分数乘整数
- 格式:doc
- 大小:72.57 KB
- 文档页数:3
分数乘以整数总第 1 课时电第 1 课时教学内容:分数乘以整数教学目标:使学生理解分数乘以整数的意义与整数乘法相同,掌握分数乘以整数的计算法则,能够正确地进行计算。
重点与难点:1.重点:理解分数乘以整数的意义与整数乘法相同。
2.难点:分数乘以整数的计算法则。
教学准备:教学过程:一、复习1.做教科书第1页“复习”的第(l)题。
让学生说一说整数乘法的意义。
2.做教科书第1页“复习”的第(2)题。
让学生说一说这两道题各有什么特点。
3.揭题:这就是今天我们要学习的——分数乘以整数。
二、新课1.教学例1。
◎说一说题意。
◎要求3个人一共吃了多少块,可以用什么方法计算?”◎学生列式◎比较:从这俩个算式中我们可以看出,分数乘以整数的意义与整数乘法的意义是相同的。
都是求相同加数的和的简便运算。
◎2/9×3=?学生试算2.总结分数乘以整数的计算法则。
3. 学生举例证明法则.4.完成第2页“做一做”中的题目。
◎注意:结果如果是假分数的,一般要化成带分数或整数。
三、巩固练习:1.练习一的第1题:要求学生仔细审题,独立解答。
2.练习一的第4题:◎学生独立解答,◎求一个分数的几倍是多少,怎样算?3.练习一的第7题。
学生独立解答,教师巡视,对学习有困难的学生进行个别辅导。
四、作业练习一的第2、3、5、6题。
分数乘法总第(2)课时电总(2)课时教学内容:分数乘法的意义和计算法则(二)教学目的:1.使学生理解一个数乘分数的意义。
2.掌握一个数乘分数的计算法则,能正确熟练地进行计算。
3.培养学生的理解及计算能力。
重点与难点:1.重点:掌握分数乘法的方法与意义。
2.难点:区分分数乘以分数和整数乘一个分数的意义。
联系实际进行理解。
教学准备:灯片。
教学过程:一.复习:口算。
2/3×4 5/6×18 1/5×1 3/4×2 7/10×5 6/7×28 2/9×6 1/4×4 4/5×2 1/3×12二、新授:1.教学一个数乘分数的意义。
分数乘法乘整数算式什么是分数乘整数,整数乘分数算式怎么做呢?我以前在没弄懂的时候也曾经这样去想过。
今天当我把生活中的现象联系起来思考的时候,才发现生活就是数学。
为了搞清楚这个问题,我用自己手里仅有的材料动手摆弄了起来,我发现在乘分数时不能先除后乘,而是应该先乘后除,就可以很快地理解为什么不能直接写成几分之几的形式了。
分数乘整数的算式如下:(10+1)×(10÷1)再读一读,不难发现它们其实都是几分之几。
对,这就是分数乘法乘整数算式,原来生活处处有数学,数学无处不在!这使我明白了许多道理:10个甲比8个乙多1个,那么这个差是多少呢?算式是( 8+1)×( 10÷1)这就是说用算式表示的是8个甲加上1个乙,所以就是( 8+1)×10÷1=8×1= 8先举一个生活中的例子:甲乙两筐苹果共有40个,甲筐的10个比乙筐的8个多1个,也就是说乙筐的7个比甲筐的3个多2个,乙筐原来有多少个苹果?算式是( 10-1)×( 8÷3)所以乙筐原来有20个苹果。
所以得出:甲筐的10个比乙筐的8个多2个,乙筐原来有20-8= 12个苹果。
接着又举一个例子:一辆汽车由甲、乙、丙三人开,每人驾驶3小时。
当甲与乙完成任务回来时,丙已经驾驶5小时了。
甲、乙两人合作,驾驶6小时后,由于交通堵塞,丙被迫停下。
甲乙丙三人继续工作了几小时后,交通才恢复畅通。
这时候,甲的时间是: 3×6=18小时,乙的时间是: 4×6=24小时,丙的时间是: 9×6=54小时。
学习的过程也就像这样,只要你肯动脑筋去观察、探究,就会发现生活中处处有数学,处处有数学。
在我们周围的世界里,到处充满着数学知识,数学知识在我们身边随处可见,甚至无处不在,就看你是否有一双善于发现的眼睛。
就拿洗衣服来说吧,洗衣粉有泡泡可以利用;肥皂沫泡可以利用;洗衣服时有小水珠,滴落到地板上,产生小坑,也是可以利用的。
分数乘整数教案(5篇)第一篇:分数乘整数教案《分数乘整数》教案一、课题:分数乘整数二、教学目标:使学生掌握分数乘整数的计算法则,会进行分数乘整数的运算并理解其意义。
三、教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
四、教学难点:引导学生自己观察、探索出分数乘整数的计算法则。
五、课时安排:1课时六、教学过程:(一)巩固旧知(1)老师在上课之前,想问问大家:“同学们喜欢看动画片吗?最近有一部非常好看的动画片叫做《熊出没》,最近光头强又出来砍树了!哪位同学能帮熊大和熊二算算光头强这次砍了多少棵树?”(2)教师口述: “光头强”每天砍5棵树,六天他一共砍了多少棵树?(3)学生根据题意列出解答算式:方法1 加法:5+5+5+5+5+5=30(棵)(师:有没有简单点的方法?)方法2乘法:5×6=30(棵)方法3:(如6×5=30)(4)复习整数乘法的意义:整数乘法表示求几个相同加数的和的简便运算。
