用CMU200测试GSM与CDMA手机
- 格式:pdf
- 大小:203.79 KB
- 文档页数:17
CMU200测试指南1.CMU200测试方案介绍2.CMU200测试GSM/GPRS操作步骤3.CMU200测试CDMA操作步骤4.CMU200测试WCDMA操作步骤1.CMU200测试方案介绍1.1 CMU200基本说明1.2测试方案框架图2.CMU200测试GSM/GPRS操作步骤第一步:将GSM测试白卡插入DUT,DUT开机并打开射频模块,放入屏蔽箱中,合上屏蔽箱。
第二步:按MENUS键,选择要测试的频段及信令测试模式。
第三步:选择“RF”按钮,配置射频补偿。
RF Output和RF Input选择使用的射频端口,Ext.Att.Output和Ext.Att.Input表示输入信道和输出信道的射频补偿。
第四步:在Signal Off模式下,CMU跟DUT之间没有联系,按Signal On。
Network Support选择要测试的网络制式。
第五步:DUT在Signal On状态等待可以进入Synchronized状态,通过DUT拨打112直接呼叫CMU200,进入Alerting状态,稍等即可进入Call Established状态建立连接。
第六步:按MS Signal进行DUT测试,Avg.Burst Power(Current)即为DUT的平均发射功率。
通过PCL可以修改功率等级,Channel切换测试信道。
第七步:按Menus,选择Receiver Quality进行接收灵敏度测试。
选择BS Signal,ClassII<2.4%时,TCH Level BER输入的值即为灵敏度。
第八步:GSM900测试完毕,按Handover切换另外一个频段。
然后按下“Desstination Selection”按钮,选择“GSM 1800 Dualband”,按下“Eenter”以后,按下“Handover”按钮,CMU 会切换到“GSM1800 Overview”界面。
重复第六和第七步,完成功率和灵敏度测试。
CMU200 CDMA2000手机测试步骤CMU200测试前的设置1. 按“Reset”初始化 CMU200。
2. 按“Menu Select”键,选择“IMT-2000 Mobile Station”中的“CDMA2000 Cellular –Signaling”应用。
3. 按“Network Standard”软键(右中),设置成“BC 0:us Cellular”。
4. 按“1st Service Class”软件(右下),设置成“Loopback Service(Test)”5. 打开手机电源,等待手机注册(在CMU上的状态由“Signal On”变成“Registered”)6. 按“Connect UE”软键(右上),CMU200会呼叫手机,确认手机已经进入连接状态。
接收机测试项目:3.4 Forward Traffic Channel Demodulation Performance3.5.1 Receiver Sensitivity and Dynamic Range发射机测试项目:4.3.1 Time Reference4.3.2 Reverse Pilot Channel to Code Channel Time Tolerance4.3.3 Reverse Pilot Channel to Code Channel Phase Tolerance4.3.4 Waveform Quality and Frequency Accuracy4.3.5 Code Domain Power4.4.1 Range of Open Loop Output Power4.4.2 Time Response of Open Loop Power Control4.4.4 Range of Closed Loop Power Control4.4.5 Maximum RF Output Power4.4.6 Minimum Controlled Output Power4.4.7 Standby Output Power and Gated Output Power4.4.9 Code Channel to Reverse Pilot Channel Output Power Accuracy4.5.1 Conducted Spurious Emissions3.4 Forward Traffic Channel Demodulation Performance测试步骤:1. 确认手机已进入连接状态。
1.目的:规范综测仪的正确使用, 保证CDMA/GSM手机的射频参数测试的合理性与正确性。
2.参考资料:YDN 055-1997《900/1800MHz TDMA 数字蜂窝移动通信网移动台设备技术规范》EN 300 607-1(GSM 11.10-1)《数字蜂窝无线电通信系统(第2阶段)移动台一致性要求:部分1:CDMA2000数字蜂窝移动通信网设备总测试规范:移动台《R&S CMU200 使用说明书》3.仪器名称: 射频综测仪(型号:CMU200, 双模_GSM & CDMA2000)4.仪器自检和校准:为了能够保证每次的测试数据是准确的,经常需要对综测仪进行校准。
(1)打开综测仪的电源;(2)去掉与综测仪连接的全部射频线;(3)按“Menu Select”键选择“Basic Functions”→“Base”→“Maintenance”进“Maintenance”界面;(4)按“Select”键进行校准项选择,需校准项项目有“RXTX Selftest”和“FM Modulation Calibration”(5)按“Test“键后再按”ON/OFF”键开始校准,校准通过时会显示“Passed”提示。
5. 试验操作:5.1开机:(1)接好电源线(在仪器背面电源接口处标识相应的输入电压范围,通常接220V/50Hz电源), 按开机键, 进入待机界面;(2)开机预热30分钟后再准备测试。
(3)恢复仪器的原始设置:按“Reset”键后再按两次“Enter”键;5.2选择测试模块及网络标准:(1)此型号CMU200可以兼容不同制式的测试模块, 目前有GSM900, GSM1800, CDMA2000)。
选择不同制式测试模块(GSM或CDMA),所用选择和确认可用旋钮操作完成:选择为滚动旋钮,确认则按一下旋钮。
(2)GSM测试模块及网络标准选择:在待机界面按“Menu Select”选择“GSM Mobile Station”→“GSM900”或“GSM1800”,按“Enter”,选择GSM测试模块后“Network Standard”缺省为“GSM only”。
第一章GSM射频参数测试1,GSM测试模式基本参数设置(1)在界面右上角按“Connect Control”键→在界面下方选择”RF”键→按界面右边的“Ext. Att. Output”后在需要输出信号的端口列输入线损值→按“ENTER”键确认;按“Ext. Att. Input”后在需要输出信号的端口列输入线损值→按“ENTER”键确认。
2,GSM测试模式基本参数设置(1)在GSM测试界面内,按下方的“BS Signal”键设置呼叫信道和呼叫功率)(一般BCCH Level=-65dBm, BCCH Channel=20, TCH Level=-90dBm, TCH Channel=62,Time Slot=3)按“ENTER”键确认;(2)按界面下方的“Service Cfg.”→选择“Selected Service” →选择“Echo”模式。
3、发射功率测量(Overview)(1)完成GSM900频段基本设置后,打开手机,手机登陆基站网络(综测仪)后,按“Connect Mobile”键建立呼叫连接,呼通后,按手机“接听”键,CMU200进入待机界面,显示整体性能概要(Overview)、功率时间包络(Power)、调制性能(Modulation)、频谱性能(Spectrum)、接收质量(Receiver Quality)等;(2)按界面下方的“Overview”键→按右边的“Application”→选择“Overview P/t Norm. GMSK”;(3)按右边的“MS Signal Settings ”键→按界面下边“PCL”键设置功率控制等级(一般测试5,10,15等级,参照射频参数测试表中的功率控制等级设置);按界面下边“Channel”键设置测试信道(一般选择1,62,或124,参照射频参数测试表中的测试信道设置);(4)按界面右边“Menu”键切换到主界面;按“Overview ”读取“RUN P/t Norm. GMSK ”图表中显示的功率测试值,分别应在33.0±2.0dBm(23.0±3.0dBm、13.0±4.0dBm)范围之内;如果显示的功率值是红底白字的数值表示测试不通过。
E5515C仪器操作介绍及GSM手机测试相关操作是用于手机测试的综合测试仪,在统一的硬件平台可以根据安装的软件不同,进行各种不同制式手机的综合测试。
在这一章里会介绍8960仪器操作的界面,按键,以及进行上图是E5515C的前面板。
按键F1到F6以及F7到F12是所谓的“软键“,它们分别在屏幕的两边,按下这些“软键”之后,就会执行按键位置对应的屏幕上所显示的内容,随着屏幕显示的不同,同一”软“键所对应的功能也不同,这就是为什么称之为”软“键的原因。
屏幕的中间将会显示我们所选择要显示的内容,目前的屏幕叫做”Call在E5515C的右侧是所谓的“硬”按键,它们都有自己的功能,这些功能标示在按键上。
在这些按键里,有三个按键的颜色略深,是“MEASUREMENT”(测试),“CALL SETUP”(呼叫设置),“SYSTEM CONFIG”(系统配置)。
