高二年级理科数学选修2-1模块综合测试卷
- 格式:doc
- 大小:1.31 MB
- 文档页数:9
高二年级理科数学选修2-1综合测试卷一、选择题1设a R ∈则1a >是11a<的 ( ) (A )充分但不必要条件 (B )必要但不充分条件 (C )充要条件(D )既不充分也不必要条件2. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ( ) (A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使 (D) tan 1p x R x ⌝∀∉≠:,使 3. 抛物线24(0)y ax a =<的焦点坐标是 ( ) (A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a ) 4.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线;②,,,O A B C 为空间四点,且向量,,不构成空间的一个基底,则点,,,O A B C 一定共面;③已知向量c b a ,,是空间的一个基底,则向量c b a b a ,,-+也是空间的一个基底。
其中正确的命题是 ( ) (A )①② (B )①③ (C )②③ (D )①②③ 5. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若=,=,=1则下列向量中与BM 相等的向量是( )(A ) ++-2121 (B )++2121(C )c b a +--2121 (D )c b a +-21216. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B )1362022=+y x (x ≠0)(C )120622=+y x (x ≠0) (D )162022=+y x (x ≠0)7. 过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1, y 1)B (x 2, y 2)两点,如果21x x +=6,那么AB =(A )6 (B )8 (C )9 (D )108. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) (A )(315,315-)(B )(315,0) (C )(0,315-) (D )(1,315--) 9.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之和最小,则该点坐标为 ( ) (A )⎪⎭⎫ ⎝⎛-1,41 (B )⎪⎭⎫ ⎝⎛1,41(C )()22,2-- (D )()22,2- 10.已知点F 1、F 2分别是椭圆22221x y a b+=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为( )(A )12 (B )(C )13(D一、选择题:二、填空题11.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则x y =___________。
高二数学理科选修2-1模块测试题总得分:一、单项选择题:(每小题5分,共40分)1.24x >是 x>2的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 既充分又必要条件 D. 既不充分又不必要条件2.命题“在△ABC 中,若21sin =A ,则A=30º”的否命题是 ( ) A.在△ABC 中,若21sin =A ,则A≠30º B. 在△ABC 中,若1sin 2A ≠,则A=30ºC.在△ABC 中,若1sin 2A ≠,则A≠30ºD.在△ABC 中,若A≠30º,则1sin 2A ≠3.在平行六面体ABCD -A 1B 1C 1D 1中,用向量1,,AB AD AA 来表示向量1AC,则( ) A. 11AC AB AD AA =-+ B. 11AC AB AD AA =++ C. 11AC AB AD AA =+- D. 11AC AB AD AA =--4.双曲线22149x y-=的渐近线方程是 ( ) A . 23y x =± B.49y x =± C. 32y x =±D. 94y x =±5.若椭圆1522=+m y x 的离心率510=e ,则m 值是( ) A. 3 B. 3或325 C. 15 D. 15 或3155 6.已知命题P 是“第一次射击击中目标”,命题Q 是“第二次射击击中目标”。
则“两次都击中目标” 可用逻辑联结词表示为: ( )A .P ∧QB .P ∨QC . ¬P ∨¬QD . ¬P ∧¬Q7.椭圆1422=+y x 的两个焦点为F 1、F 2,P 为椭圆上一点,若∣PF 1 ∣=2 则∣PF 2 ∣=( )A . 1B .3C .2D .4AC 18.已知 a =(8,21x ,x ) b =(x ,1,2),其中x ﹥0,若a ∥ b 则x 的值为( )A .8 B. 4 C. 2 D. 0二、填空题 :本大题共4小题,每小题5分,共20分.9. 过点P(-2, -4)的抛物线的标准方程为 .10.已知向量a =(1,2,-3)与b =(2,5,6)平行,则a ×b的值是 。
(选修2-1)模块测试试题(本试题满分150分;用时100分钟)一、选择题:(本大题共12小题;每小题5分;共60分.在每小题给出的四个选项中;只有一项是符合题目要求的.)1.命题“若a b >;则88a b ->-”的逆否命题是 ( )a b <;则88a b -<-88a b ->-;则a b > a ≤b ;则88a b -≤-88a b -≤-;则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆;那么实数k 的取值范围是( ) A .(0; +∞)B .(0; 2)C .(0; 1)D . (1; +∞)3.P:12≥-x ;Q:0232≥+-x x ;则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1;F 2;在左支上过点F 1的弦AB 的长为5; 那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21;则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中;方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2;P 为椭圆上的一点;已知PF 1⊥PF 2;则∆PF 1F 2的面积为( )A.9B.12 8.