作业57【2021衡水中学高考一轮总复习 理科数学(新课标版)】
- 格式:doc
- 大小:238.00 KB
- 文档页数:11
题组层级快练(五十三)1.(2020·湖北襄阳模拟)设直线m与平面α相交但不垂直,则下列说法中正确的是() A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直答案 B解析对于A,在平面α内可能有无数条直线与直线m垂直,这些直线是互相平行的,A 错误;对于B,只要m⊄α且与α不垂直,过直线m必有并且也只有一个平面与平面α垂直,B正确;对于C,类似于A,在平面α外可能有无数条直线垂直于直线m并且平行于平面α,C错误;对于D,与直线m平行且与平面α垂直的平面有无数个,D错误.故选B. 2.(2020·江西南昌模拟)如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部答案 A解析由AB⊥AC,BD⊥AC,又AB∩BD=B,则AC⊥平面ABD,而AC⊂平面ABC,则平面ABC⊥平面ABD,因此D在平面ABC内的射影H必在平面ABC与平面ABD的交线AB上.故选A.3.(2020·江西临安一中期末)三棱柱ABC-A1B1C1中,侧棱AA1垂直于底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()①CC1与B1E是异面直线;②AE与B1C1是异面直线,且AE⊥B1C1;③AC⊥平面ABB1A1;④A1C1∥平面AB1E.A.②B.①③C.①④D.②④答案 A解析对于①,CC1,B1E都在平面BB1C1C内,故错误;对于②,AE,B1C1为在两个平行平面中且不平行的两条直线,底面三角形ABC是正三角形,E是BC中点,所以AE与B1C1是异面直线,且AE⊥BC,又B1C1∥BC,故AE⊥B1C1,故正确;对于③,上底面ABC是一个正三角形,不可能存在AC⊥平面ABB1A1,故错误;对于④,A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故错误.故选A.4.如图所示,在正方形ABCD中,E,F分别是BC和CD的中点,G是EF的中点,现在沿着AE和AF及EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为H,那么,在四面体A-EFH中必有()A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面答案 A解析∵AD⊥DF,AB⊥BE,又∵B,C,D重合记为H,∴AH⊥HF,AH⊥HE.∴AH⊥面EFH.5.(2020·保定模拟)如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC答案 D解析因BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,A成立;易证BC⊥平面PAE,BC∥DF,所以B、C均成立;点P在底面ABC内的射影为△ABC的中心,不在中位线DE上,故D不成立.6.(2020·沧州七校联考)如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论不正确的是()A.CD∥平面PAF B.DF⊥平面PAFC.CF∥平面PAB D.CF⊥平面PAD答案 D解析A中,∵CD∥AF,AF⊂面PAF,CD⊄面PAF,∴CD∥平面PAF成立;B中,∵六边形ABCDEF为正六边形,∴DF⊥AF.又∵PA⊥面ABCDEF,∴DF⊥平面PAF成立;C中,CF∥AB,AB⊂平面PAB,CF⊄平面PAB,∴CF∥平面PAB;而D中CF与AD不垂直.故选D.7.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE答案 C解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE =E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.8.(2020·福建泉州质检)如图,在下列四个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是()答案 D解析如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,且六点共面,直线BD1与平面EFMNQG垂直,并且A项,B项,C项中的平面与这个平面重合.