(1)-,41-中,负数的个数有( ) A .4 B .5 C .6 D .74. 下列说法正确的是( )A .一个数前面加上“-”号,这个数就是负数;B .非负数就是正数;C .正数和负数统称为有理数;D .0既不是正数也不是负数. 5.下列各图中,数轴的画法正确的是( )A. B.-1 0 1 1C. D.-1 0 1 -1 0 16.如果单项式y x m231与342+n y x 是同类项,那么m 、n 的值分别是( )A . ⎩⎨⎧-==22n m B . ⎩⎨⎧==14n m C . ⎩⎨⎧==12n m D . ⎩⎨⎧-==24n m7. 下面运算正确的是( )A .abc ac ab 633=+;B .04422=-a b b a ;C .422972x x x =+;D .22223y y y =-.8. 下列式子中去括号错误的是( ).A .()525525x x y z x x y z --+=-+-B .()()2223322332a a b c d a a b c d +----=---+C .()22336336x x x x -+=--D .()()222222x y xy x y x y ---+=-+--9. 若2是关于x 的方程112x a +=-的解,则ɑ的值为( )A .0B .-2C .2D .-610. 如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN =NP =PQ =QR =1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若3a b +=,则原点可能是( ). A .M 或Q B .P 或R C .N 或RD .P 或Q第Ⅱ卷(非选择题共70分)二、填空题(每小题2分,共16分).11. 比较大小:2- 3-(填“>”,“<”或“=”). 12. 单项式3232y x -的系数是 ,次数是 次.MNPQab R13. 将多项式232642y x x y x-++-按x 的降幂排列: .14. 已知33x y -=,则63x y -+的值是 . 15. 若()12m m x --=3是关于x 的一元一次方程,则m 的值是 .16. 若关于x 的方程mx+2=2(m-x )的解是12x =,则m=________. 17. 若2a =,4b =,且a b b a -=-,则a b +=_____________.18.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…,按此规律第5个图中共有 个点.三、计算题(每题4分,共20分)19. 12(18)-- 20. 51(3)()(1)64-⨯-÷-21. 1316.5483442-++- 22. )12()4332125(-⨯-+第1个图第2个图第3个图23.()()2316821⎪⎭⎫ ⎝⎛-÷-+-⨯⎪⎭⎫ ⎝⎛-四、先化简、再求值:(本题5分)24.先化简,再求值:()()a a a a a 3225222---+,其中5-=a .五、解下列方程(每题4分,共8分)25. 2(10)6x x x -+= 26. 12324x x+-=+六、解答题:(本题21分,第27、28、30、31题各4分,29题5分)27. 已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求2a cd b m -++的值. 解:28.有理数在数轴上的对应点位置如图所示,化简:2||a a b a b ++--.解:29. 已知:()221420a b ++-=,求: 2231112332a b a b a b ⎛⎫⎛⎫⎛⎫-+---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.解:a b1-130.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b= ab+a 2,例如(-3)☆2=232(3)3-⨯+-= (1)求(-5)☆3的值; (2)若-a ☆(1☆a)=8,求a 的值. 解:31. 已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且.现将A 、B 之间的距离记作,定义AB a b =-.(1)AB =__________;(2)设点P 在数轴上对应的数是x ,当2PA PB -=时,求x 的值.初中数学试卷灿若寒星 制作24(1)0a b ++-=AB。
2016-2017学年北京159中七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1. 的相反数是A. B. C. D.【答案】此题暂无答案【考点】相反数【解析】此题暂无解析【解答】此题暂无解答2. 绝对值小于的整数个数有()A.个B.个C.个D.个【答案】此题暂无答案【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答3. 某年哈尔滨市一月份的平均气温为,三月份的平均气温为,则三月份的平均气温比一月份的平均气温高()A. B. C. D.【答案】此题暂无答案【考点】有理水水减法【解析】此题暂无解析【解答】此题暂无解答4. 如果=,那么的取值范围是()A. B. C. D.【答案】此题暂无答案【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答5. “全民行动,共同节约”,我国亿人口如果都响应国家号召每人每年节约度电,一年可节约电度,用科学记数法表示为()A. B.C. D.【答案】此题暂无答案【考点】科学较盛法含-表项较大的数【解析】此题暂无解析【解答】此题暂无解答6. 下列比较大小的式子中,错误的是()A. B.C. D.【答案】此题暂无答案【考点】有理表的木方有理根惯小比较【解析】此题暂无解析【解答】此题暂无解答7. 下列各组是同类项的是A.与B.与C.与D.与【答案】此题暂无答案【考点】同类体的克念【解析】此题暂无解析【解答】此题暂无解答8. 如图,数轴上,两点分别对应实数,,则下列结论正确的是A. B.C. D.【答案】此题暂无答案【考点】实因顿数轴【解析】此题暂无解析【解答】此题暂无解答9. 如果,那么代数式的值是()A. B. C. D.【答案】此题暂无答案【考点】列较洗式源值情法的优势【解析】此题暂无解析【解答】此题暂无解答10. 如图是某年某月份的日历表,任意圈出一竖列上相邻的三个数,请你观察发现这三个数的和不可能是()A. B. C. D.【答案】此题暂无答案【考点】一元一表方型的应片——解程进度问题【解析】此题暂无解析【解答】此题暂无解答二、填空题(每小题2分,共20分)的倒数是________,,则________.【答案】此题暂无答案【考点】有理表的木方倒数【解析】此题暂无解析【解答】此题暂无解答绝对值最小的数是________;倒数等于它本身的是________.【答案】此题暂无答案【考点】倒数绝对值【解析】此题暂无解析【解答】此题暂无解答(精确到)________.【答案】此题暂无答案【考点】近似数于有效旋字【解析】此题暂无解析【解答】此题暂无解答单项式的系数是________,次数是________.【答案】此题暂无答案【考点】单项式【解析】此题暂无解析【解答】此题暂无解答如果有理数、满足,则________.【答案】此题暂无答案【考点】非负数的常树:偶次方非负数的较质:绝对值【解析】此题暂无解析【解答】此题暂无解答数轴上点表示,从出发,沿数轴移动个单位长度到达点,则点表示的数是________.【答案】此题暂无答案【考点】数轴【解析】此题暂无解析【解答】此题暂无解答(1)如果,则________;(2)如果,则________.【答案】此题暂无答案【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答现规定一种新运算“*”:对任意有理数、,都有,那么________.【答案】此题暂无答案【考点】定射新从号有理表的木方【解析】此题暂无解析【解答】此题暂无解答是方程的解,则________.【答案】此题暂无答案【考点】一元一常方陆的解【解析】此题暂无解析【解答】此题暂无解答如果是不为的有理数,我们把称为的差倒数.如:的差倒数是,的差倒数是.已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则________.【答案】此题暂无答案【考点】规律型:因字斯变化类倒数【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共50分)(1)(2)(4)(5).【答案】此题暂无答案【考点】有理数三混合运臂【解析】此题暂无解析【解答】此题暂无解答化简下列各式①②【答案】此题暂无答案【考点】整射的初减【解析】此题暂无解析【解答】此题暂无解答解下列方程:(1)(2).【答案】此题暂无答案【考点】解一使以次方程【解析】此题暂无解析【解答】此题暂无解答先化简,再求值:,其中.【答案】此题暂无答案【考点】整三的定王-偏化简求值【解析】此题暂无解析【解答】此题暂无解答如果有理数、满足,试求:的值.【答案】此题暂无答案【考点】非负数的常树:偶次方非负数的较质:绝对值【解析】此题暂无解析【解答】此题暂无解答小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子取最小值时,相应的的取值范围是________,最小值是________”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:,和,经研究发现,当时,值最小为.请你根据他们的解题解决下面的问题:(1)当式子取最小值时,相应的的取值范围是________,最小值是________.(2)已知,求相应的的取值范围及的最大值.写出解答过程.【答案】此题暂无答案【考点】绝对值数轴【解析】此题暂无解析【解答】此题暂无解答。