正方体1111ABCD A B C D -的棱长为1;E 是11A B 的中点;则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°;4=b ;(2)(3)72a b a b +-=-;则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线;则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0;k >0且k ≠1);与方程12222=+by a x (a >b >0)表示的椭圆( )(A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1;梯形ABCD 中;AB CD ∥;且AB ⊥平面α;224AB BC CD ===;点P 为α内一动点;且APB DPC ∠=∠;则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题;每小题6分;共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题;如果甲是乙的必要条件;丙是乙的充分条件;但不是乙的必要条件;那么丙是甲的 (①.充分而不必要条件;②.必要而不充分条件 ;③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中;向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ;)3,0,(k b =;若b a ,成1200的角;则k= .16.抛物线的的方程为22x y =;则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点;K 为非零常数;若|PA |-|PB |=K ;则动点P 的轨迹是双曲线。
高二数学选修2-1测试题(120分钟150分)班级姓名成绩一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个【变式训练】命题“若C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是( )A.0B.1C.2D.32.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m ∥β且n ∥βD.m∥β且n∥l2【变式训练】有下述说法:①a>b>0是a2>b2的充要条件;②a>b>0是<的充要条件;③a>b>0是a3>b3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个3. “1<m<3”是“方程+=1表示椭圆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.【变式训练】若双曲线C:x 2-=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A.2B.C.3D.5.已知命题p:∀x∈R,x ≥2,那么下列结论正确的是( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB的中点到y轴的距离等于( )A.1B.2C.3D.48.在四边形ABCD中,“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.11.点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是( )A. B.C.[-1,0]D.12.已知正六边形ABCDEF的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( )A. B. C. D.2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.14.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为.15.在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .16.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)设p:关于x的不等式a x>1(a>0且a ≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围. 18.(12分)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1.(2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度.(2)求的值. 21.(12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(12分)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.高二数学选修2-1测试题答案一、选择题1、【解析】选C.当-1≤a≤1时,Δ=(a+2)2+4(a2-4)=5--12≤5--12<0,所以原命题为真,逆否命题亦为真.反之,如a=-2时,所给不等式的解集即为空集,但a∉[-1,1],所以逆命题为假,故否命题亦为假.【变式训练】【解析】选C.原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°”,这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.2.【解析】选B.对于选项A,α,β也可能相交,此时,l1,m都平行于交线,是必要不充分条件;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选项B符合题意;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,【变式训练】【解析】选 A.a>b>0⇒a2>b2,a2>b2⇒|a|>|b|⇒a>b>0,故①错.a>b>0⇒<,但<⇒a>b>0,故②错.a>b>0⇒a3>b3,但a3>b 3⇒a>b>0故③错故选A.3. 【解析】选 B.当方程+=1表示椭圆时,必有所以1<m<3;但当1<m<3时,该方程不一定表示椭圆,如当m=2时,方程变为x 2+y2=1,它表示一个圆.4【解析】选B.