对于D项中图形,由于E,F为AB,A1B1的中点,所以EF∥BB1,故∠B1BD1为异面直线EF与BD1所成的角,且tan∠B1BD1=2,即∠B1BD1不为直角,故BD1与平面EFG不垂直.故选D. 9.(2020·重庆秀山高级中学期中)如图,点E为矩形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有() ①存在点E使得直线SA⊥平面SBC;②平面SBC内存在直线与SA平行;③平面ABCE 内存在直线与平面SAE平行;④存在点E使得SE⊥BA.A.1个B.2个C.3个D.4个答案 A解析①若直线SA⊥平面SBC,则SA⊥SC,又SA⊥SE,SE∩SC=S,∴SA⊥平面SEC,又平面SEC∩平面SBC=SC,∴点S,E,B,C共面,与已知矛盾,故①错误;②∵平面SBC∩直线SA=S,故平面SBC内的直线与SA相交或异面,故②错误;③在平面ABCD 内作CF∥AE,交AB于点F,由线面平行的判定定理,可得CF∥平面SAE,故③正确;④若SE⊥BA,过点S作SF⊥AE于点F,∵平面SAE⊥平面ABCE,平面SAE∩平面ABCE =AE,∴SF⊥平面ABCE,∴SF⊥AB,又SF∩SE=S,∴AB⊥平面SEC,∴AB⊥AE,与∠BAE 是锐角矛盾,故④错误.10.(2016·课标全国Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β;②如果m⊥α,n∥α,那么m⊥n;③如果α∥β,m⊂α,那么m∥β;④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________(填写所有正确命题的编号).答案②③④解析对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA′为直线m,CD为直线n,ABCD所在的平面为α,ABC′D′所在的平面为β,显然这些直线和平面满足题目条件,但α⊥β不成立.命题②正确,证明如下:设过直线n的某平面与平面α相交于直线l,则l∥n,由m⊥α知m⊥l,从而m⊥n,结论正确.由平面与平面平行的定义知命题③正确.由平行的传递性及线面角的定义知命题④正确.11.(2020·黄冈质检)如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案①②③解析①由于PA⊥平面ABC,因此PA⊥BC,又AC⊥BC,因此BC⊥平面PAC,所以BC⊥AF,由于PC⊥AF,因此AF⊥平面PBC,所以AF⊥PB;②因为AE⊥PB,AF⊥PB,所以PB⊥平面AEF,因此EF⊥PB;③在①中已证明AF⊥平面PBC,所以AF⊥BC;④若AE⊥平面PBC,由①知AF⊥平面PBC,由此可得出AF∥AE,这与AF,AE有公共点A 矛盾,故AE⊥平面PBC不成立.故正确的结论为①②③.12.(2020·山西太原一模)已知在直角梯形ABCD中,AB⊥AD,CD⊥AD,AB=2AD=2CD =2,将直角梯形ABCD沿AC折叠成三棱锥D-ABC,当三棱锥D-ABC的体积取最大值时,其外接球的体积为________.答案4π3解析当平面DAC⊥平面ABC时,三棱锥D-ABC的体积取最大值.此时易知BC⊥平面DAC,∴BC⊥AD,又AD⊥DC,∴AD⊥平面BCD,∴AD⊥BD,取AB的中点O,易得OA=OB=OC=OD=1,故O为所求外接球的球心,故半径r=1,体积V=43πr3=4π3.13.(2020·辽宁大连双基测试)如图所示,∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥D -AEF体积的最大值为________.答案2 6解析因为DA⊥平面ABC,所以DA⊥BC,又BC⊥AC,DA∩AC=A,所以BC⊥平面ADC ,所以BC ⊥AF ,又AF ⊥CD ,BC ∩CD =C ,所以AF ⊥平面DCB ,所以AF ⊥EF ,AF ⊥DB ,又DB ⊥AE ,AE ∩AF =A ,所以DB ⊥平面AEF ,所以DE 为三棱锥D -AEF 的高.因为AE 为等腰直角三角形ABD 斜边上的高,所以AE =2,设AF =a ,FE =b ,则△AEF的面积S =12ab ≤12·a 2+b 22=12×22=12,所以三棱锥D -AEF 的体积V ≤13×12×2=26(当且仅当a =b =1时等号成立).14.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点,求证:(1)CD ⊥AE ; (2)PD ⊥平面ABE. 答案 (1)略 (2)略证明 (1)∵PA ⊥底面ABCD , ∴CD ⊥PA.又CD ⊥AC ,PA ∩AC =A , 故CD ⊥平面PAC ,AE ⊂平面PAC. 