按下之后将会同现E5515C的三种主屏幕。
在显示屏幕的下方还有一个硬按键,“measurement selection”(测试选手动操作用户界面–三个主要屏幕测试呼叫设置系统配置操作E5515C时主要是在三个屏幕里进行的,在测试屏幕里进行测试结系统配置按下SYSTEM CONFIG键之后就会出现系统配置界面,在这个界面里可以进行仪器的配置,测试软件的选择,输出口的选择,尤为重要的是,在这个界面里进行测试电缆、耦合器或是夹具的衰减补偿。
RF IN/OUT Amptd Offset Setup键,就会弹出一个幅度偏移设置菜单,可以在不同频率上对测试电缆、耦合器或是夹具产生的的衰减进行补测试应用(TA)是在E5515A/B/C平台上的软件,不同的TA针对不同制式的手机,一台E5515C上面可以有很多的TA,一旦需要对不同制式的手机测试时,就需要按Application Switch键,在弹出菜单里进行不同的TA上图介绍了如何快速地在不同制式手机测试软件里进行切换。
1.目的:规范综测仪的正确使用,保证CDMA/GS手机的射频参数测试的合理性与正确性。
2.参考资料:YDN 055-1997《900/1800MHz TDMA 数字蜂窝移动通信网移动台设备技术规范》EN 300 607-1( GSM 11.10-1)《数字蜂窝无线电通信系统(第2阶段)移动台一致性要求:部分1:CDMA2000数字蜂窝移动通信网设备总测试规范:移动台《R&S CMU20使用说明书》3.仪器名称:射频综测仪(型号:CMU200,双模_GSM & CDMA20004.仪器自检和校准:为了能够保证每次的测试数据是准确的,经常需要对综测仪进行校准。
(1)打开综测仪的电源;(2)去掉与综测仪连接的全部射频线;(3)按“ Menu Select'键选择“ Basic Functions” —“ BasW' —“ Maintenance” 进“ Mai ntenancW' 界面;(4)按“Select”键进行校准项选择,需校准项项目有“ RXTX Selftest”和“ FMModulation Calibrati on ”(5)按“Test “键后再按”ON/OFF”键开始校准,校准通过时会显示“ Passed提示。
5.试验操作:5.1开机:(1)接好电源线(在仪器背面电源接口处标识相应的输入电压范围,通常接220V/50HZ电源),按开机键,进入待机界面;(2)开机预热30分钟后再准备测试。
(3)恢复仪器的原始设置:按“ Rese f键后再按两次“ Enter”键;5.2选择测试模块及网络标准:(1)此型号CMU200可以兼容不同制式的测试模块,目前有GSM900, GSM1800,GSM1900.CDMA2000)。
选择不同制式测试模块(GSM或CDMA),所用选择和确认可用旋钮操作完成:选择为滚动旋钮,确认则按一下旋钮。
(2)GSM测试模块及网络标准选择:在待机界面按“Menu Select”选择“GSM MobileStation” —“ GSM900” 或“ GSM1800”,按“ Enter”,选择GSM 测试模块后“ Network Standarc” 缺省为“ GSM only ”。
第二讲 综测仪CMU200使用操作一控制面板说明选择及确认按钮当左右旋转时为选择当按下去时为确认系统复位键当系统设置有误时可按此键对系统设置恢复到综测仪功能设置如之间转换测试综测仪系统设置如二设置SYSTEM SET REMOTE1SCPI CONNECTION 电脑与CMU200联系方式设置PORT GPIB可通过V ARIATION来选择COM1COM2GPIB通过GPIB卡联接2PRIMARY ADDRESS[GPIB] 设置GPIB卡地址需与软件相对应否则软件将不能通过GPIB卡控制CMU200PRIMARY ADDRESS 1 一般地址为13SECONDARY ADDRESS[GPIB] 次要的地址FUNCTION GROUP MODEADDRESS1 RF NON-SIGNALLINGADDRESS2 GSM 900 SIGNALLINGADDRESS3 GSM 900 NON-SIGNALLINGADDRESS4 GSM 1800 SIGNALLINGADDRESS5 GSM 1800 NON-SIGNALLING ADDRESS6 NOT MAPPED以后同上三FUNCTION MENU SELECT功能菜单设置MENU SELECT按一下出现设菜单再按一下退出也可按ESCAPE键进入设置1 BASIC FUNCTIONBASERFAUDIO2GSM MOBILE STATION GSM或DCS测试选择GSM900GSM18003IMT-2000 MOBILE STATION CDMA测试选择CDMA 2000 CELLULAR四使用在主界面下按一下ESCAPE进入MENU SELECT测试项目设置再按一下返回到主界面1右上角CONNECT CONTROL按下可进入联接控制GSM 900 CONNECTION CONTROL状态右边SIGNAL OFFCONNECT MOBILE 仪器呼叫手机SET SMS 仪器向手机发射短信息下面CONNECTION 主界面 MS SIGNAL 手机信号设置功率等级 BS SIGNAL 基站信号设置 NETWORD 网络AF/RF 补偿设置RF OUTPUT 为端口设置123EXT.ALT OUTPUT 设置补偿点测补偿为0.2dB天线测试补偿为30dB2 手机呼叫仪器2.1如果有综测卡手机开机后按任意数字可呼叫仪器 2.2如果没有综测卡只能拨112呼叫仪器 2.3如果用天线偶合测试最好加屏蔽箱2.4如果用点测方式2D 2C2模块需将连接点断开3A/3AD 模块需将天线匹配元件取掉3188此两元件取掉2D 此焊点断开3 手机与仪器联接上后可按MENUS 返回到主菜单 3.1OVERVIEW 主界面MS SIGNAL PCL功率等级05BS SIGNAL TCH 基站功率-60dBm CHANNEL 信道 TIMESLOT 37按MENUS 返回到主界面3.2POWER 功率帧按APPLIC.1可查看细节 ANALYZER LEVEL PCL 所有测试参数3.3MODULATION 相位3.4SPECTRUM 调制频谱3.5开关频谱3.6灵敏度四CDM55的基本操作1开机后出来如下界面按MANUAL TEST进入手机测试界面2进入手机测试界面后按CONNECT/EXT.ATT.右进入射频参数补偿用标准样机调试在此界面下将手机与仪器联接后如出现联接界面3手机登陆仪器后的界面4手机呼叫仪器手机拨112即可与仪器联接5仪器呼叫手机按下CALL TO MOBILLE手机会有信号手机按下通话键即可6仪器向手机发送短信按下SHORT MESSAGE即可。
手机综测仪CMU200在如今这个快速发展的科技时代,手机已成为必需品。
不仅在生活中,手机在商业领域也发挥着越来越重要的作用。
因此,手机综测仪的出现就显得非常重要了。
在本文中,我们将会详细介绍一款名为CMU200的手机综测仪,以及其在商业领域中的应用。
什么是CMU200?CMU200是一款高精度的手机综测仪,由德国罗德与施瓦茨(Rohde & Schwarz)公司研发生产。
该综测仪可用于对手机进行测试,包括接收机性能、发射机性能、功率控制、接口性能等多方面的测试。
CMU200的技术参数CMU200的主要技术参数如下:•包括GSM、GPRS、EDGE、WCDMA、HSDPA、HSUPA、TD-SCDMA、TD-HSDPA、TD-HSUPA、LTE等多种制式的测试。
•对信号的接收灵敏度、误码率、抗干扰能力、带宽等进行测试。
•可测试的最大输出功率为40W,最大输入功率为10W。
•可测试的最大带宽为120MHz,测试精度高达0.1dB。
•支持多达32个端口的测试。
•内置GPS系统,可实现定位测试。
•采用IP内核技术,支持局域网及互联网控制器。
CMU200以其精度高、测试范围广等特点被广泛应用于手机的开发和制造、产品测试、网络优化等领域。
CMU200在商业领域中的应用在手机制造商、手机服务提供商等企业中,CMU200的使用非常普遍。
下面我们将列举一些CMU200在商业领域中的具体应用。
手机的开发和制造在手机的开发和制造过程中,CMU200可用于对手机进行各种测试,例如测试手机的发射机和接收机性能、功率控制、接口性能等。
通过这些测试,可以及时发现手机制造中的缺陷和问题,并进行及时修正,从而保证手机的正常品质。
产品测试在市场上发布产品前,企业需要对其进行全面的测试以确保产品质量。
这就需要用到CMU200。
CMU200可以对产品进行各种测试,例如对产品的无线性能、电源管理、可靠性、互操作性等进行测试。
通过这些测试,可以发现产品的不足之处,并进行相应的改进。