(二)、从旧知识基础上导入新知识(1)教师:“孩子们,光头强砍伐树木的行为是不对的,咱们应该爱护树木,与大自然和谐相处,所以呀,人们发明了一个机器人去把光头强砍掉的树重新种回来,我们再来看看这回机器人是怎么植树的。
(2)教师板书2例1:机器人每天种的树一个小树林,它四天一共种整个小树林的几分之几?9(3)画线段图帮学生理解题意(教师引导让学生自己动手完成),得到答案。
(4)画图我们已经解决了这道题,除了画图,我们还可以用什么方法做?学生列式:如方法1:+++=分子相加。
)=(同分母加法,属于已学内容,分母不变,只将方法2:×4=?方法3:(有些同学可能用小数或其他方法)(注意:学生若只列出方法1,注意让学生观察方法1加数的特点,求四个相同加数的和还可以怎么列式?引导学生发现知识之间内在联系,列出乘法的方法。
)教师:你是怎么想到×4的?222222学生:+++加数相同,都是,可以写成×4乘法的简便运算。
分数乘整数的三种方法
分数乘以整数是数学中常见的运算,有三种方法可以实现这个操作。
第一种方法是将整数转化为分数,然后进行分数乘法。
例如,假设我们要计算
2/3乘以4,可以将4转化为4/1,然后进行分数乘法:(2/3) * (4/1) = (2*4)/(3*1) = 8/3。
这种方法的优点是直观易懂,但需要进行分数的转化,对于较大的整数可能会比较繁琐。
第二种方法是将整数视为分数的特殊情况,即将整数作为分子,分母为1。
例如,计算2/3乘以4,可以将4视为4/1,然后进行分数乘法:(2/3) * (4/1) =
(2*4)/(3*1) = 8/3。
这种方法相对于第一种方法更加简便,省去了将整数转化为分数的步骤。
第三种方法是利用整数的乘法分配律,将分数的分子与整数相乘,分母保持不变。
例如,计算2/3乘以4,可以将2/3拆分为2*(1/3),然后进行分数乘法:(2/3) * 4 = 2 * (1/3) * 4 = (2 * 4) / 3 = 8/3。
这种方法也比较简单,只需要进行整数的乘法和分数的乘法。
总的来说,分数乘以整数有三种方法:将整数转化为分数进行分数乘法、将整数视为分数的特殊情况进行分数乘法、利用整数的乘法分配律进行分数乘法。
根据具体情况选择合适的方法可以简化计算过程。
分数乘法一分数乘以整数求一个数的几分之几,用乘法计算,也就是分数乘整数1.分母不变,分子乘以整数的积作为分子2.分子和分母先约分,再计算,简化计算过程在实际应用的过程中①找准单位1②找到数量关系式:单位1乘以分数得到对应值③列式解答二分数乘以分数1.分子乘以分子的积做分子,分母乘以分母的积做分母2.分子和分母约分。
分子和分子,分母和分母不能约分3.计算过程中,先约分再计算,计算结果化为最简数4.比较大小①当一个因数小于1大于0时,乘积小于另一个因数(一个数乘以真分数)②当一个因数大于1时,乘积大于另一个因数(一个数乘以带分数)③当一个因数等于1时,乘积等于另一个因数5.分子为1,分母为两个自然数的乘积可以拆分为①连续自然数,自然数做分母,分子为1的两个分数的差②不连续自然数,自然数做分母,分子为1的两个分数的差再乘以分母之差作为分母,分子为1的1/40=(1/5-1/8)*1/3三分数的混合运算1.和整数运算法则一样,先算乘除,再算加减,括号计算优先2.整数乘法的交换律和结合律,分配律同样适用于分数乘法3.整数不等于分母时,整数可以拆分成一个分母和一个数的和或者差,再利用乘法分配律,最后求和或求差。
4.分数乘法运算的过程中,分子交换位置,乘积不变。
5.分数乘法运算的过程中,分母交换位置,乘积不变。
四倒数1.整数可以看成分母是1 的假分数,分子和分母互换位置,得到的数值是整数的倒数。
2.倒数是相互的,必须两个数一起才可以说是倒数,我们可以说3是三分之一的倒数。
但是不可以说3是倒数。
3.互为倒数两个数的乘积是1。
两数相除,等于乘以乘数的倒数4.1的倒数是1 ,0没有倒数。
所有整数都有倒数X o5.真分数的倒数一定大于1,大于真分数本身6.假分数的倒数一定小于1,小于假分数本身。
X 假分数可以等于17.0和1 既不是质数也不是合数。
8.合数最少有3个因数,两个因数的积大于1。
自然数整数和09.质数又叫做素数,只有两个因数,它本身和1。
六年级数学教案——《分数乘以整数》5篇第一篇:六年级数学教案——《分数乘以整数》教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用先约分再相乘的方法进行计算。
教学重点:学生对计算法则的掌握,以及在计算中能约分的要约分。
教学难点:学生对算理掌握。
教学过程:一、复习。