故CD ⊥AE.(2)∵PA =AB =BC ,∠ABC =60°,故PA =AC. ∵E 是PC 的中点,故AE ⊥PC. 由(1)知CD ⊥AE ,由于PC ∩CD =C , 从而AE ⊥平面PCD ,故AE ⊥PD. 易知BA ⊥PD ,故PD ⊥平面ABE.15.(2018·课标全国Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.答案 (1)略 (2)1解析 (1)证明:由已知可得,∠BAC =90°,BA ⊥AC. 又BA ⊥AD ,所以AB ⊥平面ACD. 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC.(2)由已知可得,DC =CM =AB =3,DA =3 2.又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE 綊13DC.由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin 45°=1.16.如图,三棱柱ABC -A 1B 1C 1的侧面AA 1C 1C 是矩形,侧面AA 1C 1C ⊥侧面AA 1B 1B ,且AB =4AA 1=4,∠BAA 1=60°,D 是AB 的中点.(1)求证:AC1∥平面CDB1;(2)求证:DA1⊥平面AA1C1C.答案略证明(1)连接A1C交AC1于F,取B1C的中点E,连接DE,EF.∵四边形AA1C1C是矩形,∴F是A1C的中点,∴EF∥A1B1,EF=12A1B1.∵四边形ABB1A1是平行四边形,D是AB的中点,∴AD∥A1B1,AD=12A1B1,∴AD∥EF,AD=EF,∴四边形ADEF是平行四边形,∴AF∥DE,即AC1∥DE.又∵DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1.(2)∵AB=4AA1=4,D是AB中点,∴AA1=1,AD=2.∵∠BAA1=60°,∴A1D=AD2+AA12-2AD·AA1cos60°= 3.∴AA12+A1D2=AD2,∴A1D⊥AA1.∵侧面AA1C1C⊥侧面AA1B1B,侧面AA1C1C∩侧面AA1B1B=AA1,AC⊥AA1,AC⊂平面AA1C1C,∴AC⊥平面AA1B1B.又∵A1D⊂平面AA1B1B,∴AC⊥A1D.又∵AC∩AA1=A,∴DA1⊥平面AA1C1C.17.(2016·北京)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.答案(1)略(2)略(3)PB中点即为点F解析(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面PAC.又AB⊂平面PAB,所以平面PAB⊥平面PAC.(3)棱PB上存在点F,使得PA∥平面CEF.理由如下:取PB的中点F,连接EF,CE,CF.因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,且EF⊂平面CEF,所以PA∥平面CEF.。
河北省衡水中学2021-2021学年度高三一轮复习周测卷〔一〕理数一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 以下说法正确的选项是〔〕A. 0与的意义一样B. 高一〔1〕班个子比拟高的同学可以形成一个集合C. 集合是有限集D. 方程的解集只有一个元素【答案】D【解析】因为0是元素,是含0的集合,所以其意义不一样;因为“比拟高〞是一个不确定的概念,所以不能构成集合;当时,,故集合是无限集;由于方程可化为方程,所以〔只有一个实数根〕,即方程的解集只有一个元素,应选答案D。
2. 集合,那么〔〕A. B. C. D.【答案】D【解析】试题分析:,,所以.考点:集合交集,一元二次不等式.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系.在求交集时注意区间端点的取舍.纯熟画数轴来解交集、并集和补集的题目.3. 设命题“〞,那么为〔〕A. B. C. D.【答案】B【解析】因为全称命题的否认是存在性命题,所以为,应选答案B。
4. 集合,那么集合〔〕A. B. C. D.【答案】C【解析】因为,所以,应选答案C。
5. 设,那么“〞是“〞的〔〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】当时,,所以,,但时,即,不能保证为正数,所以“〞是“〞的充分不必要条件,应选A.6. 设,假设是的充分不必要条件,那么实数的取值范围是〔〕A. B. C. D.【答案】B【解析】因为,所以由题意可得:,应选答案B。