Data transmission•Half rate–Uses one slot every second frame –Up to 16 subscriber per frame •Full rate –Uses one slots every frame –Up to 8 subscriber per frame•Enhanced full rate –Uses one slots every frame with an improved coder –Up to 8 subscriber per frameData transmission •Half rate –Uses one slot every second frame –Up to 16 subscriber per frame •Full rate –Uses one slots every frame –Up to 8 subscriber per frame •Enhanced full rate –Uses one slots every frame with an improved coder –Up to 8 subscriber per frame 1 Frame = 1250 bits = 4.62msTraffic Channel* cannot be sent in the same timeslotTiming Advance•Power vs. PCL–The basestationtells the mobile to send the TX burst earlier (max. 63 Bits)Timing Advance •Power vs. PCL –The basestation tells the mobile to send the TX burst earlier (max. 63 Bits) 100 mDiscontinuous receiving (DRX on/off)• A mobile is waiting for a paging event after synchronisation, it belongs to a definedpaging group•Paging reorganisation let the mobile “hear ” to every paging group –(CONFigure:NETWork:SYSTem BSPReorganis ON|OFF)•The parameter BS-PA-MFRMS defines the interval (multiframes) between two paging groups. The mobile can use the time between to go into a “sleep ”mode –CONFigure:NETWork:SYSTem BSPamfrms 2..9)•The parameter BS-PG-BLKS-RES defines the number of data blocks, reserved for the AGCH access. This parameter has nearly no influence on the battery lifetime of a mobile –CONFigure:NETWork:SYSTem BSAGblkres 0..7) •Periodic location update (timer T3212) is now implemented.CMUGSM: CONF:NETW:SYST:BSPR ON DRX off CMUGSM: CONF:NETW:SYST:BSP 2or CMUGSM: CONF:NETW:SYST:BSPR OFF DRX onCMUGSM: CONF:NETW:SYST:BSP 9Discontinuous receiving (DRX on/off)• A mobile is waiting for a paging event after synchronisation, it belongs to a defined paging group •Paging reorganisation let the mobile “hear ” to every paging group –(CONFigure:NETWork:SYSTem BSPReorganis ON|OFF)•The parameter BS-PA-MFRMS defines the interval (multiframes) between two paging groups. The mobile can use the time between to go into a “sleep ”mode –CONFigure:NETWork:SYSTem BSPamfrms 2..9)•The parameter BS-PG-BLKS-RES defines the number of data blocks, reserved for the AGCH access. This parameter has nearly no influence on the battery lifetime of a mobile –CONFigure:NETWork:SYSTem BSAGblkres 0..7) •Periodic location update (timer T3212) is now implemented.CMUGSM: CONF:NETW:SYST:BSPR ON DRX offCMUGSM: CONF:NETW:SYST:BSP 2or CMUGSM: CONF:NETW:SYST:BSPR OFF DRX on CMUGSM: CONF:NETW:SYST:BSP 9InitializationCMUBASE: *IDN?;*OPT?Query for instrument and optionsCMUBASE: *CLS;*RST;*OPC?Reset the instrument and status registers CMUBASE: SYST:REM:ADDR:SEC 1,"RF_NSig “Address MappingCMUBASE: SYST:REM:ADDR:SEC 2,"GSM900MS_Sig"CMUBASE: SYST:REM:ADDR:SEC 3,"GSM900MS_NSig"CMUBASE: SYST:REM:ADDR:SEC 4,"GSM1800MS_Sig"CMUBASE: SYST:REM:ADDR:SEC 5,"GSM1800MS_NSig"CMUGSM: INP:STAT RF2Select connector RF2 for GSM 900 (default)CMUGSM: OUTP:STAT RF2CMUGSM: SENS:CORR:LOSS:INP2 1.0Cable loss compensation for GSM 900.CMUGSM: SENS:CORR:LOSS:OUTP2 1.0CMUDCS: INP:STAT RF2Select connector RF2for GSM 1800 (default)CMUDCS: OUTP:STAT RF2CMUDCS: SENS:CORR:LOSS:INP2 2.0Cable loss compensation for GSM 1800.CMUDCS: SENS:CORR:LOSS:OUTP2 2.0Initialization CMUBASE: *IDN?;*OPT?Query for instrument and options CMUBASE: *CLS;*RST;*OPC?Reset the instrument and status registers CMUBASE: SYST:REM:ADDR:SEC 1,"RF_NSig “Address Mapping CMUBASE: SYST:REM:ADDR:SEC 2,"GSM900MS_Sig"CMUBASE: SYST:REM:ADDR:SEC 3,"GSM900MS_NSig"CMUBASE: SYST:REM:ADDR:SEC 4,"GSM1800MS_Sig"CMUBASE: SYST:REM:ADDR:SEC 5,"GSM1800MS_NSig"CMUGSM: INP:STAT RF2Select connector RF2 for GSM 900 (default)CMUGSM: OUTP:STAT RF2CMUGSM: SENS:CORR:LOSS:INP2 1.0Cable loss compensation for GSM 900.CMUGSM: SENS:CORR:LOSS:OUTP2 1.0CMUDCS: INP:STAT RF2Select connector RF2for GSM 1800 (default)CMUDCS: OUTP:STAT RF2CMUDCS: SENS:CORR:LOSS:INP2 2.0Cable loss compensation for GSM 1800.CMUDCS: SENS:CORR:LOSS:OUTP2 2.0Preparation for signalling testsCMUGSM: CONF:NETW:REQ:IMSI OFFIMSI knownCMUGSM: CONF:NETW:SMOD:IMSI:MNC 001;MCC 01;MSIN '0123456789'or CMUGSM: CONF:NETW:REQ:IMSI ON System sends a request to catch the IMSI CMUGSM: CONF:NETW:REQ:IMEI OFF Using no other request to speed upCMUGSM: CONF:NETW:REQ:AUTH OFF CMUGSM: CONF:NETW:REQ:HAND OFF CMUGSM: CONF:BSS:CCH:CHAN 30 BCCH parameter channel and RF power CMUGSM: CONF:BSS:CCH:LEV -75.0CMUGSM: CONF:BSS:CHAN 1TCH parameter: channel, PCL and RF power CMUGSM: CONF:NETW:POW 