14.1.4单项式与多项式的乘法
- 格式:ppt
- 大小:1.45 MB
- 文档页数:17
课题:14.1.4单项式乘以多项式一、教材分析:(一)学习目标:⒈掌握单项式与多项式相乘的法则,知道单项式乘以多项式的结果仍然是多项式.⒉会进行单项式乘以多项式的计算以及含有单项式乘以多项式的混合运算.⒊通过例题教学,培养灵活运用所学知识分析问题、解决问题的能力.(二)学习重点和难点:重点:掌握单项式乘以多项式的法则难点:熟练地运用法则,准确地进行计算(三)学习方法:操作,归纳.二、问题导读单:⒈复习巩固⑴单项式与单项式相乘的法则?⑵完成下列各题。
①=-∙)4(22xy x ;②=-∙-)3()2(2xy x ;③=∙-)32()21(2ab ab ;④写出多项式122--x x 的项 ⑤=+-⨯)654332(12 = = ⒉在)654332(12+-⨯中,用什么样的方法较简单? ⒊代数式中的字母都表示数,如果把上题中的数都换成字母,如何计算)(c b a m ++.⒋你算出的结果能否用长方形的面积加以验证?⒌单项式与多项式相乘的法则:单项式乘以多项式,就是 .三、问题训练单:⒈计算⑴)13()4(2+∙-x x ⑵ab ab ab 21)232(2∙-⑶)(5)21(22222ab b a a b ab a --+- ⑷)2(6)2(23332x x x x x ++-⒉先化简再求值 ⑴21),1(3)3()3(222=----++x x x x x x x x 其中⑵已知22-=xy ,求)53(5273y y x y x xy ---的值.练习)293)(32()12(23222323b a a b a ab b a ----,其中3,31-==b a。
14.1.4 整式的乘法(第1课时)单项式与单项式、多项式相乘一、教学目标1.了解单项式与单项式相乘的方法;2.熟练掌握多项式与单项式相乘的方法;3.能够运用乘法法则解决实际问题;4.培养学生分析问题和解决问题的能力。
二、教学重点1.单项式与单项式相乘的方法;2.多项式与单项式相乘的方法。
三、教学难点学生能够熟练掌握多项式与单项式相乘的方法。
四、教学准备1.PowerPoint课件;2.教学黑板。
五、教学过程第一步:导入新课(1)教师通过引入一道简单的实际问题引起学生的兴趣,例如:现有3个盒子,每个盒子里都有4个苹果,那么一共有多少个苹果?(2)教师引导学生讨论解决此类问题的方法,发现可以通过整式的乘法进行简单的解决。
第二步:引入知识点(1)教师通过PPT展示单项式与单项式相乘的实例,引导学生发现整式相乘的特点。
(2)教师讲解单项式与单项式相乘的方法,如下所示: - 同底数幂相乘,底数相乘,指数相加; - 不同底数幂相乘,直接相乘。
第三步:练习与讲解(1)教师出示一道练习题:计算 (2a^2b^3)(3ab^2),并引导学生完成计算过程。
•步骤1:先求底数的乘积2 × 3 = 6;•步骤2:再求指数的和 2 + 1 = 3 和 3 + 2 = 5;•步骤3:将计算结果组合起来,得到 (2a^2b^3)(3ab^2) = 6a^3b^5。
(2)教师讲解多项式与单项式相乘的方法,如下所示: - 多项式与单项式相乘,将多项式的每一项与单项式相乘,然后合并同类项。
第四步:练习与讲解(1)教师出示一道练习题:计算 (4x^2 + 3xy)(2x - y),并引导学生完成计算过程。
•步骤1:将 (4x^2)(2x) 和 (4x^2)(-y) 相乘,得到 8x^3 和 -4x^2y;•步骤2:将 (3xy)(2x) 和 (3xy)(-y) 相乘,得到 6x^2y 和 -3xy^2;•步骤3:将结果合并,得到 (4x^2 + 3xy)(2x - y) = 8x^3 - 4x^2y +6x^2y - 3xy^2 = 8x^3 + 2x^2y - 3xy^2。
初中数学试卷14.1.4 单项式与多项式相乘练习一、选择题。
1、下列运算正确的是( )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--2、化简:322)3(x x -的结果是( )A .56x -B .53x -C .52xD .56x3、下列运算正确的是( )A .2a +a =3aB .2a -a =1C .2a ·a =32aD .2a ÷a =a4、已知33-=-y x ,则y x 35+-的值是( )A .0B .2C .5D .85、化简2(21)(2)x x x x ---的结果是( )A .3x x --B .3x x -C .21x --D .31x - 6.化简()()()a b c b c a c a b ---+-的结果是( )A .222ab bc ac ++B .22ab bc -C .2abD .2bc -7.下列各式中计算错误的是( ) A .3422(231)462x x x x x x -+-=+- B .232(1)b b b b b b -+=-+C .231(22)2x x x x --=-- D .342232(31)2323x x x x x x -+=-+ 8.2211(6)(6)23ab a b ab ab --⋅-的结果为( ) A .2236a b B .3222536a b a b + C .2332223236a b a b a b -++ D .232236a b a b -+二、填空题。