7. 命题有解,命题,那么以下选项中是假命题的为〔〕A. B. C. D.【答案】B【解析】试题分析:对于m命题p:方程x2-mx-1=0,那么△=m2+4>0,因此:∀m∈R,x2-mx-1=0有解,可得:命题p是真命题.对于命题q:由x2-x-1≤0,解得,,因此存在x=0,1∈N,使得x2-x-1≤0成立,因此是真命题.∴以下选项中是假命题的为,应选:B.考点:复合命题的真假8. 集合,那么集合不可能是〔〕A. B. C. D.【答案】D【解析】因为,所以当时,那么;由于是点集,所以;当时,那么;由于所以,应选答案D。
2021 2021学年河北省衡水中学高三(上)一调数学试卷(理科)(解析版2021-2021学年河北省衡水中学高三(上)一调数学试卷(理科)(解析版2021-2021学年河北省衡水中学高三(上)一调数学试卷(理科)一、选择题:本大题共12个小题,每小题5分后,共60分后.在每小题得出的四个选项中,只有一项就是合乎题目建议的.21.(5分后)子集a={x|lnx≥0},b={x|x<16},则a∩b=()a.(1,4)b.[1,4)c.[1,+∞)d.[e,4)0.92.(5分后)设a=log0.80.9,b=log1.10.9,c=1.1,则a,b,c的大小关系就是c ()a.a<b<cb.a<c<bc.b<a<cd.c<a<b3.(5分后)未知a>1,a.0<x<1b.1<x<0,则f(x)<1成立的一个充分不必要条件是()c.2<x<0d.2<x<14.(5分)已知函数22,则f(f(f(1)))的值等同于()a.π1b.π+1c.πd.0与x轴所围站图形的面积为()5.(5分)曲线a.4b.2c.1d.36.(5分)函数y=sin(2x)的图象与函数y=cos(x)的图象()a.存有相同的对称轴但并无相同的对称中心b.存有相同的对称中心但并无相同的对称轴c.既有相同的对称轴也存有相同的对称中心d.既并无相同的对称中心也并无相同的对称轴7.(5分后)未知函数f(x)的图象如图所示,则f(x)的解析式可能将就是()a.f(x)=x3b.f(x)=+xc.f(x)=3xd.f(x)=3+x38.(5分后)设f(x)就是奇函数,对任一的实数x、y,存有f(x+y)=f(x)+f (y),当x>0时,f(x)<0,则f(x)在区间[a,b]上()a.有最大值f(a)b.有最小值f(a)c.有最大值d.存有最小值9.(5分)已知函教f(x)=asin(ωx+φ)(a>0,ω>0)的图象与直线y=b(0<b<a)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递增区间是()a.[6kπ,6kπ+3],k∈zb.[6k3,6k],k∈zc.[6k,6k+3],k∈zd.[6kπ3,6kπ],k∈z1页10.(5分)若不等式lg≥(x1)lg3对任意x∈(∞,1)恒成立,则a的取值范围就是()a.(∞,0]b.[1,+∞)c.[0,+∞)d.(∞,1]11.(5分后)设f(x)就是定义在r上的函数,其Auron函数为f′(x),若f(x)+f′(x)>1,f(0)=2021,则xx不等式ef(x)>e+2021(其中e为自然对数的底数)的边值问题为()a.(2021,+∞)b.(∞,0)∪(2021,+∞)c.(∞,0)∪(0,+∞)d.(0,+∞)12.(5分后)设立函数f(x)=sin,若存有f(x)的极值点x0满足用户x0+[f(x0)]<m,则m的值域222范围就是()a.(∞,6)∪(6,+∞)b.(∞,4)∪(4,+∞)c.(∞,2)∪(2,+∞)d.(∞,1)∪(1,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分后)若非零向量,满足用户|+|=||=2||,则向量与+的夹角为.14.(5分后)设立函数y=f(x)在r上加定义,对于任一取值的正数p,定义函数2,则称函数fp(x)为f(x)的“p界函数”,若给定函数f(x)=x2x1,p=2,则下列结论不成立的是:.①fp[f(0)]=f[fp(0)];②fp[f(1)]=f[fp(1)];③fp[fp (2)]=f[f(2)];④fp[fp(3)]=f[f(3)].15.(5分后)未知f(x)就是定义在r上且周期为3的函数,当x∈[0,3)时,f (x)=|x2x+|,若函数y=f(x)a在区间[3,4]上加10个零点(互不相同),则实数a的值域范围就是.16.