5CMUGSM: CONF:BSS:TCH:LEV:UTIM -85.0CMUGSM: PROC:SIGN:ACT SON;*OPC?Switch the generator onPreparation for signalling tests CMUGSM: CONF:NETW:REQ:IMSI OFF IMSI known CMUGSM: CONF:NETW:SMOD:IMSI:MNC 001;MCC 01;MSIN '0123456789'or CMUGSM: CONF:NETW:REQ:IMSI ONSystem sends a request to catch the IMSI CMUGSM: CONF:NETW:REQ:IMEI OFF Using no other request to speed up CMUGSM: CONF:NETW:REQ:AUTH OFF CMUGSM: CONF:NETW:REQ:HAND OFF CMUGSM: CONF:BSS:CCH:CHAN 30 BCCH parameter channel and RF power CMUGSM: CONF:BSS:CCH:LEV -75.0CMUGSM: CONF:BSS:CHAN 1TCH parameter: channel, PCL and RF power CMUGSM: CONF:NETW:POW 5CMUGSM: CONF:BSS:TCH:LEV:UTIM -85.0CMUGSM: PROC:SIGN:ACT SON;*OPC?Switch the generator onCall procedureREPORT OFFWHILE CMUGSM: SENS:SIGN:STAT? <> SYNC Wait for location updateREPORT ONCMUGSM: PROC:SIGN:ACT MTC;*OPC?MTC, skip this line if MOC REPORT OFFWHILE CMUGSM: SENS:SIGN:STAT? <> CEST Wait for an established callREPORT ONCall procedure REPORT OFF WHILE CMUGSM: SENS:SIGN:STAT? <> SYNC Wait for location update REPORT ON CMUGSM: PROC:SIGN:ACT MTC;*OPC?MTC, skip this line if MOC REPORT OFF WHILE CMUGSM: SENS:SIGN:STAT? <> CEST Wait for an established call REPORT ONPower Measurements•Average Burst Power–Average burst power of the useful part •Power vs. Time –Check against the GSM templatePower Measurements •Average Burst Power –Average burst power of the useful part •Power vs. Time –Check against the GSM templatePower Measurements•Power vs. Slot–Measure the average burst power of n slots.Power Measurements •Power vs. Slot –Measure the average burst power of n slots.32.9Power Measurements•Power vs. Frame–Measure the average burst power of n active slots, skip the unused slots.Power Measurements •Power vs. Frame –Measure the average burst power of n active slots, skip the unused slots.32.9Power Measurements•Power vs. PCL–Perform a PCL change with a SACCH command using frequency hopping on nchannels. Measure the power for each power step.Power Measurements •Power vs. PCL –Perform a PCL change with a SACCH command using frequency hopping on n channels. Measure the power for each power step.Different Power MeasurementsCMUGSM:CONF:NPOW:CONT 1,SING,NONE,NONE Fast Power Measurement, 1 bursts, single shot CMUGSM: READ:NPOW?Average,Minimum,Maximum (current + average)CMUGSM: CONF:POW:NORM:CONT ARR,10Power normal, 10 bursts, single shotCMUGSM: CONF:POW:NORM:CONT:REP SING,NONE,NONE CMUGSM: READ:POW:NORM?Average,Peak Power,Template and Timing Error CMUGSM: CONF:POW:MPR:CONT ARR,10Power MPR, 10 bursts, single shotCMUGSM: CONF:POW:MPR:CONT:REP SING,NONE,NONE CMUGSM: READ:POW:MPR?Average,Peak Power,Template and Timing / Phase / Frequency Errors CMUGSM: CONF:POW:PCL:CONT SING,NONE,NONE Power versus PCLCMUGSM: CONF:POW:PCL:CCO C3C3 = 3 channels, C7 = 7 channels CMUGSM: CONF:POW:PCL:CHAN 1,62,124Channel configurationCMUGSM: READ:POW:PCL?Average Power of frame 0 to frame 127 (1 active slot)CMUGSM: CONF:POW:SLOT:CONT:REP SING,NONE,NONE CMUGSM: READ:ARR:POW:SLOT?Average Power of slot 0 to slot 7 (1 frame)CMUGSM: FETC:POW:SLOT:SPOW2?Fetch the result of a specific slot (SPOW2 = slot 1! )CMUGSM: TRIG:SOUR IFPIF-power triggers DSP CMUGSM: CONF:POW:XSL:CONT:REP SING,NONE,NONE Power versus SlotCMUGSM: CONF:POW:XSL:SCO S128Number of slot measuredCMUGSM: READ:ARR:POW:XSL?Average Power of slot 0 to slot 127CMUGSM: FETC:POW:XSL:SPOW33?Fetch the result of a specific slot (SPOW33 = slot32 ! )CMUGSM: TRIG:SOUR FRUNTDMA timing triggers DSP again (default)CMUGSM: CONF:POW:FRAM:CONT:REP SING,NONE,NONE Power versus FrameCMUGSM: READ:ARR:POW:FRAM?Average Power of frame 0 to frame 127 (1 active slot)CMUGSM: FETC:POW:FRAM:FPOW12?Fetch the result of a specific frame (FPOW12 = frame 11 !)Different Power Measurements CMUGSM:CONF:NPOW:CONT 1,SING,NONE,NONE Fast Power Measurement, 1 bursts, single shot CMUGSM: READ:NPOW?Average,Minimum,Maximum (current + average)CMUGSM: CONF:POW:NORM:CONT ARR,10Power normal, 10 bursts, single shot CMUGSM: CONF:POW:NORM:CONT:REP SING,NONE,NONE CMUGSM: READ:POW:NORM?Average,Peak Power,Template and Timing Error CMUGSM: CONF:POW:MPR:CONT ARR,10Power MPR, 10 bursts, single shot CMUGSM: CONF:POW:MPR:CONT:REP SING,NONE,NONE CMUGSM: READ:POW:MPR?Average,Peak Power,Template and Timing / Phase / Frequency Errors CMUGSM: CONF:POW:PCL:CONT SING,NONE,NONE Power versus PCL CMUGSM: CONF:POW:PCL:CCO C3C3 = 3 channels, C7 = 7 channels CMUGSM: CONF:POW:PCL:CHAN 1,62,124Channel configuration CMUGSM: READ:POW:PCL?Average Power of frame 0 to frame 127 (1 active slot)CMUGSM: CONF:POW:SLOT:CONT:REP SING,NONE,NONE CMUGSM: READ:ARR:POW:SLOT?Average Power of slot 0 to slot 7 (1 frame)CMUGSM: FETC:POW:SLOT:SPOW2?Fetch the result of a specific slot (SPOW2 = slot 1! )CMUGSM: TRIG:SOUR IFP IF-power triggers DSP CMUGSM: CONF:POW:XSL:CONT:REP SING,NONE,NONE Power versus Slot CMUGSM: CONF:POW:XSL:SCO S128Number of slot measured CMUGSM: READ:ARR:POW:XSL?Average Power of slot 0 to slot 127CMUGSM: FETC:POW:XSL:SPOW33?Fetch the result of a specific slot (SPOW33 = slot32 ! )CMUGSM: TRIG:SOUR FRUN TDMA timing triggers DSP again (default)CMUGSM: CONF:POW:FRAM:CONT:REP SING,NONE,NONE Power versus Frame CMUGSM: READ:ARR:POW:FRAM?Average Power of frame 0 to frame 127 (1 active slot)CMUGSM: FETC:POW:FRAM:FPOW12?Fetch the result of a specific frame (FPOW12 = frame 11 !)Different Power Sub Array ConfigurationsCMUGSM: CONF:POW:MPR:CONT ARR,10Power MPR, 10 bursts, single shotCMUGSM: CONF:POW:MPR:CONT:REP SING,NONE,NONE CMUGSM: READ:POW:MPR?Average,Peak Power,Template and Timing / Phase / Frequency Errors CMUGSM: CONF:SUB:POW:MPR MIN,0.5,590CMUGSM: FETC:SUB:POW:MPR:MIN?Max. negative deviation in the useful part CMUGSM: CONF:SUB:POW:MPR MAX,0.5,590CMUGSM: FETC:SUB:POW:MPR:MAX?Max. positive deviation in the useful part Reading edges of the template -28 us = -7.083 Bit -18 us = -4,375 Bit -10 us = -2.208 Bit 0 us = 0.5 Bit 542.8 us = 147.5 Bit 552.8 us = 150.208 Bit 560.8 us = 152.375 Bit 570.8 us = 155.083 BitCMUGSM: CONF:SUB:POW:MPR ARIT,-7.0,1,-4.5,2,-2.25,1,0.5,1,147.5,1,150.25,1,152.25,2,155.0,1CMUGSM: FETC:SUB:POW:MPR:BURS?Get the arrayDifferent Power Sub Array Configurations CMUGSM: CONF:POW:MPR:CONT ARR,10Power MPR, 10 bursts, single shot CMUGSM: CONF:POW:MPR:CONT:REP SING,NONE,NONE CMUGSM: READ:POW:MPR?Average,Peak Power,Template and Timing / Phase / Frequency Errors CMUGSM: CONF:SUB:POW:MPR MIN,0.5,590CMUGSM: FETC:SUB:POW:MPR:MIN?Max. negative deviation in the useful part CMUGSM: CONF:SUB:POW:MPR MAX,0.5,590CMUGSM: FETC:SUB:POW:MPR:MAX?Max. positive deviation in the useful part Reading edges of the template -28 us = -7.083 Bit -18 us = -4,375 Bit -10 us = -2.208 Bit 0 us = 0.5 Bit 542.8 us = 147.5 Bit 552.8 us = 150.208 Bit 560.8 us = 152.375 Bit 570.8 us = 155.083 Bit CMUGSM: CONF:SUB:POW:MPR ARIT,-7.0,1,-4.5,2,-2.25,1,0.5,1,147.5,1,150.25,1,152.25,2,155.0,1CMUGSM: FETC:SUB:POW:MPR:BURS?Get the arrayModulation measurements.•Frequency error.–Average difference between left and right rotations.–Limits typically 1/10 ppm of the carrier (e.G. 90 Hz in GSM900).•Phase error.–Compare current rotation against the average value for 0’s or 1’s.Modulation measurements .•Frequency error.–Average difference between left and right rotations.–Limits typically 1/10 ppm of the carrier (e.G. 90 Hz in GSM900).•Phase error.–Compare current rotation against the average value for 0’s or 1’s.Decode ModeAs described in GSM 05.04 there is nothing defined about the actual phase outside the useful part of the burst.The modulator has to be filled with (...1111) in order to be in initialised in a defined way when modulating the first bit. This first bit is also defined because it is part of the tail bits.The CMU has the possibility to replace the decoded guard and tail bits (DECODE mode: ”With guard and tailbits)by the guard and tail bits defined in ETSI (DECODE mode: STANDARD).Lets say: With guard and tailbits means try to decode the signal, there could be ones or zeros. Standard means, we take the ‘ETSI ’ bit pattern and compare against them. We assume the mobile is sending them. It has no influence on the evaluation window size !Decode Mode As described in GSM 05.04 there is nothing defined about the actual phase outside the useful part of the burst.The modulator has to be filled with (...1111) in order