北京市第五十六中学2015-2016学年度第一学期期中考试初一年级 数学试卷考试时间:100分钟 满分:100分一 . 精心选一选:(本题共30分,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求,请把正确结论的代号写在表格中.) 1.一个数的绝对值是5,那么这个数是A .±5B . 5C . -5D .51 2.我国最长的河流长江全长约为6300千米,用科学记数法表示为A . 63×102千米 B . 6.3×102千米 C . 6.3×104千米 D . 6.3×103千米 3. 下列式子中,正确的是A .-0.4<-12B .45-<67-C .98-> 89- D .2(4)->2(3)- 4. 下列说法中正确的是A . x ,0不是单项式B . 3abc-的系数是3- C . y x 2的系数是0 D .a -不一定是负数5. 下列各式:①)2(--;②2--;③22-;④2)2(--,计算结果为负数的个数有A . 4个B . 3个C . 2个D . 1个6. 下列各式计算正确的是A . ab b a 532=+B . 82012-=-x x年级 班级 姓名 学号装 订 线C . ab ab ab 56=-D . a a 55=+ 7. 下列去括号正确的是A .-3a-(2b-c)=-3a+2b-cB .-3a-(2b-c)=-3a-2b-cC .-3a-(2b-c)=-3a+2b+cD .-3a-(2b-c)=-3a-2b+c 8. 若︱a ︱=-a ,则a 是A . 负数B . 非负数C . 零D . 非正数 9. 如果a+b >0, ab <0那么A . a, b 异号, 且︱a ︱>︱b ︱B . a, b 异号, 且a >bC . a, b 异号, 其中正数的绝对值大D .a >0>b 或a <0<b 10. 如果a-b=2,c-a=3,则(b-c)2-3 (b-c)+4的值为A .14B .2C .44D .不能确定 二. 细心填一填:(本题共18分,每题2分)11. 水位升高3m 时水位变化记作+3m ,那么-5m 表示 . 12. 31-的相反数是 倒数是_________;. 13. 232xy -的系数是_____,次数是_____.14. 若nm y x y x 3237--+与是同类项,则 m=_______, n=________. 15.设m 、n 为整数,十位数字是m ,个位数字是n 的两位整数是 ____________. 16.若01)3(2=++-b a ,则a+b= . 17.如图,a 、b 、c 在数轴上的位置如图所示, 则=--+-+||||||b c c a b a .18.规定一种运算:a *b=ba ab+;计算2*(-3)的值是 ____________.19. 观察下面一列数,探求其规律: -1,21,-31,41,-51,61……则第7,8项为 , , 第n 项为 .三. 用心算一算:(本题共16分,每小题4分)20. 12—(—18)+(—7)—15 21. 713.5()22÷-⨯-22. 22332(2)2(2)----+-四. 化简:(本题共8分,每小题4分)24. )7()9(532222x x x x -+---- 25. ()()222243x x x x ⎡⎤+---⎣⎦五.先化简,再求值: (本题共5分)26. 已知a=-1,求22(4a 2a 6)2(2a 2a 5)-----的值.六.解答题(共23分, 27题5分,28,29,30题各6分,) 27.某公司今年第一季度收入与支出情况如表所示(单位:万元) 请问: (1)该公司今年第一季度总收入与总支出各多少万元?(2)如果收入用正数表示,则总收入与总支出应如何表示? (3)该公司第一季度利润为多少万元?28.把表示下列各数的点画在数轴上,再按从小到大的顺序,用"<"号把这些数连接起来:2,15,3, 2.5,(2),5,02-----.29.如图,在边长为x 的正方形纸片的4个角都剪去1个长和宽分别是b a ,的长方形. (1) 试用x b a ,,表示纸片剩余部分的面积,并指出得到的多项式是几次几项式,二次项系数的和是多少?月份 一月 二月 三月 收入324850支出 12 13 10(2)如图,在边长为x 的正方形纸片的4个角都剪去1个相同的直角三角形,直角三角形的两条直角边长分别为b a ,,用x b a ,,表示纸片剩余部分的面积为__________________.(3)如图,在边长为x 的正方形纸片的4个角都剪去1个相同的扇形,___,剩扇形的半径为r ,用x r ,表示纸片剩余部分的面积为_______ 余部分图形的周长为_________________.30. 已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且24(1)0a b ++-=.现将A 、B 之间的距离记作AB ,定义AB a b =-.(1)AB =__________;(2)设点P 在数轴上对应的数是x ,当2PA PB -=时,直接写出x 的值;(3)设点P 在数轴上对应的数是x ,当7+=PA PB 时,直接写出x 的值;选做题:(1题5分,2题5分,共10分)1. 如图是一个三阶幻方,由9个数构成并且横行,竖行和对角线上的和都相等,试填出空格中的数。
北京市XX 中学2016-2017学年度七年级数学期中测试 2016年11月一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的。
1、某市2013年元旦的最高气温为2℃,最低气温为-8℃,这天的最高气温比最低气温高( )A .-10℃B .-6℃C .6℃D .10℃2、地球与太阳之间的距离约为149600000千米,将149600000用科学记数法表示应为( ).A .5101496⨯B .71096.14⨯C .810496.1⨯D .9101496.0⨯ 3、下列式子中,正确的是 ( ) A .0<-21 B .54<76- C .89> 98 D .4->3- 4、下列式子的变形中,正确的是( )A . 由6+x =10得x =10+6B . 由3x +5=4x 得3x -4x =-5C . 由8x =4-3x 得8x -3x =4D . 由2(x -1)= 3得2x -1=3 5、下列各式中运算正确的是( )A . 43m m -=B . 220a b ab -=C . 33323a a a -=D . 2xy xy xy -=- 6、若0)3-(22=++y x ,则=yx( )A . -8B . -6C . 6D . 87、今年哥哥的年龄是妹妹年龄的2倍,四年前哥哥的年龄是妹妹年龄的3倍,如果设妹妹今年x 岁,可列方程为( )A .2x+4=3(x-4)B .2x-4=3(x-4)C .2x=3(x-4)D .2x-4=3x8、已知代数式-2.5x a+b y a-1与3x 2y 是同类项,则a-b 的值为( )A.2B.0C. 2-D.19、表示x 、y 两数的点在x 轴上的位置如图所示,则x y 1x -+-等于( )A .y -1B .x y 21-+C .x y 21--D .2x -y -110、如图,M N P R ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1MN NP PR ===.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3a b +=,则原点可能是( )A .M 或RB .N 或PC .M 或ND .P 或R二、填空题(本题共16分,每小题2分) 11、31-的倒数是 . 