9、单项式和单项式相乘,把它们的 , 分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起积得一个 。
10、单项式和多项式相乘,用单项式去乘多项式的 ,再把所得的积 。
11、化简:=+-⋅)131(92y x xy 。
14.1.4 整式的乘法(1)教学目标 探索并了解单项式与单项式、单项式与多项式和多项式与多项式相乘的法则,并运用它们进行运算.让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力 教学重点 单项式与单项式、单项式与多项式和多项式与多项式相乘的法则 课时分配 3课时班 级教学过程设计意图 第一课时:(一)知识回顾:回忆幂的运算性质: a m·a n=a m+n(a m )n=a mn(ab )n=anb n(m,n 都是正整数)(二)创设情境,引入新课1.问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?【1】2.学生分析解决:(3×105)×(5×102)=(3×5)×(105×102)=15×107【2】 3.问题的推广:如果将上式中的数字改为字母,即ac 5·bc 2,如何计算?【3】ac 5·bc 2=(a·c5)·(b ·c2) =(a·b)·(c 5·c2) =abc5+2=ab c7.(三)自己动手,得到新知1.类似地,请你试着计算:(1)2c 5·5c 2;(2)(-5a 2b3)·(-4b 2c)【4】2.得出结论:单项式与单项式相乘:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. (四)巩固结论,加强练习例:计算: (-5a 2b )·(-3a) (2x )3·(-5xy 2)练习:课本练习1,2【1】让学生自己动手试一试,在自己的实践中获得知识,从而构建新的知识体系. 【2】提问学生原因 【3】从特殊到一般,从具体到抽象,让学生在自己的实践中获得单项式与单项式相乘的运算法则. 【4】先不给出单项式与单项式相乘的运算法则,而是让学生类比.单项式乘以单项式的运算法则 (二) 创设情境,提出问题1.问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶),分别是a,b ,c.你能用不同方法计算它们在这个月内销售这种商品的总收入吗? 2.学生分析:【1】 3. 得到结果:一种方法是先求三家连锁店的总销售量,再求总收入, 即总收入为:________________ 另一种方法是先分别求三家连锁店的收入,再求它们的和 即总收入为:________________ 所以:m (a+b+c)= m a+mb+mc 4.提出问题:根据上式总结出单项式与多项式相乘的方法吗?(三) 总结结论【2】单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加.即:m(a+b +c)= ma+mb+mc (四) 巩固练习 例: 2a 2·(3a 2-5b) ab ab ab 21)232(2•- (-4x 2) ·(3x+1);练习:课本练习1,2 (五)附加练习1.若(-5a m+1b 2n-1)(2a n b m )=-10a 4b4,则m-n的值为______ 2.计算:(a 3b )2(a 2b)3 3. 计算:(3a 2b)2+(-2a b)(-4a 3b)4. 计算:)34232()25-(2y xy xy xy +-• 5.计算:)227(6)5)(3-(2222y xy x y x xy -+6.已知,3,2==b a 求)232()(32222a ab a ab ab ab b a ab -+--+的值 7.解不等式:12)23()1(222-〉+--+x x x x x x8.若m x x +-322与22-+mx x 的和中不含x 项,求m 的值,并说明不论x 取何值,它的值总是正数 (五)小结 【1】这个实际问题来源于学生的生活实际,所以在教学中通过师生共同探讨,再结合分配律学生不难得到结论.