如图,由双曲线-=1,且AF⊥x轴得-=1得|y|=,由抛物线y2=2px的定义得AF=p,即=2c.得b2=2ac,所以=,e2-1=2e,所以e=+1.【拓展延伸】求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.【变式训练】【解析】选B.由双曲线方程知a=1,所以c=,所以一条渐近线的方程为y=bx,即bx-y=0.所以=,解得b=1,所以c=,所以e==.5.【解析】选B.全称命题的否定是特称命题,所以命题p:∃x0∈R,x0<2.6. 【解析】选B.过B,D分别向AC作垂线,垂足分别为M,N.则可求得AM=,BM=,CN=,DN=,MN=1.由于=++,所以||2=(++)2=||2+||2+||2+ 2(·+ ·+·)=+12++2(0+0+0)=,所以||=.7.【解析】选D.抛物线y2=4x的焦点(1,0),准线为l:x=-1,设AB的中点为E,过A,E,B分别作准线的垂线,垂足分别为C,F,D,EF交纵轴于点H,如图所示,则由EF为直角梯形的中位线知,|EF|===5,所以EH=EF-1=5-1=4,即AB的中点到y 轴的距离等于4.8. 【解析】选C.若=λ,=λ,则∥,∥,即AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.反之,若四边形ABCD为平行四边形,则有AB∥DC,AD∥BC且AB=DC,AD=BC ,即=,=,此时λ=1,所以∃λ∈R ,使得=λ,=λ成立.所以“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的充分必要条件.9. 【解析】选B.以点D为原点,直线DA,DC,DD 1分别为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z).则⇒令z=1,得y=1,x=0.所以n=(0,1,1),cos<n ,>===-1.所以<n ,>=180°.所以直线AE与平面A1ED1所成的角的大小为90°.10. 【解析】选C.双曲线方程化为-=1(a>0),因为·=0,所以PF1⊥PF2.所以||2+||2=4c2=20a. ①由双曲线定义||-||=±4,②又已知||·||=2,③由①②③得20a-2×2=16a,所以a=1.11. 【解析】选D.如图所示建立空间直角坐标系,则A(1,0,1),C1(0,1,0).设P(x,y,0)其中0≤x≤1,0≤y≤1.则=(1-x,-y,1) =(-x,1-y,0)所以·=(1-x,-y,1)·(-x,1-y,0)=+-,因为+的几何意义是平面区域到点的距离的平方,所以当x=y=时,+有最小值0,当x=y=0或x=y=1或x=1,y=0或x=0,y=1时,+有最大值,所以-≤+-≤0,即·的取值范围是.12. 【解析】选B.设抛物线方程为y2=2px(p>0),根据对称性可知,正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px上,设A(x1,1),F(x2,2),则即x2=4x1,又AF==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,即p===.二、填空题13.【解析】设抛物线方程为x2=my,联立抛物线方程与直线方程y=x+1并消元,得:2x2-mx-2m=0,所以x1+x2=,x1x2=-m,所以5=,把x1+x2=,x1x2=-m代入解得m=4或m=-20.所以抛物线的标准方程为x2=4y或x2=-20y. 答案:x2=4y或x2=-20y 14.【解析】由条件知PC,AC,BC 两两垂直,设=a ,=b ,=c,则a·b=b·c=c·a=0,因为∠BAC=60°,AB=8,所以|a |=||=8cos60°=4,|b |=||=8sin60°=4,|c |=||=4.设=x=x(b -a),其中x∈[0,1],则=++=-c+a+x(b-a)=(1-x)a+x b-c,||2=(1-x)2|a|2+x2|b|2+|c|2+2(1-x)x a·b-2x b·c-2(1-x)a·c=16(1-x) 2+48x2+16=32(2x2-x+1)=64+28,所以当x=时,||2取最小值28,所以||min =2. 答案:215. 【解析】因为BG=2GD ,所以=.又=+=-+-=a+c-2b,所以=+=b +(a+c-2b)=a -b +c.答案:a -b +c16.【解析】设动点为(x,y),则由条件可知·=k2,①,将(-1,1)代入得0=k2,因为k>0,所以不成立,故方程不过点(-1,1),①错误.②,把方程中的x用-2-x代换,y用2-y代换,方程不变,故此曲线关于点(-1,1)对称,②正确.③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则≥,≥,所以+≥2=2k,故③正确.④,由题意知点P0在曲线C上,根据对称性,则四边形P0P1P2P3的面积为2·2=4·=4k2,所以④正确.综上所述,正确结论的序号是②③④.答案:②③④三、解答题17.【解析】当p真时,0<a<1,当q 真时,即a>,所以p假时,a>1,q假时,a ≤.又p和q有且仅有一个正确,当p真q假时,0<a ≤;当p假q真时,a>1. 综上a 的取值范围为∪(1,+∞). 18.【证明】(1)在正方体ABCD-A1B1C1D1中,=-,=-,又因为=,=,所以=,所以BD∥B1D1.又B1D1⊂平面B1CD1,BD⊄平面B1CD1,所以BD∥平面B1CD1,同理可证A1B∥平面B1CD1.又BD∩A1B=B,所以平面A1BD∥平面B1CD1.(2)=++=++(+)=++(-+)=++.设=a ,=b ,=c,则=(a+b+c).又=-=b-a,所以·=(a+b+c)·(b-a)=(b2-a2+c·b-c·a).又因为⊥,⊥,所以c·b=0,c·a=0.又|b|=|a|,所以b2=a2.所以b2-a2=0.所以·=0.所以MN⊥BD.同理可证,MN⊥A1B.又A1B∩BD=B,所以MN⊥平面A1BD.19.【解析】(1)将A(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.由直线OA与l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.20.【解析】(1)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8.