12、某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是 元.13、若关于x 的一元一次方程23=+x ax 的解是1=x ,则a = . 14、化简3()()2()m n m n m n ---+-的结果是 . 15、当x = 时,代数式534x +的值为2. 16、若代数式2x 2+3y +7的值为8,那么代数式6x 2+9y +8的值为 . 17、定义运算“∆”,对于两个有理数a ,b ,有a ∆b =ab -(a +b ),例如:-3∆2=516)23(23-=+-=+--⨯-,则[]4)1()1(∆-∆-m =___ __. 18、有一列式子,按一定规律排列成-2a 2,4a 5,-8a 10,16a 17,-32a 26,……,第n 个式子为 (n 为正整数).三、解答题(本题共40分,每小题4分)19、计算:(1)23-17-(-7)+(-16) (2) )32(176)211(652-÷⨯-⨯ (3) 2111()()941836-+÷- (4)-72 + 2 ⨯ (-3)2 + (-6) ÷ (-21)3ab x20、化简:(1)3x 2-y 2-3x 2-5y +x 2-5y +y 2 (2) 22123(2)33x y x y --+() 21、求abc c a c a abc b a b a 3431323212222-⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛----的值, 其中a = -1, b = -3, c = 1.22、解方程:(1)90.55.14--=-x x x (2)2(10)6x x x -+=(3)+221=132x x --四、解答题(本题共14分,其中23题4分,24、25每题5分)23、某日,司机小张作为志愿者在东西向的公路上免费接送游客。
北京市第五十六中学2015-2016学年度第一学期期中考试初一年级数学参考答案及评分标准二. 11. 水位下降5m 12. 13 ,-3 13. 3-2,3 14.m=1,n=1 15. 10m+n 16. 2 17. 0 18. 619. 17-,18,1(1)-n n三.用心算一算:(本题共24分,每小题4分)20. 原式=12+18-7-15 ------------------------2分=30-22=8 ------------------------4分21. 原式=721272-⨯⨯ ------------------------2分 =12- ------------------------4分22. 原式=-4-4-8-8 ------------------------2分=-24 ------------------------4分23. 原式=12-52--1 ------------------------2分 =-4 ------------------------4分四. 化简:(本题共8分,每小题4分)24. 原式=26x - ------------------------4分25. 原式=222243+-+-x x x x -----------------------2分=229-+x ------------------------4分五.先化简,再求值:(本题共5分)26. 原式=224a 2a 64a 4a 10---++ ----------2分 = 2a+4 ----------------------------------------4分当 a=-1 时,原式= 2 ----------------------------5分六.(本题共23分)27. (1)总收入130万元,总支出35万元?-----------------2分(2)总收入+130万元,总支出-35万元 ---------------4分(3)95万元---------------5分28. 215(2) 2.50352-<--<-<<-<----------------2分 画图----------------3分29(1)剩余部分的面积24-x ab ,二次二项式,二次项系数的和是-3.----------------2分(2)22-x ab ----------------2分(3)22-x r π ----------------3分 30(1)5 ----------------2分(2)x=-1 ----------------2分(3)x=2,x=-5----------------3分初中数学试卷桑水出品。
北京市一五九中学2016-2017学年度第二学期初一期中数学试题班姓名 学号得分一、选择题:(每小题3分,共30分) 1.下列各数中,无理数是(). A .4 B.2π C.722D.16.0 2.91的平方根是() A.31 B. 31- C. 31± D.811± 3.下列命题中正确的是( ).A . 相等的角是对顶角;B . 同位角相等;C . 互补的角是邻补角;D . 若a ∥b ,b ∥c ,则a ∥c .4.观察下图,在A 、B 、C 、D 四幅图中,能通过图(1)的平移得到的是( ).A B C D5.已知a b <,则下列不等式一定成立的是( ).A .55a b +>+B .22a b -<-C .3322a b > D .770a b -< 6. 若点A (a ,b )在第二象限,则点B (a-b,b-a )一定在( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限7.利用数轴确定不等式组102x+≥⎧⎨<的解集,正确的是( ).A ..C ..8.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于O ,若∠COE=55°,则∠BOD 的度数为( )(1) A B DA. 40°B. 45°C. 30°D. 35°9.如图, 点E 在AB 的延长线上,下列条件中,能判断AD//BC 的是( )A .∠3=∠4B . ∠1=∠2 C. ∠C =∠CBE D. ∠C +∠A BC=180°第8题第9题 第10题10.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标( )A 、(13,13)B 、(-13,-1)C 、(14,14)D 、(-14,-14)二、填空题:(每小题2分,共20分)11. 16的算术平方根是,若x -2有意义,则x 的取值范围是。
北京市第159中学2019-2020学年初一第一学期期中数学试卷 一、选择题1.-3的相反数是( )A. 3B. -31 C. 31D. -3 2.绝对值小于2的整数有( )A .2个B .3个C .4个D .5个3.某市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( )A .16℃B .20℃C .16-℃D .20-℃ 4.如果a a =-,则a 的取值范围是( ) A .0a ≤B .0a >C . 0a <D .0a ≥5. “全民行动,共同节约”,我国13亿人口如果都响应国家号召每人每年节约1度电,一年可节约电1300000000度,这个数用科学记数法表示,正确的是( )A .1.30×109B .1.3×109C .0.13×1010D .1.3×10106.下列比较大小的式子中,错误的是( ) A .()()2322>-- B .()()2332<-- C .98109-<- D .3130->-.7.下列各组式子中是同类项的是 ( ).A . 32x 与23x B .ax 12与bx 8 C .4x 与4a D .32与3- 8.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是( )A .0a b +>B .0ab >C .0a b ->D .||||0a b -> 9.如果33-=-b a ,那么代数式b a 35+-的值是( ) A .0 B .2 C .5 D .810. 右图是某年某月份的日历表,任意圈出一竖列上相邻的三个数,请你观察发现这三个数的和不可能是( ) A .69 B. 54 C. 27 D. 40二、填空题11. -2的倒数是___ ____,92=x,则x= 。
12. 绝对值最小的数是___ ___;倒数等于它本身的数是___ ___。