to be in initialised in a defined way when modulating the first bit. This first bit is also defined because it is part of the tail bits.The CMU has the possibility to replace the decoded guard and tail bits (DECODE mode: ”With guard and tailbits)by the guard and tail bits defined in ETSI (DECODE mode: STANDARD).Lets say: With guard and tailbits means try to decode the signal, there could be ones or zeros. Standard means, we take the ‘ETSI ’ bit pattern and compare against them. We assume the mobile is sending them. It has no influence on the evaluation window size !I/Q MeasurementsThis is typically not a test in a production line, more a test on a service workbench. This measurement indicates the IQ adjustment of the modulator. There a two possible adjustments, the amplitude and the offset.If adjusted well and a constant ‘1’ or ‘0’ is generated, the power at the suppressed carrier frequency and at the side band are below -30 dB to -40 dB of the measured carrier. The frequency offset of +/-67,7 kHz is caused by the rotation speed of the I/Q vector. (Symbol rate 270,833kBits/s + one quarter of circle for each bit = 67,70825 kHz).I/Q Measurements This is typically not a test in a production line, more a test on a service workbench. This measurement indicates the IQ adjustment of the modulator. There a two possible adjustments, the amplitude and the offset.If adjusted well and a constant ‘1’ or ‘0’ is generated, the power at the suppressed carrier frequency and at the side band are below -30 dB to -40 dB of the measured carrier. The frequency offset of +/-67,7 kHz is caused by the rotation speed of the I/Q vector. (Symbol rate 270,833kBits/s + one quarter of circle for each bit = 67,70825 kHz).Suppressedcarrier Sideband at+67,7 kHzWanted carrier at -67,7 kHzDifferent Modulation MeasurementsCMUGSM: CONF:POW:MPR:CONT ARR,10Power MPR, 10 bursts, single shotCMUGSM: CONF:POW:MPR:CONT:REP SING,NONE,NONE CMUGSM: READ:POW:MPR?Average,Peak Power,Template and Timing / Phase / Frequency Errors CMUGSM: CONF:MOD:CONT ARR,10Modulation , 10 bursts,single shot CMUGSM: CONF:MOD:CONT:REP SING,NONE,NONE CMUGSM: READ:MOD?Phase / Frequency ErrorCMUGSM: CONF:MOD:XPER:CONT ARR,10Modulation , 10 bursts,single shotCMUGSM: CONF:MOD:XPER:CONT:REP SING,NONE,NONE CMUGSM: READ:MOD:XPER?Phase / Frequency Error / Origin Offset / I/Q ImbalanceDifferent Modulation Measurements CMUGSM: CONF:POW:MPR:CONT ARR,10Power MPR, 10 bursts, single shot CMUGSM: CONF:POW:MPR:CONT:REP SING,NONE,NONE CMUGSM: READ:POW:MPR?Average,Peak Power,Template and Timing / Phase / Frequency Errors CMUGSM: CONF:MOD:CONT ARR,10Modulation , 10 bursts,single shot CMUGSM: CONF:MOD:CONT:REP SING,NONE,NONE CMUGSM: READ:MOD?Phase / Frequency Error CMUGSM: CONF:MOD:XPER:CONT ARR,10Modulation , 10 bursts,single shot CMUGSM: CONF:MOD:XPER:CONT:REP SING,NONE,NONE CMUGSM: READ:MOD:XPER?Phase / Frequency Error / Origin Offset / I/Q ImbalanceSuppressedcarrier Sideband at+67,7 kHzWanted carrier at -67,7 kHzOrigin offset is equivalent to carrier suppression p(f C+n ) -p(f C )IQ imbalance is equivalent to side band suppression p(f C+n ) -p(f C-n )CMU uses time domain for thatmeasurement and this is not dependent on the modulation !Adjacent Channel Power Measurement (time domain)•Spectrum due to Switching–modulation peak error using a 300 kHz filter •Spectrum due to Modulation –modulation RMS error using a 30 kHz filterAdjacent Channel Power Measurement (time domain)•Spectrum due to Switching –modulation peak error using a 300 kHz filter •Spectrum due to Modulation –modulation RMS error using a 30 kHz filterGSM Spectrum MeasurementsCMUGSM: CONF:SPEC:SWIT:CONT:MPO1:ENAB ON including offset ± 400 kHz CMUGSM: CONF:SPEC:SWIT:CONT:MPO2:ENAB ON including offset ± 600 kHz CMUGSM: CONF:SPEC:SWIT:CONT:MPO3:ENAB OFF ex cluding offset ± 1200 kHz CMUGSM: CONF:SPEC:SWIT:CONT:MPO4:ENAB OFF excluding offset ± 1800 kHzCMUGSM: CONF:SPEC:SWIT:CONT ARR,50spectrum due to switching with averaging 50 bursts CMUGSM: CONF:SPEC:SWIT:CONT:REP SING,NONE,NONE single shotCMUGSM: READ:ARR:SPEC:SWIT?CMUGSM: CONF:SPEC:MOD:CONT:MPO1:ENAB OFF ex cluding offset ± 100 