(5分后)未知a,b,c分别为△abc的三个内角a,b,c的对边,a=2且(2+b)(sinasinb)=(cb)sinc,则△abc面积的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)2217.(10分)已知a∈r,命题p:“?x∈[1,2],xa≥0”,命题q:“?x∈r,x+2ax+2a=0”.(1)若命题p为真命题,求实数a的取值范围;(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,谋实数a的值域范围.18.(12分后)在△abc中,内角a,b,c面元的边分别为a,b,c,未知sinc+sin (ba)=sin2a,a≠.2(ⅰ)求角a的取值范围;(ⅱ)若a=1,△abc的面积s=x,c为钝角,求角a的大小.19.(12分后)未知函数f(x)=e+ax1(e为自然对数的底数).(ⅰ)当a=1时,谋过点(1,f(1))处的切线与坐标轴围起的三角形的面积;2(ⅱ)若f(x)≥x在(0,1)上恒设立,谋实数a的值域范围.20.(12分)已知函数f(x)满足2f(x+2)f(x)=0,当x∈(0,2)时,f(x)=lnx+ax当x∈(4,2)时,f(x)的最大值为4.(ⅰ)求实数a的值;2页,(ⅱ)设b≠0,函数,x∈(1,2).若对任意的x1∈(1,2),总存在x2∈(1,2),并使f(x1)g(x2)=0,谋实数b的值域范围.21.(12分后)未知函数f(x)=x+3+ax+b,g(x)=x+3+lnx+b,(a,b为常数).(ⅰ)若g(x)在x=1处的切线过点(0,5),求b的值;(ⅱ)设立函数f(x)的导函数为f′(x),若关于x的方程f(x)x=xf′(x)存有唯一求解,谋实数b的值域范围;(ⅲ)令f(x)=f(x)g(x),若函数f(x)存在极值,且所有极值之和大于5+ln2,求实数a的取值范围.22.(12分后)未知函数,(ⅰ)求函数f(x)的单调区间,并推论与否存有极值;(ⅱ)若对任意的x>1,恒有ln(x1)+k+1≤kx成立,求k的取值范围;(ⅲ)证明:(n∈n+,n≥2).3页2021-2021学年河北省衡水中学高三(上)一调数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分后,共60分后.在每小题得出的四个选项中,只有一项就是合乎题目建议的.21.(5分后)(2021?重庆三模)子集a={x|lnx≥0},b={x|x<16},则a∩b=()a.(1,4)b.[1,4)c.[1,+∞)d.[e,4)【分析】求出a与b中不等式的解集确定出a与b,找出两集合的交集即可.【解答】解:由a中lnx≥0=ln1,得到x≥1,即a=[1,+∞);由b中的不等式解得:4<x<4,即b=(4,4),则a∩b=[1,4).故选:b.【评测】此题考查了关连及其运算,熟练掌握关连的定义就是求解本题的关键.2.(5分)(2021?东城区二模)设a=log0.80.9,b=log1.10.9,c=1.1,则a,b,c 的大小关系是c()a.a<b<cb.a<c<bc.b<a<cd.c<a<b【分析】利用指数与对数函数的单调性即可得出.0.9【解答】解:∵0<a=log0.80.9<1,b=log1.10.9<0,c=1.1>1,∴b<a<c.故选:c.【评测】本题考查了指数与对数函数的单调性,属基础题.3.(5分)(2021?南昌校级二模)已知a>1,,则f(x)<1设立的一个充份不必要条件就是0.9()a.0<x<1b.1<x<0c.2<x<0d.2<x<1【分析】谋出来不等式的边值问题即为不等式设立的充要条件;据当子集a?子集b且b?a时,a就是b的充份不必要条件.【解答】解:f(x)<1成立的充要条件是∵a>12∴x+2x<0∴2<x<0∴f(x)<1成立的一个充分不必要条件是1<x<0故选项为b【评测】本题考查不等式的边值问题就是不等式的充要条件;据子集之间的关系推论条件关系.4.(5分)(2021春?玉溪校级期末)已知函数22,则f(f(f(1)))的值等同于()a.π1b.π+1c.πd.0【分析】根据分段函数的定义域,算出f(1)的值,再根据分段函数的定义域展开代入解;4页【答疑】求解:函数2,f(1)=π+1>0,∴f(f(1))=0,可得f(0)=π,∴f(f(f(1)))=π,故选c;【评测】此题主要考查函数值的解,就是一道基础题;5.(5分)(2021春?进贤县校级月考)曲线a.4b.2c.1d.3上的积分可求出答案.上的积分,与x轴所围站图形的面积为()【分析】根据面积等于cosx的绝对值在0≤x≤【解答】解:面积等于cosx的绝对值在0≤x≤即s==3=3=3,故选:d.【评测】本题主要考查余弦函数的图象和用定分数谋面积的问题.