2015-2016学年河南省北大附中分校七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列一组数:﹣8、2.7、﹣3、、0.66666…、0、2、0.080080008…,其中是有理数的个数是( )A.5个B.6个C.7个D.8个2.月球的质量约为73400000000亿吨,用科学记数法表示这个数是( )A.734×108亿吨B.73.4×109亿吨C.7.34×1010亿吨 D.0.734×1011亿吨3.计算a3+a3的结果是( )A.a6B.a9C.2a3D.2a64.下列各选项中的两项是同类项的为( )A.﹣ab2与﹣a2b B.32与﹣53C.x2与﹣y2a5D.3xy3与2x2y25.下列说法正确的是( )A.的系数是﹣2 B.32ab3的次数是6次C.是多项式D.x2+x﹣1的常数项为16.一个三位数,个位数字是a,十位数字是b,百位数字是c,则这个三位数是( ) A.abc B.a+10b+100c C.100a+10b+c D.a+b+c7.下列各对数中,数值相等的是( )A.23和32B.(﹣2)2和﹣22C.﹣(﹣2)和|﹣2| D.和8.若|a|=﹣a,则a是( )A.非负数B.负数 C.正数 D.非正数9.下面运算正确的是( )A.3ab+3ac=6abc B.4a2b﹣4b2a=0 C.2x2+7x2=9x4D.3y2﹣2y2=y210.下面四个整式中,不能表示图中阴影部分面积的是( )A.(x+3)(x+2)﹣2x B.x(x+3)+6 C.3(x+2)+x2D.x2+5x二、填空题(每小题3分,共24分)11.若支出20元记为+20元,则﹣50元表示__________.12.﹣3的倒数是__________,|﹣2|的相反数是__________.13.某日中午,北方某地气温由早晨的零下2℃上升了10℃,傍晚又下降了4℃,这天傍晚北方某地的气温是__________℃.14.定义a*b=a2﹣b,则2*3=__________.15.单项式﹣的次数是__________,系数是__________.16.若a,b互为相反数,c,d互为倒数,m的绝对值为1,则的值是__________.17.若|y+3|+(x﹣2)2=0,则y x=__________.18.观察下列等式:,,,,…,根据你发现的规律,请写出第n个等式:__________.三、解答题(共66分)19.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.﹣,0,4,﹣3,2.5.20.(36分)计算(1)22+(﹣4)+(﹣2)+4(2);(3)(4)﹣12014+(﹣3)2﹣32×23(5)﹣|﹣3|2÷(﹣3)2;(6)0﹣(﹣3)2÷3×(﹣2)3.21.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(﹣5ab2+3a2b﹣5),其中a=﹣1,b=.22.参加第十七届韩日世界杯足球赛的23名中国队员的年龄如表所示:(2)求出中国队队员的平均年龄.2015-2016学年河南省北大附中分校七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列一组数:﹣8、2.7、﹣3、、0.66666…、0、2、0.080080008…,其中是有理数的个数是( )A.5个B.6个C.7个D.8个【考点】实数.【分析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:﹣8、2.7、﹣3、0.66666…、0、2是有理数.故选:B.【点评】本题考查了实数,有理数是有限小数或无限循环小数,无理数是无限不循环小数.2.月球的质量约为73400000000亿吨,用科学记数法表示这个数是( )A.734×108亿吨B.73.4×109亿吨C.7.34×1010亿吨 D.0.734×1011亿吨【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将73400000000亿吨用科学记数法表示为:7.34×1010亿吨.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.计算a3+a3的结果是( )A.a6B.a9C.2a3D.2a6【考点】合并同类项.【分析】将两项的系数相加得到结果的系数合并同类项即可.【解答】解:原式=a3+a3=(1+1)a3=2a3.故选C.【点评】本题考查了合并同类项的知识,解题的关键是认清多项式的两项是同类项.4.下列各选项中的两项是同类项的为( )A.﹣ab2与﹣a2b B.32与﹣53C.x2与﹣y2a5D.3xy3与2x2y2【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断.【解答】解:A、相同字母的次数不同,不是同类项,选项错误;B、正确;C、所含字母不同,不是同类项,选项错误;D、相同字母的次数不同,不是同类项,选项错误.故选B.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.下列说法正确的是( )A.的系数是﹣2 B.32ab3的次数是6次C.是多项式D.x2+x﹣1的常数项为1【考点】单项式.【分析】根据单项式次数、系数的定义,以及多项式的有关概念解答即可;单项式的系数是单项式中的数字因数,单项式的次数是单项式中所有字母的指数和.【解答】解:A、的系数是﹣;故A错误.B、32ab3的次数是1+3=4;故B错误.C、根据多项式的定义知,是多项式;故C正确.D、x2+x﹣1的常数项为﹣1,而不是1;故D错误.故选C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.6.一个三位数,个位数字是a,十位数字是b,百位数字是c,则这个三位数是( ) A.abc B.a+10b+100c C.100a+10b+c D.a+b+c【考点】列代数式.【分析】利用数的表示法即可判断.【解答】解:一个三位数,个位数字是a,十位数字是b,百位数字是c,则这个三位数是:100c+10b+a.故选B.【点评】本题考查了利用代数式表示数,正确理解数字与每个位上的数字的关系是关键.7.下列各对数中,数值相等的是( )A.23和32B.(﹣2)2和﹣22C.﹣(﹣2)和|﹣2| D.和【考点】有理数的乘方.【分析】通过对备选答案进行计算,对结果进行比较大小就可以得出答案.【解答】解:A:23=8 32=9,8≠9,本选项错误;B:(﹣2)2=4,﹣22=﹣4,4≠4,本选项错误;C:﹣(﹣2)=2,|﹣2|=2,2=2,本选项正确;D:,,本选项错误.故C答案正确,故选C【点评】本题是一道有理数乘方的计算题,考查了乘方的意义,分数的乘方于整数的乘方的区别,绝对值与相反数.8.若|a|=﹣a,则a是( )A.非负数B.负数 C.正数 D.非正数【考点】绝对值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即可解答.【解答】解:∵|a|=﹣a,∴a为非负数,故选:D.【点评】本题考查了绝对值,解决本题的关键是熟记正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.9.下面运算正确的是( )A.3ab+3ac=6abc B.4a2b﹣4b2a=0 C.2x2+7x2=9x4D.3y2﹣2y2=y2【考点】合并同类项.【专题】计算题.【分析】根据同类项的定义和合并同类项法则.【解答】解:A、3ab+3ac=3a(b+c);B、4a2b﹣4b2a=4ab(a﹣b);C、2x2+7x2=9x2;D、正确.故选D.【点评】本题考查的知识点为:同类项的定义:所含字母相同,相同字母的指数相同.合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.10.下面四个整式中,不能表示图中阴影部分面积的是( )A.(x+3)(x+2)﹣2x B.x(x+3)+6 C.3(x+2)+x2D.x2+5x【考点】合并同类项.【分析】根据题意可把阴影部分分成两个长方形或一个长方形和一个正方形来计算面积,也可以用大长方形的面积减去空白处小长方形的面积来计算.【解答】解:A、大长方形的面积为:(x+3)(x+2),空白处小长方形的面积为:2x,所以阴影部分的面积为(x+3)(x+2)﹣2x,故正确;B、阴影部分可分为两个长为x+3,宽为x和长为x+2,宽为3的长方形,他们的面积分别为x(x+3)和3×2=6,所以阴影部分的面积为x(x+3)+6,故正确;C、阴影部分可分为一个长为x+2,宽为3的长方形和边长为x的正方形,则他们的面积为:3(x+2)+x2,故正确;D、x2+5x,故错误;故选D.【点评】本题考查了长方形和正方形的面积计算,难度适中.二、填空题(每小题3分,共24分)11.若支出20元记为+20元,则﹣50元表示收入50元.【考点】正数和负数.【分析】根据正数和负数是表示相反意义的量,可得收入为负,支出为正.【解答】解:支出20元记为+20元,则﹣50元表示收入50元,故答案为:收入50元.【点评】本题考查了正数和负数.注意正数、负数表示相反意义的量.12.﹣3的倒数是﹣,|﹣2|的相反数是﹣2.