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO2:ENAB OFF ex cluding offset ± 200 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO3:ENAB OFF excluding offset ± 250 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO4:ENAB ON including offset ± 400 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO5:ENAB ON in cluding offset ± 600 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO6:ENAB OFF ex cluding offset ± 800 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO7:ENAB OFF ex cluding offset ± 1000 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO8:ENAB OFF ex cluding offset ± 1200 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO9:ENAB OFF ex cluding offset ± 1400 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO10:ENAB OFF ex cluding offset ± 1600 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO11:ENAB OFF ex cluding offset ± 1800 kHzCMUGSM: CONF:SPEC:MOD:CONT ARR,50spectrum due to modulation with averaging 50 bursts CMUGSM: CONF:SPEC:MOD:CONT:REP SING,NONE,NONE single shotCMUGSM: READ:ARR:SPEC:MOD?GSM Spectrum Measurements CMUGSM: CONF:SPEC:SWIT:CONT:MPO1:ENAB ON including offset ± 400 kHz CMUGSM: CONF:SPEC:SWIT:CONT:MPO2:ENAB ON including offset ± 600 kHz CMUGSM: CONF:SPEC:SWIT:CONT:MPO3:ENAB OFF ex cluding offset ± 1200 kHz CMUGSM: CONF:SPEC:SWIT:CONT:MPO4:ENAB OFF excluding offset ± 1800 kHz CMUGSM: CONF:SPEC:SWIT:CONT ARR,50spectrum due to switching with averaging 50 bursts CMUGSM: CONF:SPEC:SWIT:CONT:REP SING,NONE,NONE single shot CMUGSM: READ:ARR:SPEC:SWIT?CMUGSM: CONF:SPEC:MOD:CONT:MPO1:ENAB OFF ex cluding offset ± 100 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO2:ENAB OFF ex cluding offset ± 200 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO3:ENAB OFF excluding offset ± 250 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO4:ENAB ON including offset ± 400 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO5:ENAB ON in cluding offset ± 600 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO6:ENAB OFF ex cluding offset ± 800 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO7:ENAB OFF ex cluding offset ± 1000 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO8:ENAB OFF ex cluding offset ± 1200 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO9:ENAB OFF ex cluding offset ± 1400 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO10:ENAB OFF ex cluding offset ± 1600 kHz CMUGSM: CONF:SPEC:MOD:CONT:MPO11:ENAB OFF ex cluding offset ± 1800 kHz CMUGSM: CONF:SPEC:MOD:CONT ARR,50spectrum due to modulation with averaging 50 bursts CMUGSM: CONF:SPEC:MOD:CONT:REP SING,NONE,NONE single shot CMUGSM: READ:ARR:SPEC:MOD?Standard BER and RBER•CMU send data on RF to mobile under test•Loop back must be performed by mobile station after the channel coder –Uses loop A or B•CMU receives the looped back signal from mobileStandard BER and RBER •CMU send data on RF to mobile under test •Loop back must be performed by mobile station after the channel coder –Uses loop A or B•CMU receives the looped back signal from mobileFast BER•CMU send data on RF to mobile under test•Loop back must be performed by mobile station after the demodulator –Uses loop C•CMU receives the looped back signal from mobileFast BER•CMU send data on RF to mobile under test •Loop back must be performed by mobile station after the demodulator –Uses loop C•CMU receives the looped back signal from mobileBER measurementsCMUGSM: CONF:RXQ:CONT:HTIM 0.0,0.2Defining the hold off times AGC and SYNC (the default is probably is too long).CMUGSM: CONF:RXQ:BER1:CONT RFER,129Method RFER, number of speech frames. (129 is equivalent to 10 kBit class II bits)orCMUGSM: CONF:RXQ:BER1:CONT BBB,88Method BBB, number of frames. (88 is equivalent to 10kBit class II bits)CMUGSM: CONF:RXQ:BER1:CONT:REP NONE,NONE CMUGSM: CONF:RXQ:BER1:CONT:LEV:UTIM -104Level -100 dBm.CMUGSM: INIT:RXQ:BER Performing the measurement.CMUGSM: FETC:RXQ:BER?orCMUGSM: READ:RXQ:BER?Alternative way.BER measurements CMUGSM: CONF:RXQ:CONT:HTIM 0.0,0.2Defining the hold off times AGC and SYNC (the default is probably is too long).CMUGSM: CONF:RXQ:BER1:CONT RFER,129Method RFER, number