(2)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,|PF2|=,所以=.若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8,|PF2|=4,所以=2,综上,=2或.21.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系Axyz.(1)依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1所成的角为θ,则sinθ===.故直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=.设n=(x,y,z)是平面A1BE的一个法向量,则由n ·=0,n ·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).因为F是棱C1D1上的点,则F(t,1,1)(0≤t≤1). 又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE ⇒·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.22.【解题指南】方法一:(1)建立空间直角坐标系,写出,的坐标,利用数量积证明.(2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值.(3)用直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.方法二:(1)要证明线线垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明.(2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解.(3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.【解析】如图,以点A为坐标原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1),设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨设z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m ,>===-,从而sin<m ,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ====.于是=,解得λ=,所以AM=.【一题多解】(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E=,B1C1=,EC1=,从而B1E2=B 1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G⊂平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G⊂平面B1C1G ,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.。
高二年级理科班数学选修2-1模块学分认定试卷一、选择题(每小题5 分,共10小题,满分50分)1、已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的A 、充分条件B 、必要条件C 、充要条件D 、既不充分也不必要条件 2、对抛物线24y x =,下列描述正确的是 A 、开口向上,焦点为(0,1) B 、开口向上,焦点为1(0,)16C 、开口向右,焦点为(1,0)D 、开口向右,焦点为1(0,)163、椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为A 、25-B 、25C 、1-D 、14、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, b D A=11,A =1,则下列向量中与B 1相等的向量是A 、++-2121B 、 ++2121C 、 +-2121 D 、c b a +--2121 5、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足=α+β,其中α,β∈R ,α+β=1,则点C 的轨迹为 A 、平面 B 、直线 C 、圆 D 、线段 6、已知=(1,2,3), =(3,0,-1),=⎪⎭⎫ ⎝⎛--53,1,51给出下列等式:①∣++∣=∣--∣ ②⋅+)( =)(+⋅ ③2)(++=222++④⋅⋅)( =)(⋅⋅其中正确的个数是A 、1个B 、2个C 、3个D 、4个 7、设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为A 、椭圆B 、双曲线C 、抛物线D 、圆8、已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的 A 、充分必要条件 B 、充分不必要条件C 、必要不充分条件D 、既不充分又不必要条件 9、已知函数f(x)=3472+++kx kx kx ,若R x ∈∀,则k 的取值范围是A 、0≤k<43 B 、0<k<43 C 、k<0或k>43 D 、0<k ≤4310、下列说法中错误..的个数为 ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④=a b =是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件.A 、2B 、3C 、4D 、5二、填空题(每小题6分,共6小题,满分36分)11、已知+-=+82,3168-+-=-(,,两两互相垂直),那么⋅= 。
高中二年级理科数学选修2-1模块考试试题A 卷姓名 , 班级 ,学号一.选择题 (每题4分,共48分)1.下列命题中真命题的是 ( )A.5>2且7<3B.3>4或3<4C.7>8D.2是有理数2.若,p :a>b , q:a+c>b+c 则p 是q 的 ( )A.充分条件B.必要条件C.充要条件 D 即不充分也不必要条件. 3.特称命题“有的三角形是等边三角形”的否定是 ( )A.所有的三角形都不是等边三角形。
B.三角形都不是等边三角形 。
C.有的三角形不是等边三角形D.所有的的三角形是等边三角形。