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】原式利用倒数及相反数的定义化简即可得到结果.【解答】解:﹣3的倒数是﹣,|﹣2|的相反数是﹣2.故答案为:﹣;﹣2【点评】此题考查了倒数,相反数,熟练掌握各自的定义是解本题的关键.13.某日中午,北方某地气温由早晨的零下2℃上升了10℃,傍晚又下降了4℃,这天傍晚北方某地的气温是4℃.【考点】有理数的加减混合运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣2+10﹣4=4(℃),则这天傍晚北方某地的气温是4℃.故答案为:4【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.14.定义a*b=a2﹣b,则2*3=1.【考点】代数式求值.【专题】新定义.【分析】根据题目的规定,直接代入计算即可.【解答】解:∵a*b=a2﹣b,∴2*3=22﹣3=4﹣3=1.【点评】本题属于新定义的题目,题型简单,只要按照题目给出的顺序代入求值即可.15.单项式﹣的次数是3,系数是﹣.【考点】单项式.【分析】根据单项式系数及次数的定义,即可得出答案.【解答】解:单项式﹣的次数是3,系数是﹣.故答案为:3;.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式系数及次数的定义.16.若a,b互为相反数,c,d互为倒数,m的绝对值为1,则的值是﹣2或0.【考点】有理数的混合运算;相反数;绝对值;倒数.【专题】计算题.【分析】利用相反数,倒数,以及绝对值的定义求出a+b,cd,以及m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=1或﹣1,当m=1时,原式=0+1﹣1=0;当m=﹣1时,原式=0﹣1﹣1=﹣2.故答案为:﹣2或0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.若|y+3|+(x﹣2)2=0,则y x=9.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【解答】解:根据题意得,y+3=0,x﹣2=0,解得x=2,y=﹣3,所以,y x=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.观察下列等式:,,,,…,根据你发现的规律,请写出第n个等式:n﹣=.【考点】规律型:数字的变化类.【专题】规律型.【分析】等式左边,分数的分子与整数相同,分母比整数的平方大1,等式的右边分母与左边的分母相同,分子是整数的立方,然后写出即可.【解答】解:1﹣=,2﹣=,3﹣=,4﹣=,…,第n个等式是n﹣=.故答案为:n﹣=.【点评】本题是对数字变化规律的考查,从等式两边的分数的分子、分母与整数的关系考虑求解是解题的关键.三、解答题(共66分)19.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.﹣,0,4,﹣3,2.5.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出来,再比较即可.【解答】解:在数轴上表示出来为:用“<”号把它们连接起来为:﹣3<﹣1<0<2.5<4.【点评】本题考查了数轴和有理数的大小比较的应用,注意:在数轴上表示的数,右边的数总比左边的数大.20.(36分)计算(1)22+(﹣4)+(﹣2)+4(2);(3)(4)﹣12014+(﹣3)2﹣32×23(5)﹣|﹣3|2÷(﹣3)2;(6)0﹣(﹣3)2÷3×(﹣2)3.【考点】有理数的混合运算.【分析】(1)先化简,再计算加减法;(2)直接运用乘法的分配律计算;(3)先算乘除法,再算减法;(4)(5)(6)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:(1)22+(﹣4)+(﹣2)+4=22﹣4﹣2+4=26﹣6=20;(2)=×24﹣×24+×24=18﹣44+21=﹣5;(3)=3﹣3×=3﹣=;(4)﹣12014+(﹣3)2﹣32×23=﹣1+9﹣9×8=﹣1+9﹣72=﹣64;(5)﹣|﹣3|2÷(﹣3)2;=﹣9÷9=﹣1;(6)0﹣(﹣3)2÷3×(﹣2)3.=0﹣9÷3×(﹣8)=0+24=24.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.21.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(﹣5ab2+3a2b﹣5),其中a=﹣1,b=.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2﹣5+5ab2﹣3a2b+5=12a2b,当a=﹣1,b=时,原式=4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.(2)求出中国队队员的平均年龄.【考点】正数和负数.【分析】(1)找出年龄最大的和年龄最小的,再相减即可;(2)根据平均数的计算公式求出即可.【解答】解:(1)∵年龄最大的队员的年龄是34岁,年龄最小的队员的年龄是20岁,∴年龄最大的队员与年龄最小的队员的年龄差是34﹣21=13(岁);(2)中国队队员的平均年龄是:×(21+29+24+27+33+22+25+25+32+31+28+31+24+24+23+21+20+27+26+28+23+34+34)≈27(岁).【点评】本题考查了正数和负数,有理数的加减运算的应用,能根据题意列出算式是解此题的关键,题目比较好,难度不大.。
2016北京159中初二(上)期中数学一.选择题(每题3分,共30分):1.(3分)下列图形中不是轴对称图形的是()A.B.C. D.2.(3分)点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)3.(3分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等4.(3分)等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cm C.63cm或51cm D.以上都不正确5.(3分)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°6.(3分)已知:如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使△AOB≌△DOC,你补充的条件是()A.AC=DB B.BC=BDC.AB=CD D.∠AOB=∠DOC7.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于D,DE⊥AB于E.若DE=1cm,则BC=()cm.A.2 B.3C.4 D.58.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=19.(3分)下列条件中,不能得到等边三角形的是()A.有两个内角是60°的三角形B.有两边相等且是轴对称图形的三角形C.三边都相等的三角形D.有一个角是60°且是轴对称图形的三角形10.(3分)若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是()A.B.C.D.二.填空题(每题3分,共24分):11.(3分)分解因式:a3﹣ab2=.12.(3分)如图,如图△ABE≌△DCE,AE=2cm,BE=1.2cm,∠A=25°,∠B=48°,那么DE=cm,EC=cm,∠C=°.13.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.若AB=5cm,BC=3cm,则△PBC的周长=.14.(3分)如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB=cm.15.(3分)等腰三角形的一个角是80°,则它的另外两个角的度数是.16.(3分)如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=°.17.(3分)已知x+y=6,xy=﹣3,则x2y+xy2=.18.(3分)如图,A、B两点在直线l的同侧,在l上求作一点M,使AM+BM最小.小明的做法是:做点A关于直线l的对称点A',连结A'B,交直线l于点M,点M即为所求.请你写出小明这样作图的依据:.三.解答题(本题共5道小题,每题6分,共30分):19.(6分)(1)(m﹣3n)2(2)(y﹣3)2﹣2(y+2)(y﹣2).20.(6分)先化简,再求值:(x﹣1)(x﹣2)﹣x(x+3),其中x=.21.