of speech frames. (129 is equivalent to 10 kBit class II bits)or CMUGSM: CONF:RXQ:BER1:CONT BBB,88Method BBB, number of frames. (88 is equivalent to 10kBit class II bits)CMUGSM: CONF:RXQ:BER1:CONT:REP NONE,NONE CMUGSM: CONF:RXQ:BER1:CONT:LEV:UTIM -104Level -100 dBm.CMUGSM: INIT:RXQ:BER Performing the measurement.CMUGSM: FETC:RXQ:BER?or CMUGSM: READ:RXQ:BER?Alternative way.BS MeasurementsTiming Advance•Uses the SACCH–The duration from sending a command to the CMU and the confirmation of theMS takes 960 ms to 1440 msTiming Advance •Uses the SACCH –The duration from sending a command to the CMU and the confirmation of theMS takes 960 ms to 1440 ms SACCH1SACCH2SACCH3SACCH4MeasurementReportRXLev and RXQual•Uses the SACCH–To read valid results you must wait 960 ms to 1440 ms after a BS power levelchangeRXLev and RXQual•Uses the SACCH–To read valid results you must wait 960 ms to 1440 ms after a BS power levelchange960 ms1440 msGSM SACCH controls and reportsCMUGSM: PROC:BSS:TIM:ADV 40Timing Advance procedureCMUGSM: RREP:COUN?SACCH report counter since call is established CMUGSM: RREP:RXL?Reported RX Level CMUGSM: RREP:RXQ?Reported RX QualityGSM SACCH controls and reports CMUGSM: PROC:BSS:TIM:ADV 40Timing Advance procedure CMUGSM: RREP:COUN?SACCH report counter since call is established CMUGSM: RREP:RXL?Reported RX Level CMUGSM: RREP:RXQ?Reported RX Quality GSM MeasurementsAudio UplinkCMUGSM: CONF:BSS:BITS HAND Defining Bitstream mode before call is established or CMUGSM: PROC:BSS:BITS HAND Changing Bitstream mode during a call AUDIO: ROUT:SPEN HAND;*OPC?Internal CMU codec switches AUDIO: ROUT:SPD ANAL;*OPC?AUDIO: SOUR:AFG:FREQ 1.00 kHz Audio Generator settingAUDIO: SOUR:AFG:LEV 1.00 V AUDIO: INIT:AFG;*OPC?AUDIO: CONF:AFAN:CONT:REP SING,NONE,NONE;*OPC?Audio Analyzer setting AUDIO: READ:AFAN?Measurement AUDIO: ABOR:AFG;*OPC?Free resourcesAudio Uplink CMUGSM: CONF:BSS:BITS HAND Defining Bitstream mode before call is established or CMUGSM: PROC:BSS:BITS HAND Changing Bitstream mode during a call AUDIO: ROUT:SPEN HAND;*OPC?Internal CMU codec switches AUDIO: ROUT:SPD ANAL;*OPC?AUDIO: SOUR:AFG:FREQ 1.00 kHz Audio Generator setting AUDIO: SOUR:AFG:LEV 1.00 V AUDIO: INIT:AFG;*OPC?AUDIO: CONF:AFAN:CONT:REP SING,NONE,NONE;*OPC?Audio Analyzer setting AUDIO: READ:AFAN?Measurement AUDIO: ABOR:AFG;*OPC?Free resourcesAudio DownlinkCMUGSM: CONF:BSS:BITS HAND Defining Bitstream mode before call is established or CMUGSM: PROC:BSS:BITS HAND Changing Bitstream mode during a call AUDIO: ROUT:SPEN GEN;*OPC?Internal CMU codec switches AUDIO: ROUT:SPD HAND;*OPC?AUDIO: SOUR:AFG:FREQ 1.00 kHz Audio Generator settingAUDIO: SOUR:AFG:LEV 400 mV AUDIO: INIT:AFG;*OPC?AUDIO: CONF:AFAN:CONT:REP SING,NONE,NONE;*OPC?Audio Analyzer setting AUDIO: READ:AFAN?Measurement AUDIO: ABOR:AFG;*OPC?Free resourcesAudio Downlink CMUGSM: CONF:BSS:BITS HAND Defining Bitstream mode before call is established or CMUGSM: PROC:BSS:BITS HAND Changing Bitstream mode during a call AUDIO: ROUT:SPEN GEN;*OPC?Internal CMU codec switches AUDIO: ROUT:SPD HAND;*OPC?AUDIO: SOUR:AFG:FREQ 1.00 kHz Audio Generator setting AUDIO: SOUR:AFG:LEV 400 mV AUDIO: INIT:AFG;*OPC?AUDIO: CONF:AFAN:CONT:REP SING,NONE,NONE;*OPC?Audio Analyzer setting AUDIO: READ:AFAN?Measurement AUDIO: ABOR:AFG;*OPC?Free resources。
CMU200的使用CMU200是一种先进的测试设备,被广泛应用于通信和电信业的研发和测试工作中。
它是由罗门斯克鲁普电子(Rohde & Schwarz)公司研制生产的一台全功能通用测试仪器。
CMU200提供了广泛的测试应用,包括移动通信、无线电广播和航空航天等领域。
以下是CMU200的一些使用方法和特点。
首先,CMU200作为一台全能通信测试仪,可以应用于各种无线通信标准的测试和验证,如GSM、GPRS、EDGE、WCDMA、HSPA、LTE、CDMA2000、EV-DO等。
它具备高度集成和可靠性,能够提供多种测试解决方案,PC和无需人工干预的自动测试。
由于其灵活性和高可靠性,CMU200在移动通信行业得到了广泛应用。
其次,CMU200提供的测试方案非常丰富。
它可以用于基带和射频测试,包括功率、谐振频率、频偏、误码性能、接收灵敏度、频率误差、AM和FM调制、信噪比等。
此外,还可以测试调制、解调和多径衰落等特性。
CMU200还提供了广泛的无线电广播测试功能,包括AM、FM、HD Radio和DAB等。
第三,CMU200的用户界面非常友好和易于使用。
它配备了大屏幕触摸显示器,可以显示多个测试参数和结果。
它还提供了可编程并行测试任务功能,可以同时进行多个测试,并自动保存测试结果。
用户只需通过几个点击即可完成复杂的测试过程。
第四,CMU200拥有一种称为“Autotest”的功能,可以在短时间内完成多种测试任务。
该功能非常适合用于大规模生产测试。
CMU200还具备自动化测试软件和编程接口,可以与其他测试设备无缝集成,实现更高级别的自动化测试。
此外,CMU200还具备较高的测试性能和稳定性。
它提供了高精度和高速度的测量,能够满足严格的测试要求。
CMU200还具备较高的抗干扰能力和信号稳定性,能够提供准确可靠的测试结果。
总结起来,CMU200是一台功能全面的通用测试仪器,广泛应用于移动通信、无线电广播和航空航天等领域的研发和测试工作中。