【2】这个问题让学生回答,参照乘法分配率作业板书设计教学反思预习要点单项式乘以单项式和单项式乘以多项式的运算法则 (二) 创设情境,感知新知1.问题:为了扩大绿地面积,要把街心花园的一块长a米,宽m 米的长方形绿地增长b 米,加宽n 米,求扩地以后的面积是多少?2. 提问:用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系?【1】 3.学生分析4.得出结果:方法一:这块花园现在长(a+b)米,宽(m+n )米,因而面积为(a +b)(m+n )米2.方法二:这块花园现在是由四小块组成,它们的面积分别为:am 米2、an 米2、bm 米2、bn 米2,故这块绿地的面积为(am +an+bm+b n)米2.(a+b )(m+n)和(am+a n+bm+bn)表示同一块绿地的面积, 所以有(a +b)(m+n)=a m+an+bm+bn 【2】(三) 学生动手,推导结论 1. 引导观察:等式的左边(a+b )(m+n)是两个多项式(a+b )与(m +n)相乘 ,把(m+n)看成一个整体,那么两个多项式(a+b)与(m+n)相乘的问题就转化为单项式与多项式相乘,这是一个我们已经解决的问题,请同学们试着做一做.2.学生动手:3. 过程分析:(a+b)(m +n)=a(m+n)+b(m+n) ----单×多 =am+an +bm+bn ----单×多4.得到结论:【3】多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(四) 巩固练习例:)32)(2(22y xy x y x -+- )65)(52(2+-+x x x 【4】练习: )y x y -y)(x (x y)-8y)(x -(x 2)1)(x (3x 22++++ 课本练习1 例:先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6练习:化简求值:)32)(12()1)(1(3)3)(2(-+--+++-x x x x x x ,其中x=54一块长m 米,宽n 米的玻璃,长宽各裁掉a 米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?(五) 深入研究1.计算:①(x+2)(x+3);②(x -1)(x+2);③(x+2)(x -2);④(x-5)(x-6);⑤(x+5)(x +5);⑥(x-5)(x-5);并观察结果和原式的关系【1】这个问题激起学生的求知欲望,引起学生对多项式乘法学习的兴趣. 【2】借助几何图形的直观,使学生从图形中可以看到.让学生对这个结论有直观感受. 【3】让学生试着总结多项式与多项式相乘的法则. 【4】强调多项式与多项式相乘的基本法则,提醒注意多项式的每一项都应该带上他前面的正负号.在计算时一定要注意确定积中各项的符号.3. 结合课本练习第2题图,直观认识规律,并完成此题. 附加题:1.⎩⎨⎧++〉+-〈+-++)2)(5()6)(1(22)1()3)(2(x x x x x x x x2. 求证:对于任意自然数n ,)2)(3()5(+--+n n n n 的值都能被6整除3. 计算:(x +2y-1)24. 已知x2-2x =2,将下式化简,再求值. (x-1)2+(x+3)(x-3)+(x-3)(x-1)5. 小明找来一张挂历画包数学课本.已知课本长a 厘米,宽b厘米,厚c 厘米,小明想将课本封面与封底的每一边都包进去m厘米.问小明应该在挂历画上裁下多大面积的长方形?(六)小结 作业板书设计教学反思预习要点分式的乘除分式的乘除(一) 教学目标ﻩ理解分式乘除法的法则,会进行分式乘除运算 重点、难点ﻩ重点是掌握分式的乘除运算难点分子、分母为多项式的分式乘除法运算情感态度与价值观 通过教学使学生掌握类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识第一步:创景引入问题1 一个长方体容器的容积为V,底面的长为a 宽为b,当容器内的水占容积的 时,水高多少?长方体容器的高为 ,水高为.问题2 大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地 b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?大拖拉机的工作效率是 公顷/天,小拖拉机的工作效率是 公顷/天,大拖拉机的工作效率是小拖拉机的工作效率的( )倍.观察下列运算:,43524532543297259275,53425432⨯⨯=⨯=÷⨯⨯=⨯⨯⨯=⨯, .279529759275⨯⨯=⨯=÷ 猜一猜??=÷=⨯cda b c d b a 与同伴交流。