(6分)某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)22.(6分)已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.23.(6分)在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣l,O),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,在右面的坐标系中画出△A2B2C2,并写出它的三个顶点的坐标.四、解答题(本题6分)24.(6分)已知:如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BCD的度数.五、解答题(本题共10分,第23题5分,第24题5分)25.(5分)先作图,再证明.(1)在所给出的图形中完成一下作图(保留作图痕迹):①作∠ACB的平分线CD,交AB于D;②延长BC到E,使CE=CA,连接AE.(2)求证:CD∥AE.26.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.数学试题答案一.选择题(每题3分,共30分):1.【解答】A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、右边有横线,左边没有,所以不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.2.【解答】点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.3.【解答】A、两个直角三角形只能说明有一个直角相等,其他条件不明确,所以不一定全等,故本选项错误;B、两个等腰三角形,腰不一定相等,夹角也不一定相等,所以不一定全等,故本选项错误;C、两个等边三角形,边长不一定相等,所以不一定全等,故本选项错误;D、它们的夹角是直角相等,可以根据边角边定理判定全等,正确.故选D.4.【解答】若腰长为25cm,底边长为13cm,则周长为:25+25+13=63(cm);若腰长为13cm,底边长为15cm,则周长为:25+13+13=51(cm);故它的周长是:63cm或51cm.故选C.5.【解答】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选D.6.【解答】添加AB=CD,∵在△ABO和△DCO中,∴△ABO≌△DCO(AAS),故选:C.7.【解答】∵AD平分∠CAB,∠C=90°,DE⊥AB于E,∴CD=DE=1cm,∵∠B=30°,DE⊥AB于E,∴BD=2DE=2cm,∴BC=BD+CD=3cm,故选B.8.【解答】A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.9.【解答】A、两个内角为60°,根据三角形的内角和为180°,可知另一个内角也为60°,所以该三角形为等边三角形.故不符合题意;B、两边相等说明是等腰三角形或等边三角形,而这两种三角形都满足“轴对称”的条件,所以不能确定该三角形是等边三角形.故符合题意;C、三边都相等的三角形当然是等边三角形.故不符合题意;D、“轴对称”说明该三角形有两边相等,且有一个角是60°,有两边相等且一角为60°的三角形是等边三角形.故不符合题意;故选B.10.【解答】动手操作后可得第二个图案.故选A.二.填空题(每题3分,共24分):11.【解答】a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).故答案为:a(a+b)(a﹣b).12.【解答】∵△ABE≌△DCE,AE=2cm,BE=1.2cm,∠A=25°,∠B=48°,∴DE=AE=2cm,EC=EB=1.2cm,∠C=∠B=48°,故答案为:2;1.2;48.13.【解答】∵AB的垂直平分线交AC于P点.∴AP=BP.又∵AB=AC,AB=5cm,BC=3cm,∴△PBC的周长=PB+PC+BC=AP+PC+BC=AB+BC=5+3=8cm.故答案是:8cm.14.【解答】∵BD平分∠CBA,DE⊥AB,∠C=90°,∴CD=DE,∠C=∠DEB=90°,∠CBD=∠EBD,在△DCB和△DEB中,∴△DCB≌△DEB(AAS),∴BE=BC=AC,∵△ADE的周长为8cm,∴AD+DE+AE=AD+CD+AE=AC+AE=BE+AE=AB=8cm,故答案为:8.15.【解答】①当这个角是底角时,另外两个角是:80°,20°;②当这个角是顶角时,另外两个角是:50°,50°.故答案为:80°,20°或50°,50°.16.【解答】∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°,∴∠PCD=45°.故答案为:45°.17.【解答】x2y+xy2=xy(x+y)=﹣3×6=﹣18.故答案为:﹣18.18.【解答】两点确定一条直线、线段垂直平分线上点到线段两个端点距离相等.故答案为:两点确定一条直线、线段垂直平分线上点到线段两个端点距离相等.三.解答题(本题共5道小题,每题6分,共30分):19.【解答】解:(1)(m﹣3n )2=m2﹣6mn+9n2;(2)原式=y2﹣6y+9﹣2(y2﹣4)=y2﹣6y+9﹣2y2+8=﹣y2﹣6y+17.20.【解答】解:当时,∴原式=x2﹣2x﹣x+2﹣x2﹣3x=﹣6x+2=﹣6×+2=﹣2+2=021.【解答】解:如图所示,点M就是所要求作的建立超市的位置.22.【解答】证明:∵AB∥EC,∴∠A=∠DCE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴BC=DE.23.【解答】解:所画图形如下所示:△A2B2C2即为所求.三个顶点的坐标分别为:A2(4,0)B2(5,0)C2(5,2).四、解答题(本题6分)24.【解答】(1)证明:∵∠ABC=90°,∴∠DBC=90°,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)解:∵AB=CB,∠ABC=90°,∴∠BAC=45°,∵∠CAE=30°,∴∠BAE=45°﹣30°=15°,∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.五、解答题(本题共10分,第23题5分,第24题5分)25.【解答】(1)解:如图所示:;(2)证明:∵CE=CA,∴∠CAE=∠AEC,又∵∠ACB=∠CAE+∠AEC,∠ACD=∠ACB,∴∠ACD=∠CEA,∴CD∥AE.26.【解答】证明:在AB上截取AF=AD,∵AE平分∠PAB,∴∠DAE=∠FAE,在△DAE和△FAE中,∵,∴△DAE≌△FAE(SAS),∴∠AFE=∠ADE,∵AD∥BC,∴∠ADE+∠C=180°,∵∠AFE+∠EFB=180°,∴∠EFB=∠C,∵BE平分∠ABC,∴∠EBF=∠EBC,在△BEF和△BEC中,∵,∴△BEF≌△BEC(AAS),∴BC=BF,∴AD+BC=AF+BF=AB.Word下载地址。
2016北京三十五中初一(上)期中数学一、选择题(每小题的四个选项中,只有一个是符合题目要求的.请将你认为符合要求的一项的序号填在题中的括号内.每小题3分,共30分)1.(3分)如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣D.2.(3分)三峡工程是具有防洪、发电、航运、养殖、供水等巨大综合利用效益的特大水利水电工程,其防洪库容量约为22 150 000 000m3,这个数用科学记数法表示为()A.221.5×108m3B.22.15×109m3 C.2.215×1010m3D.2.215×1011m33.(3分)下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab4.(3分)在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|,﹣|0|中,负数的个数是()A.1个B.2个C.3个D.4个5.(3分)化简﹣16(x﹣0.5)的结果是()A.﹣16x﹣0.5 B.﹣16x+0.5 C.16x﹣8 D.﹣16x+86.(3分)运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b﹣c B.如果,那么a=bC.如果a=b,那么D.如果a2=3a,那么a=37.(3分)若x=0是关于x的方程2x﹣3n=1的根,则n等于()A.B.﹣C.3 D.﹣38.(3分)有理数a,b在数轴上的位置如图所示,则下列结论中,错误的是()A.a<0<b B.|a|>|b|C.﹣a>b D.b﹣a<a+b9.