属于基础题6.(5分)(2021?开封模拟)函数y=sin(2x)的图象与函数y=cos(x)的图象()a.存有相同的对称轴但并无相同的对称中心b.存有相同的对称中心但并无相同的对称轴c.既有相同的对称轴也存有相同的对称中心d.既并无相同的对称中心也并无相同的对称轴【分析】分别求出2函数的对称轴和对称中心即可得解.【解答】解:由2xz.由x=kπ,k∈z,解得函数y=cos(x)的对称轴为:x=kπ,k∈z.=k,k∈z,解得函数y=sin(2x)的对称轴为:x=+,k∈k=0时,二者存有相同的对称轴.由2x由x=kπ,k∈z,可解得函数y=sin(2x=k)的对称中心为:()的对称中心为:(kπ+,0),k∈z.,0),k∈z.,k∈z,可解得函数y=cos(x故2函数没相同的对称中心.故选:a.【评测】本题主要考查了三角函数的图象和性质,属基本知识的考查.7.(5分后)(2021?厦门演示)未知函数f(x)的图象如图所示,则f(x)的解析式可能将就是()5页。
题组层级快练(五十八)1.直线x -3y +a =0(a 为常数)的倾斜角为( ) A.π6 B.π3 C.23π D.56π 答案 A2.(2020·东安模拟)设点P 是曲线y =x 3-3x +35上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( ) A.⎣⎡⎦⎤0,2π3B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,πC.⎝⎛⎦⎤π2,2π3D.⎣⎡⎦⎤π3,2π3答案 B 解析y ′=3x 2-3≥-3,即tan α≥-3,又0≤α<π,∴0≤α<π2或2π3≤α<π,选B.3.直线l 过点M(-2,5),且斜率为直线y =-3x +2的斜率的14,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0答案 A解析 因为直线l 的斜率为直线y =-3x +2的斜率的14,则直线l 的斜率为k =-34,故y -5=-34(x +2),得3x +4y -14=0,故选A.4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 答案 D解析 因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为y -3=-3(x -1).5.(2020·北京东城期末)已知直线l 的倾斜角为α,斜率为k ,那么“α>π3”是“k>3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 当π2<α<π时,k<0;当k>3时,π3<α<π2.所以“α>π3”是“k>3”的必要不充分条件,故选B.6.过点(5,2)且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( ) A .2x +y -12=0 B .2x +y -12=0或2x -5y =0 C .x -2y -1=0 D .x -2y -1=0或2x -5y =0答案 B解析 设所求直线在x 轴上的截距为a ,则在y 轴上的截距为2a.①当a =0时,所求直线经过点(5,2)和(0,0),所以直线方程为y =25x ,即2x -5y =0;②当a ≠0时,设所求直线方程为x a +y 2a =1,又直线过点(5,2),所以5a +22a =1,解得a =6,所以所求直线方程为x 6+y 12=1,即2x +y -12=0.综上,所求直线方程为2x -5y =0或2x +y -12=0.故选B. 7.两直线x m -y n =1与x n -ym=1的图象可能是图中的哪一个( )答案 B8.(2020·福州模拟)若直线ax +by =ab(a>0,b>0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( ) A .1 B .2 C .4 D .8答案 C解析 ∵直线ax +by =ab(a>0,b>0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b)⎝⎛⎭⎫1a +1b =2+b a +ab≥2+2b a ·ab=4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.9.(2020·衡水中学调研)我国魏晋时期的数学家刘徽创立了割圆术,也就是圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A .x +(2-1)y -2=0 B .