1、5个12是多少?用加法算:12+12+12+12+12用乘法算:125问:125算式的意义是什么?被乘数和乘数各表示什么?2、计算:问:有什么特点?应该怎样计算?3、小结:(1)整数乘法的意义,就是求几个相同加数的和的简便运算。
被乘数表示相同的加数,乘数表示相同的加数的个数。
(2)同分母分数加法计算法则是分子相加作分子,分母不变。
二、新授教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?用加法算:(块)用乘法算:(块)问:这里为什么用乘法?乘数表示什么意思?得出:分数乘以整数的意义与整数乘法的意义相同,都是求几个相同的和的简便运算。
学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。
)问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)三、巩固练习。
1.第2页做一做。
2.练习一板书设计分数乘整数用加法算:(块)用乘法算:(块)教学反馈:第二篇:小学数学教案:分数乘以整数第一单元第一单元第一课时:分数乘以整数教学内容:第1~2页内容,例1教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。
教学过程:一、复习。
1、5个12是多少?用加法算:12+12+12+12+12用乘法算:12×5问:12×5算式的意义是什么?被乘数和乘数各表示什么?2、计算:123333++=++= 666101010问:333++?? 1010103、小结:(1)整数乘法的意义,就是求几个相同加数的和的简便运算。
分数与整数相乘,用分数的分子和整数相乘的积做分子,分母不变。
整数与分数相乘,用整数和分数的分子相乘的积做分子,分母不变。
分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。
三个数相乘,为了简便,可以先把所有分数的分子和分母约分,再把分的分子、分母相乘。
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
分数除法的意义与证书出发的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数(0除外),等于分数乘这个整数的倒数。
表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
把小数化成百分数,要把小数点向右移动两位,同时在后面添上百分号(位数不够要用0补齐)。
把百分数化成小数,要把百分号去掉,同时小数点向左移动两位。
把化成百分数,通常先把分数化成小数(遇到除不尽或小数位数多时,一般保留三位小数),再把小数化成百分数。
把百分数化成分数,先把分数改写成分母是100的分数,再把能约分的约分成最简分数。
画圆时,固定的一点叫做圆心,圆心通常用字母O表示;从圆心到圆上任意一点的线段,叫做半径,半径通常用字母r表示;通过圆心,并且两端都在圆上的线段,叫做直径,直径通常用字母d表示。
如果一个平面图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是对称轴图形。
折痕所在的这条直线叫做对称轴。
围成圆的曲线的长是圆的周长。
对于大小不同的圆,周长总是直径的3倍多一些。
这个倍数是个固定的数,我们把它叫做圆周率,用字母(读pāi)表示。
发芽率=发芽种子数/试验种子总数*100%y=kx(k>0),y随x的增大而增大,则y与x成正比,y=k/x(k>0),y随x的增大而减小,则y与x成反比,1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米 1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒5、角直线;直线是无限的。
分数乘整数计算题一、分数乘整数的计算方法1. 意义- 分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:(2)/(3)×3表示3个(2)/(3)相加的和是多少。
2. 计算法则- 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
能约分的可以先约分,再计算。
例如:(3)/(4)×2=(3×2)/(4)=(6)/(4)=(3)/(2);如果先约分,(3)/(4)×2=(3)/(2×1)×2=(3)/(2)。
1. 基础题- 计算(1)/(5)×3- 解析:根据分数乘整数的计算法则,用分子1和整数3相乘的积作分子,分母5不变,即(1×3)/(5)=(3)/(5)。
- 计算(2)/(7)×4- 解析:分子2与整数4相乘,2×4 = 8作分子,分母7不变,得到(8)/(7)。