(3分)式子|x﹣1|+3取最小值时,x等于()A.1 B.2 C.3 D.010.(3分)在如图的2016年11月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51C.69 D.72二、填空题(每题2分,共16分)11.(2分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示.12.(2分)如果a=,b=﹣3,那么代数式2a+b的值为.13.(2分)多项式3x2y﹣7x4y2﹣xy3+27,按y的降幂排列为.14.(2分)多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.15.(2分)a+3与1互为相反数,那么a=.16.(2分)在数轴上,若点P表示﹣2,则距P点5个单位长度的点表示的数是.17.(2分)已知x﹣2y=3,那么代数式3﹣2x+4y的值是.18.(2分)a>0,b<0且a+b<0,用“<”连结a,b,﹣a,﹣b,a﹣b为:.三、解答题(第19至30题,每题4分,31,32每题3分,共54分)计算下列各题:19.(16分)(1)0.25++(﹣)﹣+(﹣).(2)﹣4÷×(﹣).(3)[1﹣(+﹣)×24]÷5(4)(﹣2)3+×﹣(﹣2.8)÷0.1.20.(8分)化简(1)﹣3a2+2ab﹣4ab+2a2(2)4a+b2﹣(b2﹣3+2a).21.(4分)化简求值:3x2﹣[7x﹣3(3﹣4x)﹣2x2],其中x=﹣1.22.(12分)解方程:(1)7x﹣8=5x+4.(2)x﹣7=10﹣4(x+0.5).(3)﹣=1.23.(4分)某中学七年级A班有40人,某次活动中分为四组,第一组有a人,第二组比第一组的一半多6人,第三组的人数等于前两组人数的和.(1)第二组的人数;(2)第三组的人数;(3)第四组的人数;(4)找一个你喜欢的数作为的a值,求出此时第四组的人数.24.(4分)若a﹣b=2,a﹣c=1,求(2a﹣b﹣c )2+(c﹣b)2的值.25.(3分)观察图形,利用图形面积关系用写出一个代数恒等式.26.(3分)观察下列式子,定义一种新运算:1⊗3=1×4+3=7;3⊗(﹣1)=3×4﹣1=11;5⊗4=5×4+4=24;﹣4⊗(﹣3)=﹣4×4﹣3=﹣19;(1)请你想一想:a⊗b=;(用含a、b的代数式表示)(2)如果a≠b,那么a⊗b b⊗a(填“=”或“≠”);(3)如果a⊗(﹣6)=3⊗a,请求出a的值.数学试题答案一、选择题(每小题的四个选项中,只有一个是符合题目要求的.请将你认为符合要求的一项的序号填在题中的括号内.每小题3分,共30分)1.【解答】由a与3互为倒数,得a是,故选:D.2.【解答】22 150 000 000=2.215×1010.故选C.3.【解答】A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.4.【解答】﹣22<0,﹣<0,故负数的个数有两个,故选:B.5.【解答】﹣16(x﹣0.5)=﹣16x+8,故选:D.6.【解答】A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误;故选:B.7.【解答】∵x=0是关于x的方程2x﹣3n=1的根,∴2×0﹣3n=1,即﹣3n=1,解得n=﹣.故选B.8.【解答】∵a<0<b,且|a|>b,∴﹣a>b,b﹣a>b+a.故选D.∴当|x﹣1|=0,即x=1时式子|x﹣1|+3取最小值.故选A.10.【解答】设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是(x﹣7)+x+(x+7)=3x,因而这三个数的和一定是3的倍数.则,这三个数的和都为3的倍数,但72除以3为24,24不符合题意,故选:D.二、填空题(每题2分,共16分)11.【解答】根据题意,收入100元记作+100元,则﹣80表示支出80元.故答案为支出80元.12.【解答】当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣213.【解答】多项式3x2y﹣7x4y2﹣xy3+27,按y的降幂排列为﹣xy3﹣7x4y2+3x2y+27.故答案为:﹣xy3﹣7x4y2+3x2y+27.14.【解答】原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.15.【解答】∵a+3与1互为相反数,∴a+3+1=0,∴a=﹣4.故答案为﹣4.16.【解答】在数轴上与表示﹣2的点距离5个单位长度的点表示的数是﹣2+5=3或﹣2﹣5=﹣7.故答案为3或﹣7.∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故答案为:﹣3.18.【解答】∵a>0,b<0且a+b<0,∴设a=1,b=﹣6,∴﹣a=﹣1,﹣b=6,a﹣b=7∴b<﹣a<a<﹣b<a﹣b;故答案为:b<﹣a<a<﹣b<a﹣b;三、解答题(第19至30题,每题4分,31,32每题3分,共54分)计算下列各题:19.【解答】(1)===﹣1;(2)==;(3)=====;(4)==26.20.【解答】(1)原式=(﹣3+2)a2+(2﹣4)ab=﹣a2﹣2ab;(2)原式=4a+b2﹣b2+3﹣2a=2a+3.21.【解答】3x2﹣[7x﹣3(3﹣4x)﹣2x2],=3x2﹣(7x﹣9+12x﹣2x2),=3x2﹣7x+9﹣12x+2x2,=5x2﹣19x+9,当x=﹣1时,原式=5×(﹣1)2﹣19×(﹣1)+9=5+19+9=33.22.【解答】(1)移项合并得:2x=12,解得:x=6;(2)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(3)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:﹣x=15,解得:x=﹣15.23.【解答】(1)第二组人数(+6)人;…(1分)(2)第三组人数:(a+)=()人(3)第四组人数:40﹣a﹣(+6)﹣()=(28﹣3a)人;(4)a可以取2,4,6,8,第四组的人数分别为22,16,10,4人(只写出一组即可)24.【解答】由题意得2a﹣b﹣c=3,c﹣b=1.原式=32+12=10.25.【解答】阴影部分的面积可表示为:a2﹣b2或(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b).26.【解答】(1)由1⊗3=1×4+3=7;3⊗(﹣1)=3×4﹣1=11;5⊗4=5×4+4=24;﹣4⊗(﹣3)=﹣4×4﹣3=﹣19;得出:a⊗b=4a+b;(2)因为1⊗3=1×4+3=7,而3⊗1=3×4+1=14,如果a≠b,那么a⊗b≠b⊗a;(3)根据题意得:4a﹣6=4×3+a4a﹣a=12+63a=18a=6.答:a的值为6.。
2016北京159中初一(上)期中
数学
一、选择题(每小题3分,共30分)
1.(3分)﹣3的相反数是()
A.﹣ B.C.﹣3 D.3
2.(3分)绝对值小于2的整数个数有()
A.1个B.2个C.3个D.4个
3.(3分)某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()
A.16℃ B.20℃ C.﹣16℃D.﹣20℃
4.(3分)如果|a|=﹣a,那么a的取值范围是()
A.a>0 B.a<0 C.a≤0 D.a≥0
5.(3分)“全民行动,共同节约”,我国13亿人口如果都响应国家号召每人每年节约1度电,一年可节约电1 300 000 000度,1 300 000 000用科学记数法表示为()
A.1.30×108B.1.3×109C.0.13×1010D.1.3×1010
6.(3分)下列比较大小的式子中,错误的是()
A.(﹣2)2>(﹣2)3 B.(﹣3)2<(﹣2)3 C.﹣<﹣D.﹣0.3>﹣
7.(3分)下列各组是同类项的是()
A.2x3与3x2 B.12ax与8bx C.x4与a4D.23与﹣3
8.(3分)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()
A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0
9.(3分)如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是()
A.0 B.2 C.5 D.8
10.(3分)如图是某年某月份的日历表,任意圈出一竖列上相邻的三个数,请你观察发现这三个数的和不可能是()
A.69 B.54 C.27 D.40
二、填空题(每小题2分,共20分)
11.(2分)﹣2的倒数是,x2=9,则x= .