(1-2)x -y +2=0 C .x -(2+1)y +2=0 D .(2-1)x -y +2=0答案 C解析 如图,化A 中的直线方程为截距式x 2+y2+2=1,化B 中的直线方程为截距式x 2+2+y 2=1,化C 中的直线方程为截距式x -2+y2-2=1,化D 中的直线方程为截距式x -2-2+y2=1.由图可知,直线在坐标轴上的截距的绝对值的最小值为 2.所以C 不是该正八边形的一条边所在直线.故选C.10.(2020·沧州七校联考)曲线y =alnx -2(a>0)在x =1处的切线与两坐标轴围成的三角形的面积为4,则实数a 的值为( ) A. 2 B .2 C .4 D .8答案 B解析 由y =f(x)=alnx -2,得f ′(x)=ax ,∴f ′(1)=a.又f(1)=-2,∴曲线y =alnx -2(a>0)在x=1处的切线方程为y +2=a(x -1).令x =0,得y =-a -2.令y =0,得x =2a +1.∴切线与两坐标轴围成的三角形的面积S =12|(-a -2)⎝⎛⎭⎫2a +1|=12(a +2)⎝⎛⎭⎫2a +1=4,解得a =2.故选B. 11.若斜率为2的直线经过(3,5),(a ,7),(-1,b)三点,则a =________,b =________. 答案 4 -312.已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,则直线l 的方程为________.答案 x -6y +6=0或x -6y -6=0 解析 设所求直线l 的方程为x a +yb =1.∵k =16,即b a =-16,∴a =-6b.又三角形面积S =3=12|a|·|b|,∴|ab|=6.则当b =1时,a =-6;当b =-1时,a =6. ∴所求直线方程为x -6+y 1=1或x 6+y-1=1.即x -6y +6=0或x -6y -6=0.13.已知P(-3,2),Q(3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________. 答案 ⎝⎛⎭⎫-73,-13 解析 直线l :ax +y +3=0是过点A(0,-3)的直线系,斜率为-a ,易知PQ ,QA ,l 的斜率分别为:k PQ =13,k AQ =73,k l =-a.若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a<-13.14.(2020·湛江质检)若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________. 答案 {k|k =0或k ≥1}解析 由题意,知|x -1|=kx ,有且只有一个正实根,即y =kx 和y =|x -1|的图象在y 轴右侧有唯一交点.结合图形,可得k =0或k ≥1.15.(2020·湖北黄冈调研)过点A(1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为________.答案 2x -y =0或x -y +1=0解析 当直线过原点时,可得斜率为2-01-0=2,故直线方程为y =2x ,即2x -y =0;当直线不过原点时,设直线方程为x a +y -a =1,代入点(1,2),可得1a -2a =1,解得a =-1,直线方程为x -y +1=0,故所求直线方程为2x -y =0或x -y +1=0.16.在△ABC 中,已知A(1,1),AC 边上的高线所在的直线方程为x -2y =0,AB 边上的高线所在的直线方程为3x +2y -3=0.求BC 边所在直线方程.答案 2x +5y +9=0 解析 k AC =-2,k AB =23.∴l AC :y -1=-2(x -1),即2x +y -3=0, l AB :y -1=23(x -1),即2x -3y +1=0.由⎩⎪⎨⎪⎧2x +y -3=0,3x +2y -3=0,得C(3,-3). 由⎩⎪⎨⎪⎧2x -3y +1=0,x -2y =0,得B(-2,-1).∴l BC :2x +5y +9=0.17.已知直线l :kx -y +1+2k =0(k ∈R ), (1)求证:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程. 答案 (1)定点(-2,1) (2)[0,+∞) (3)S 最小值为4,x -2y +4=0解析 (1)证明:设直线过定点(x 0,y 0), 则kx 0-y 0+1+2k =0对任意k ∈R 恒成立, 即(x 0+2)k -y 0+1=0恒成立. 