2. 约分后计算的题- 计算(3)/(8)×4- 解析:先约分,4和8可以约分,4约成1,8约成2,然后计算(3)/(2×1)×1=(3)/(2)。
- 计算(5)/(12)×6- 解析:先对6和12进行约分,6约成1,12约成2,则(5)/(2×1)×1=(5)/(2)。
3. 整数为1的题- 计算(7)/(9)×1- 解析:任何数乘1都等于它本身,所以(7)/(9)×1=(7)/(9)。
4. 带分数乘整数的题(先把带分数化成假分数)- 计算1(1)/(3)×2- 解析:先将带分数1(1)/(3)化成假分数,1(1)/(3)=(1×3 + 1)/(3)=(4)/(3),然后计算(4)/(3)×2=(4×2)/(3)=(8)/(3)。
5. 多个分数乘整数的混合计算(按顺序计算)- 计算(1)/(2)×3×(2)/(3)- 解析:先计算(1)/(2)×3=(1×3)/(2)=(3)/(2),再计算(3)/(2)×(2)/(3),分子分母交叉约分后得到1。
分数乘整数50道计算题一、简单分数乘整数(分母较小且整数较小)1. (1)/(2)×3- 解析:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
所以(1)/(2)×3=(1×3)/(2)=(3)/(2)=1(1)/(2)。
2. (2)/(3)×2- 解析:根据分数乘整数的计算方法,(2)/(3)×2=(2×2)/(3)=(4)/(3)=1(1)/(3)。
3. (3)/(4)×3- 解析:(3)/(4)×3=(3×3)/(4)=(9)/(4)=2(1)/(4)。
4. (1)/(5)×4- 解析:(1)/(5)×4=(1×4)/(5)=(4)/(5)。
5. (3)/(5)×2- 解析:(3)/(5)×2=(3×2)/(5)=(6)/(5)=1(1)/(5)。
6. (4)/(5)×3- 解析:(4)/(5)×3=(4×3)/(5)=(12)/(5)=2(2)/(5)。
7. (1)/(6)×5- 解析:(1)/(6)×5=(1×5)/(6)=(5)/(6)。
8. (5)/(6)×2- 解析:(5)/(6)×2=(5×2)/(6)=(10)/(6)=(5)/(3)=1(2)/(3)。
9. (1)/(7)×6- 解析:(1)/(7)×6=(1×6)/(7)=(6)/(7)。
10. (2)/(7)×3- 解析:(2)/(7)×3=(2×3)/(7)=(6)/(7)。
二、稍复杂分数乘整数(分母较大或整数较大)11. (3)/(8)×5- 解析:按照计算规则,(3)/(8)×5=(3×5)/(8)=(15)/(8)=1(7)/(8)。
第一讲 分数乘法——整数与分数相乘【知识点】分数乘法(一)1、 分数乘整数的意义(1)分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和得简便运算。
(2)求一个分数的几倍是多少或求几个相同分数的和是多少,就用这个分数乘“几”。
例如:3×51=515151++=53 3×51=515151++=5111++=513⨯=53 (分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。
)2、分数乘整数的计算方法。
分母不变,分子和整数相乘的积作分子。
能约分的要约成最简分 数。
3、计算时,可以先约分在计算。
【典型例题】例 1(1)列式并说出算式中的被乘数、乘数各表示什么?5个12是多少? 9个11是多少? 8个6是多少?(2)计算:103+103+103= 38 +38 +38 +38 = 2、 分数乘整数的计算方法分数乘整数,用分数的分子和整数相乘的积做分子,分母不变。
例 2计算下列各题并说出计算方法。
101×5 85×1 73×2 拓展提高(1) 分数乘整数的计算方法对于整数乘分数同样适用。
如111011251125=⨯=⨯。
(2) 带分数乘整数的计算方法:先把带分数化成假分数,然后按照分数乘整数的方法进行计算。
如53225162513=⨯=⨯。
例39×718 = 347 ×28= ② 130×12=3、 分数乘整数的简便算法分数乘整数的简便算法就是先约分,再计算。
计算结果必须是最简分数。
例 4 六(1)班有50人,女生占全班人数的 25,女生有多少人,男生有多少人?【拓展提高】 分数乘整数的简便算法也适用于分数连乘法。
例如31097⨯⨯,计算中分数的分母9和整数3能约分,先约分在计算。
即37031073109731097=⨯=⨯⨯=⨯⨯ 【课堂练习】1、直接写得数。
13 ×0= 56 ×12= 45× 35 = 17× 916= 9×718 = 425 ×100= 18×16 = 44-72×512= 2、38 +38 +38 +38=( )×( )=( ) 3、12个 56 是( );24的 23是( )。