12.(2分)绝对值最小的数是;倒数等于它本身的是.
13.(2分)0.0158(精确到0.001).
14.(2分)单项式﹣2ab2c3的系数是,次数是.
15.(2分)如果有理数a、b满足|a﹣2|+(1﹣b)2=0,则a+b= .
16.(2分)数轴上点A表示﹣2,从A出发,沿数轴移动4个单位长度到达点B,则点B表示的数是.17.(2分)(1)如果|x|=2,则x= ;
(2)如果|x﹣1|=2,则x= .
18.(2分)现规定一种新运算“*”:对任意有理数a、b,都有a*b=a b,那么(﹣)*3= .
19.(2分)x=1是方程kx﹣1=0的解,则k= .
20.(2分)如果a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是
=.已知a1=4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2016= .三、解答题(本题共50分)
21.(18分)(1)﹣150+250
(2)
(3)
(4)﹣8+4÷(﹣2)
(5)
(6).
22.(8分)化简下列各式
①5x2+x+3+4x﹣8x2﹣2
②(x﹣3y)﹣2(y﹣2x)
23.(6分)解下列方程:
(1)5x﹣2x=9
(2)x﹣6=x.
24.(5分)先化简,再求值:4x﹣x2+2x3﹣(3x2+x+2x3),其中x=﹣3.
25.
(5分)如果有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求:++…+
的值.
26.(8分)小红和小明在研究绝对值的问题时,碰到了下面的问题:
“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.
小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”
他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.
请你根据他们的解题解决下面的问题:
(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是,最小值是.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.
数学试题答案
一、选择题(每小题3分,共30分)
1.【解答】﹣3的相反数是﹣(﹣3)=3.
故选:D.
2.【解答】绝对值小于2的整数有±1,0,
故选:C.
3.【解答】2﹣(﹣18)=2+18=20℃.
故选B.
4.【解答】因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.
故选C.
5.【解答】1 300 000 000=1.3×109.
故选B.
6.【解答】(﹣2)2,=4,(﹣2)3=﹣8,
∴(﹣2)2>(﹣2)3,A计算正确;
(﹣3)2,=9,(﹣2)3=﹣8,
∴(﹣3)2>(﹣2)3,B计算错误;
>,
∴﹣<﹣,C计算正确;
0.3<,
∴﹣0.3>﹣,D计算正确,
故选:B.
7.【解答】A、2x3y与3x2中所含相同字母的指数不同,不是同类项.故选项错误;
B、12ax与﹣8bx所含字母不同,不是同类项.故选项错误;
C、x4与a4所含字母不同,不是同类项.故选项错误;
D、﹣3与23是同类项,故选项正确.
故选D.
8.【解答】A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;
B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;
C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;
D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.
故选:C.
9.【解答】∵a﹣3b=﹣3,代入5﹣a+3b,得5﹣a+3b=5﹣(a﹣3b)=5+3=8.故选:D.
10.【解答】设第一个数为x,则第二个数为x+7,第三个数为x+14
故三个数的和为x+x+7+x+14=3x+21
当x=16时,3x+21=69;
当x=11时,3x+21=54;
当x=2时,3x+21=27.
故任意圈出一竖列上相邻的三个数的和不可能是40.
故选:D.
二、填空题(每小题2分,共20分)
11.【解答】﹣2的倒数为﹣,
∵x2=9,
∴x=±3,
故答案为:﹣,±3.
12.【解答】绝对值最小的数是0,
倒数等于它本身的数是±1,
故答案为0,±1.
13.【解答】0.0158≈0.016,
故答案为0.016.
14.【解答】单项式﹣2ab2c3的系数是:﹣2,次数是:1+2+3=6.故答案为:﹣2,6.
15.【解答】由题意得,a﹣2=0,1﹣b=0,
解得a=2,b=1,
则a+b=3.
故答案为:3.
16.【解答】当B点在A的左边,则B表示的数为:﹣2﹣4=﹣6;若B点在A的右边,则B表示的数为﹣2+4=2.
17.【解答】(1)|x|=2,
∴x=±2;
(2)|x﹣1|=2,
∴x﹣1=2,
∴x=3,
或1﹣x=2,
∴x=﹣1.
故x=3或﹣1.
18.【解答】(﹣)*3==﹣.
故答案为:﹣.
19.【解答】把x=1代入方程得:k﹣1=0,
解得:k=1,
故答案为:1
20.【解答】∵a1=4
a2===﹣,
a3===,
a4===4,
…
数列以4,﹣,三个数依次不断循环,∵2016÷3=672,
∴a2016=a3=,
故答案为:.
三、解答题(本题共50分)
21.【解答】(1)原式=100;
(2)原式=××
=;
(3)原式=﹣8+(﹣2)
=﹣10;
(4)原式=﹣1﹣××(﹣)
=﹣1+
=﹣;
(5)原式=×12+×12﹣×12
=3+10﹣6
=7.
22.【解答】①原式=﹣3x2+5x+1;
②原式=x﹣3y﹣2y+4x
=5x﹣5y.
23.【解答】(1)3x=9,
x=3;
(2)x﹣x=6,
﹣x=6,
x=﹣24.
24.【解答】原式=4x﹣x2+2x3﹣3x2﹣x﹣2x3=3x﹣x2,
当x=﹣3时,原式=﹣9﹣30=﹣39.
25.【解答】由题意得,ab﹣2=0,1﹣b=0,
解得a=2,b=1,
所以,+++…+,
=+++…+,
=1﹣+﹣+﹣+…+﹣,
=1﹣,
=.
26.【解答】(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是4≤x≤6,最小值是8;(2)当x≥﹣2,时y=﹣2x,当x=﹣2时,y最大=4;
当﹣4≤x≤﹣2时,y=6x+16,当x﹣2时,y最大=4;
当x≤﹣4,时y=2x,当x=﹣4时,y最大=﹣8,
所以x=﹣2时,y有最大值y=4.。