4.下列四个点中,哪一个点在方程012=+-xy x 表示的曲线上 ( ) A.(1,2) B.(2,-3) C.(1,3) D (3,2) 5.a=4, b=1,焦点在x 轴上的椭圆的标准方程为 ( )A.1422=+y xB. 11622=+y y C. 11622=+y x D. 122=+y x 6.已知,椭圆的标准方程为13610022=+y x ,则椭圆的离心率为 ( ) A.107 B. 54 C. 65D. 87. 焦点在x 轴上,实轴长是10,虚轴长是8的双曲线的标准方程为 ( )A.181022=-y xB. 1162522=-y xC. 1162522=-x yD. 1162522=+y x 8.抛物线 x y 202= 焦点的坐标为 ( )A.(10,0)B.(0,10)C.(5,0) D (8,0) 9.抛物线 y x 22=关于 ( )A.y 轴对称B. x 轴对称C.不能确定 D 无对称轴10.对空间任意两个向量b a b b a//),0(,≠ 的充要条件是 ( )A.b a λ=B. o b a =⋅C. c b a=+ D. c b a =-11.已知两个非零向量b a ,,如果2,π>=<b a ,那么 =⋅b a ( )A.1B.-1C.0 D212.已知)15,1(),5,2,3(-=-=b a则 b a + 的值为 ( )A.(2,8,4)B.(1,3,6)C.(5,8,9) D (-2,7,4) 二.填空题 (每题3分,共21分)13.双曲线.1166422=-y x 上一点P 到它的一个焦点的距离为1,那么它到另一个焦点的距离为 14.准线方程为x=2的抛物线的标准方程为15.已知 )3,0,2(),1,3,2(=-=b a则=⋅b a16.表达式→→→++CDBC AB 化简的结果为17.在圆锥曲线中,当e=1时,表示的曲线 为 ,当 0<e<1 时,表示的曲线为 ,当 e>1时,表示的曲线为 。
章末综合测评(一) 常用逻辑用语(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题:①5>4或4>5;②9≥3;③命题“若a>b,则a+c>b+c”的否命题;④命题“矩形的两条对角线相等”的逆命题.其中假命题的个数为() A.0B.1C.2 D.3【解析】①是p或q形式的命题,p真q假,故p或q为真命题;②是p 或q形式的命题,同理为真命题;③否命题是“若a≤b,则a+c≤b+c”,是真命题;④逆命题是“两条对角线相等的四边形是矩形”,是假命题,比如等腰梯形的对角形也相等.【答案】 B2.(2016·襄阳高二检测)下列命题中是全称命题的是()A.圆有内接四边形B.3> 2C.3< 2D.若三角形的三边长分别为3,4,5,则这个三角形为直角三角形【解析】“圆有内接四边形”即为“任意圆都有内接四边形”故为全称命题.【答案】 A3.下列特称命题中,是假命题的是()A.存在x0∈R,x20-2x0-3=0B.至少有一个x∈Z,x能被2和3整除C.存在两个相交平面垂直于同一直线D.存在x0∈{x|x是无理数},使x20是有理数【解析】对于A,当x=-1时,x2-2x-3=0,故A为真命题;对于B,当x=6时,符合题目要求,为真命题;C为假命题;对于D,x=3时,x2=3,故D为真命题.【答案】 C4.“a=18”是“对任意的正数x,2x+ax≥1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】当a=18时,2x+ax=2x+18x≥1,当且仅当x=14时取“=”,故充分性成立,当2x+ax≥1对x∈R恒成立时,a≥(x-2x2)max得a≥18,故必要性不成立.故选A.【答案】 A5.有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则方程x2-2x+m=0有实数解”的逆否命题;④“若A∩B=A,则A⊆B”的逆否命题.其中真命题个数为() A.1 B.2C.3 D.4【解析】①②④显然成立.③∵x2-2x+m=0有实数解,∴Δ=4-4m≥0,即m≤1.所以③成立.【答案】 D6.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数【解析】 根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.【答案】 B7.已知命题p :∅⊆{0},q :{1,2}∈{1,2,3},由p 与q 构成的“p 或q ”、“p 且q ”、“非p ”形式的命题中,真命题的个数为( )A .0B .1C .2D .3【解析】 p 是真命题,q 是假命题,则“p 或q ”是真命题,“p 且q ”“非p ”是假命题.故选B.【答案】 B8.已知集合A = ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪ 12<2x <8,B ={x ∈R |-1<x <m +1},若x ∈B成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( )A .m ≥2B .m ≤2C .m >2D .-2<m <2 【解析】 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪ 12<2x <8 ={}x |-1<x <3.∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A ⊆B ,∴m +1>3,即m >2.【答案】 C9.(2016·海口高二检测)已知命题p :存在x 0∈(-∞,0),2x 0>3x 0,命题q :任意x ∈(0,1),log 2x <0,则下列命题为真命题的是( )A .p 且qB .p 或(綈q )C .(綈p )且qD .p 且(綈q )【解析】 ∵p 为真,q 为真,∴綈p 为假,綈p 且q 为假.【答案】 A10.(2016·郑州二模)函数f (x )=x |x +a |+b 是奇函数的充要条件是( )A.ab=0 B.a+b=0C.a2+b2=0 D.a=b【解析】∵f(x)为奇函数,且x∈R,∴f(0)=0⇒b=0.又∵f(-x)=-f(x),即-x|-x+a|=-x|x+a|,即|x+a|=|-x+a|,即|x+a|=|x-a|恒成立,∴a=0.综上可知a=b=0,即a2+b2=0,故选C.【答案】 C11.下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β【解析】由b2-4ac≤0推不出ax2+bx+c≥0.这是因为a的符号不确定,故A不正确;当b2=0时,由a>c推不出ab2>cb2,所以B不正确;“对任意x∈R,有x2≥0”的否定是“存在x0∈R,使x20<0”,所以C不正确.故选D.【答案】 D12.(2015·陕西高考)“sin α=cos α”是“cos 2α=0 ”的()【导学号:32550018】A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件【解析】先将cos 2α=0等价转化,再利用充分条件、必要条件的定义进行判断.cos 2α=0等价于cos2α-sin2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.【答案】 A二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.(2016·许昌高二检测)命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是________.【解析】 可以把原命题先逆再否,也可以先否再逆即可得到逆否命题.【答案】 圆的切线到圆心的距离等于半径14.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数的取值范围是________.【解析】 p (1):3-m >0即m <3,p (2):8-m >0,即m <8,若p (1)是假命题,p (2)是真命题则3≤m <8.【答案】 [3,8)15.设有两个命题:①关于x 的不等式mx 2+1>0的解集是R ;②函数f (x )=log m x 是减函数,如果这两个命题有且只有一个真命题,则实数m 的取值范围是________.【解析】 ①关于x 的不等式mx 2+1>0的解集为R ,则m ≥0;②函数f (x )=log m x 为减函数,则0<m <1.①与②有且只有一个正确,则m 的取值范围是m =0或m ≥1.【答案】 m =0或m ≥116.设p :(4x -3)2≤1;q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.【解析】 p :12≤x ≤1,q :a ≤x ≤a +1,易知p 是q 的真子集,∴⎩⎨⎧ a ≤12,a +1≥1.∴0≤a ≤12.【答案】 ⎣⎢⎡⎦⎥⎤0,12 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的逆命题、否命题和逆否命题:【导学号:32550019】(1)若a >b ,则ac 2>bc 2;(2)若在二次函数y =ax 2+bx +c 中b 2-4ac <0,则该二次函数的图像与x 轴有公共点.【解】 (1)逆命题:若ac 2>bc 2,则a >b ;否命题:若a ≤b ,则ac 2≤bc 2;逆否命题:若ac 2≤bc 2,则a ≤b .(2)逆命题:若二次函数y =ax 2+bx +c 的图像与x 轴有公共点,则b 2-4ac <0;否命题:若在二次函数y =ax 2+bx +c 中b 2-4ac ≥0,则该二次函数图像与x 轴没有公共点;逆否命题:若二次函数y =ax 2+bx +c 的图像与x 轴没有公共点,则b 2-4ac ≥0.18.(本小题满分12分)(2016·扬州高二检测)判断下列命题是全称命题还是特称命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除.(2)任意x ∈{x |x >0},x +1x ≥2.(3)存在x 0∈{x |x ∈Z },log 2x 0>2.【解】 (1)命题中含有存在量词“至少有一个”因此是特称命题,真命题.(2)命题中含全称量词“任意”,是全称命题,真命题.(3)命题中含存在量词,是特称命题,真命题.19.(本小题满分12分)已知p :三个数2x ,22x ,⎝ ⎛⎭⎪⎫12x 成等比数列;q :三个数lg x ,lg(x +1),lg(x +3)成等差数列,则p 是q 的什么条件?【解】 2x,22x ,⎝ ⎛⎭⎪⎫12x 成等比数列⇔⎝ ⎛⎭⎪⎫22x 2=2x ⎝ ⎛⎭⎪⎫12x ⇔x =1. lg x ,lg(x +1),lg(x +3)成等差数列⇔2lg(x +1)=lg x +lg(x +3)⇔⎩⎪⎨⎪⎧ x >0(x +1)2=x (x +3)⇔x =1. 由以上可知p ⇔q ,故p 是q 的充要条件.20.(本小题满分12分)已知三个方程:x 2+4mx -4m +3=0,x 2+(m -1)x +m 2=0,x 2+2mx -2m =0.若这三个方程中至少有一个方程有实数根,求实数m 的取值范围.【解】 设原命题的否定所对应m 的范围为A ,则原命题所求m 的范围即为∁R A .三个方程都没有实数根等价于⎩⎪⎨⎪⎧ (4m )2-4(-4m +3)<0,(m -1)2-4m 2<0,(2m )2-4(-2m )<0⇔⎩⎪⎨⎪⎧ -32<m <12,m <-1或m >13,-2<m <0⇔A =⎝ ⎛⎭⎪⎫-32,-1⇔∁R A =⎝ ⎛⎦⎥⎤-∞,-32∪[-1,+∞). 故实数m 的取值范围为⎝ ⎛⎦⎥⎤-∞,-32∪[-1,+∞). 21.(本小题满分12分)已知c >0,设命题p :函数y =c x 为减函数,命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围.【解】 由命题p 知:0<c <1.由命题q 知:2≤x +1x ≤52,要使此式恒成立,则2>1c ,即c >12.又由p 或q 为真,p 且q 为假知p 、q 必有一真一假,当p 为真,q 为假时,0<c ≤12.当p 为假,q 为真时,c ≥1.综上,c 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 0<c ≤12或c ≥1. 22.(本小题满分12分)已知函数f (x )=4sin 2⎝ ⎛⎭⎪⎫π4+x -23cos 2x -1,且给定条件p :x <π4或x >π2,x ∈R .若条件q :-2<f (x )-m <2,且綈p 是q 的充分条件,求实数m 的取值范围.【解】 由条件q 可得⎩⎪⎨⎪⎧ m >f (x )-2,m <f (x )+2.∵綈p 是q 的充分条件,∴在π4≤x ≤π2的条件下,⎩⎪⎨⎪⎧m >f (x )-2,m <f (x )+2恒成立. 又f (x )=2⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x -23cos 2x -1 =2sin 2x -23cos 2x +1=4sin ⎝ ⎛⎭⎪⎫2x -π3+1, 由π4≤x ≤π2,知π6≤2x -π3≤2π3,∴3≤4sin ⎝ ⎛⎭⎪⎫2x -π3+1≤5, 故当x =5π12时,f (x )max =5,当x =π4时,f (x )min =3.∴只需⎩⎪⎨⎪⎧m >5-2,m <3+2成立,即3<m <5. ∴m 的取值范围是3<m <5.。
(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。
2021年高二数学选修2 1同步模块综合测试题3套(人教版带答案和解释)----f6bad6ac-6ea2-11ec-bb68-7cb59b590d7d2021年高二数学选修2-1同步模块综合测试题3套(人教版带答案和解释)实用精品文献共享2021年高二数学选修2-1同步模块综合测试题3套(人教版带答案(和解释)模块综合检测(a)(时间:120分钟满分:150分)一、如果命题A和命题B的总数为1.0,那么y=0.0,如果命题A和命题B的总数为12,那么命题y的总数为0.0,那么命题y的总数为0.0,那么命题y的总数为0.2,命题y的总数为0.0;命题q:如果a>b,那么1A<1b,给出以下四个复合命题:① P和Q;②P或Q;③? P④? q、真命题的数量是()a.1b。
2c。
3d。
43.焦点为x24-y212=-1的椭圆方程为顶点,顶点的焦点为()a.x216+y212=1b x212+y216=1c。
x216+y24=1d。
X24+y216=14。
如果a>0是已知的,那么x0满足关于X的方程AX=B的充分必要条件是()a?十、∈r、 12ax2-bx≥12ax20-bx0b。
?十、∈r、 12ax2-bx≤12ax20-bx0c。
?十、∈r、 12ax2-bx≥12ax20-bx0d。
?十、∈ R、12ax2 bx≤ 12ax20-bx05。
已知椭圆x2a2+y2b2=1(a>b>0),M是椭圆上的移动点,F1是椭圆的左焦点,那么线段MF1的中点P的轨迹是()a.椭圆b.圆C.a.双曲线6的线段。
如果向量a=(1,0,z)和向量b=(2,1,2)之间的夹角的余弦是23,那么z等于()a.0b。
1c.-1d。
27如图所示,立方体中的m abcdda′B′C′D′是AB的中点,sin的值<cm→ > is()a.12b 21015c。
23d。
11158.通过抛物线y2=4x的焦点在两点a(x1,Y1)和B(X2,y2)处形成一条与抛物线相交的直线。
高二年级理科数学选修2-1模块综合测试卷(测试时间:120分钟 满分150分)注意事项:答题前,考生务必将自己的班级、姓名、考试号写在答题纸的密封线内.答题时,答案写在答题纸上对应题目的空格内,答案写在试卷上无效..........本卷考试结束后,上交答题纸.一、选择题(每小题5 分,共12小题,满分60分)1. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 ( ) (A )2 (B )3 (C )4 (D )52. 设a R ∈,则1a >是11a< 的 ( ) (A )充分但不必要条件 (B )必要但不充分条件(C )充要条件(D )既不充分也不必要条件3. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ( )(A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使(C) tan 1p x R x ⌝∀∈≠:,使(D) tan 1p x R x ⌝∀∉≠:,使 4. 抛物线24(0)y ax a =<的焦点坐标是 ( ) (A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a )5.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线; ②,,,O A B C 为空间四点,且向量OC OB OA ,,不构成空间的一个基底,则点,,,O A B C 一定共面;③已知向量c b a ,,是空间的一个基底,则向量c b a b a ,,-+也是空间的一个基底。
其中正确的命题是 ( ) (A )①② (B )①③ (C )②③ (D )①②③6. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若a AB =,b AD =,c AA =1则下列向量中与BM 相等的向量是( )(A ) c b a ++-2121 (B )c b a ++2121 (C )c b a +--2121 (D )c b a +-21217. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是 ( ) (A )1203622=+yx(x ≠0) (B )1362022=+yx(x ≠0)C1A(C )120622=+yx(x ≠0) (D )162022=+yx(x ≠0)8. 过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1, y 1)B (x 2, y 2)两点,如果21x x +=6, 那么AB = ( ) (A )6 (B )8 (C )9 (D )10 9. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) (A )(315,315-)(B )(315,0) (C )(0,315-)(D )(1,315--)10.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之和最小,则该点坐标为 ( ) (A )⎪⎭⎫ ⎝⎛-1,41(B )⎪⎭⎫⎝⎛1,41 (C )()22,2-- (D )()22,2- 11. 在长方体ABCD-A 1B 1C 1D 1中,如果AB=BC=1,AA 1=2,那么A 到直线A 1C 的距离为 ( )(A )3(B )62(C )33(D )312.已知点F 1、F 2分别是椭圆22221x y ab +=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为 ( )(A )12(B )22(C )13(D 3二、填空题(每小题4分,共4小题,满分16分)13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则x y =___________。
14.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。
当水面升高1米后,水面宽度是________米。
15. 如果椭圆193622=+yx的弦被点(4,2)平分,则这条弦所在的直线方程是___________。
16.①一个命题的逆命题为真,它的否命题也一定为真;②在ABC ∆中,“︒=∠60B ”是“C B A ∠∠∠,,三个角成等差数列”的充要条件.③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④“am 2<bm 2 ”是“a <b ”的充分必要条件.以上说法中,判断错误的有___________.三、解答题(共6小题,满分74分)17.(本题满分12分)设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p 且q 为假,求m 的取值范围.18.(本题满分12分)已知椭圆C 的两焦点分别为()()1200F F 、,长轴长为6,⑴求椭圆C 的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长度。
.19.(本题满分12分)如图,已知三棱锥O ABC -的侧棱O A O B O C ,,两两垂直,且1O A =,2O B O C ==,E 是O C 的中点。
(1)求异面直线BE 与A C 所成角的余弦值; (2)求直线BE 和平面A B C 的所成角的正弦值。
20.(本题满分12分)在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点。
(1)求证:命题“如果直线l 过点T (3,0),那么OB OA ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
21.(本题满分14分)如图,棱锥P —ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD , PA=AD=2,BD=22. (1)求证:BD ⊥平面PAC ;(2)求二面角P —CD —B 余弦值的大小; (3)求点C 到平面PBD 的距离.22. (本题满分12分)如图所示,F 1、F 2分别为椭圆C :)0(12222>>=+b a by ax 的左、右两个焦点,A 、B 为两个顶点,已知椭圆C 上的点)23,1(到F 1、F 2两点的距离之和为4.(1)求椭圆C 的方程和焦点坐标;(2)过椭圆C 的焦点F 2作AB 的平行线交椭圆于P 、Q 两点,求△F 1PQ 的面积.高二年级理科数学选修2-1模块测试卷参考答案一、选择题:二、填空题: 13、 2 14、24 15、 082=-+y x 16、③④ 三、解答题:17、解:若方程210x mx ++=有两个不等的负根,则21240m x x m ⎧∆=->⎨+=-<⎩, (2)分所以2m >,即:2p m >. ………………………………………………………3分若方程244(2)10x m x +-+=无实根,则216(2)160m ∆=--<, (5)分即13m <<, 所以:13p m <<. …………………………………………………6分因为p q ∨为真,则,p q 至少一个为真,又p q ∧为假,则,p q 至少一个为假. 所以,p q 一真一假,即“p 真q 假”或“p 假q 真”. (8)分 所以213m m m >⎧⎨≤≥⎩或或213m m ≤⎧⎨<<⎩ …………………………………………………10分所以3m ≥或12m <≤.故实数m 的取值范围为(1,2][3,)+∞ . (12)分18、解:⑴由()()1200F F 、,长轴长为6得:3c a ==所以1b =∴椭圆方程为22191x y += …………………………………………………5分⑵设1122(,),(,)A x y B x y ,由⑴可知椭圆方程为22191xy+=①,∵直线AB 的方程为2y x =+② (7)分把②代入①得化简并整理得21036270x x ++= ∴12121827,510x x x x +=-=……………………………10分又5AB ==……………………………12分19、解:(1)以O 为原点,O B 、O C 、O A 分别为x 、y 、z 轴建立空间直角坐标系.则有(0,0,1)A 、(2,0,0)B 、(0,2,0)C 、(0,1,0).E ……………………………3分(2,0,0)(0,1,0)(2,1,0),(0,2,1)EB AC =-=-=-COS<,EB AC >2,5==- ……………………………5分所以异面直线BE 与A C 所成角的余弦为52 ……………………………6分(2)设平面A B C 的法向量为1(,,),n x y z =则11:20;n AB n AB x z ⊥⋅=-=知11:20.n AC n AC y z ⊥⋅=-= 知取1(1,1,2)n =, ………8分则303065012,cos 1=+->=<n EB ,…………………10分故BE 和平面A B C 的所成角的正弦值为3030 …………12分20、证明:(1)解法一:设过点T(3,0)的直线l 交抛物线2y =2x 于点A(x 1,y 1)、B(x 2,y 2).当直线l 的钭率下存在时,直线l 的方程为x =3,此时,直线l 与抛物线相交于A(3,6)、B(3,-6),∴3=⋅OB OA 。
……………………………3分当直线l 的钭率存在时,设直线l 的方程为y =k (x -3),其中k≠0. ⎩⎨⎧-==)3(22x k y x y 得ky 2-2y -6k =0,则y 1y 2=-6. 又∵x 1=21y 12, x 2=21y 22, ∴OB OA ⋅=x 1x 2+y 1y 2=21221)(41y y y y +=3. ……………………………7分 综上所述,命题“......”是真命题. ……………………………8分解法二:设直线l 的方程为my =x -3与2y =2x 联立得到y 2-2my-6=0OB OA ⋅=x 1x 2+y 1y 2=(my 1+3) (my 2+3)+ y 1y 2=(m 2+1) y 1y 2+3m(y 1+y 2)+9=(m 2+1)× (-6)+3m ×2m+9=3 ………8分(2)逆命题是:“设直线l 交抛物线y 2=2x 于A 、B 两点,如果3=⋅OB OA ,那么该直线过点T(3,0).”…………………………………………………10分该命题是假命题. 例如:取抛物线上的点A(2,2),B(21,1),此时3=⋅OB OA =3, 直线AB的方程为y =32 (x +1),而T(3,0)不在直线AB上. ………………………………12分点评:由抛物线y 2=2x 上的点A(x 1,y 1)、B(x 2,y 2)满足3=⋅OB OA ,可得y 1y 2=-6。