所以x 0+2=0,-y 0+1=0.解得x 0=-2,y 0=1,故直线l 过定点(-2,1). (2)直线l 的方程为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1, 要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是k ≥0. (3)依题意,直线l 在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,则A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B(0,1+2k).又-1+2kk <0,且1+2k>0,∴k>0.故S =12|OA||OB|=12×1+2k k ×(1+2k) =12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,等号成立.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.。
题组层级快练(五十五)1.在正方体ABCD -A 1B 1C 1D 1中,M 是AB 的中点,则sin 〈DB 1→,CM →〉的值等于( ) A.12 B.21015 C.23D.1115答案 B解析 分别以DA ,DC ,DD 1为x ,y ,z 轴建系, 令AD =1,∴DB 1→=(1,1,1),CM →=⎝⎛⎭⎫1,-12,0. ∴cos 〈DB 1→,CM →〉=1-123·52=1515.∴sin 〈DB 1→,CM →〉=21015. 2.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010B.15C.31010D.35答案 C解析 如图,以D 为坐标原点建立如图所示空间直角坐标系.设AA 1=2AB =2,则B(1,1,0),E(1,0,1),C(0,1,0),D 1(0,0,2). ∴BE →=(0,-1,1),CD 1→=(0,-1,2). ∴cos 〈BE →,CD 1→〉=1+22·5=31010.3.(2020·湖南、江西十四校联考)如图,已知棱长为2的正方体ABCD -A 1B 1C 1D 1,点E 为线段CD 1的中点,则直线AE 与平面A 1BCD 1所成角的正切值为( ) A.22B.12C.32D. 2答案 A解析 连接AB 1与A 1B 交于点F ,由于AF ⊥A 1B ,AF ⊥BC ,则AF ⊥平面A 1BCD 1.连接EF ,则∠AEF 是直线AE 与平面A 1BCD 1所成角,tan ∠AEF =AF EF =22.故选A. 4.如图,在正方体ABCD -A 1B 1C 1D 1中,若M 是线段A 1C 1上的动点,则下列结论不正确的是( )A .三棱锥M -ABD 的正视图面积不变B .三棱锥M -ABD 的侧视图面积不变C .异面直线CM ,BD 所成的角恒为π2D .异面直线CM ,AB 所成的角可为π4答案 D解析 对于选项A ,三棱锥M -ABD 的正视图为三角形,底边为AB 的长,高为正方体的高,故三棱锥M -ABD 的正视图面积不变,故A 正确.对于选项B ,三棱锥M -ABD 的侧视图为三角形,底边为AD 的长,高为正方体的高,故三棱锥M -ABD 的侧视图面积不变,故B 正确.对于选项C ,连接AC ,BD ,A 1C ,则BD ⊥AC ,∵AC ∥A 1C 1,∴BD ⊥A 1C 1.又∵BD ⊥CC 1,∴BD ⊥平面A 1C 1C.∵CM ⊂平面A 1C 1C ,∴BD ⊥CM ,故C 正确.对于选项D ,以A 为原点,分别以AB ,AD ,AA 1所在直线为坐标轴建立空间直角坐标系,设正方体的棱长为1,则M(a ,a ,1),B(1,0,0),A(0,0,0),C(1,1,0).∴CM →=(a -1,a -1,1),AB →=(1,0,0),∴cos 〈CM →,AB →〉=a -12(a -1)2+1≠±22,∴异面直线CM ,AB 所成的角不可能是π4,故D 错误.故选D.5.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A .120° B .60° C .30° D .150°答案 C解析 设直线l 与平面α所成的角为θ,则sin θ=|cos120°|=12,又0°≤θ≤90°.∴θ=30°.6.(2020·昆明市高三调研)在长方体ABCD -A 1B 1C 1D 1中,AB =AD =4,AA 1=2.过点A 1作平面α与AB ,AD 分别交于M ,N 两点,若AA 1与平面α所成的角为45°,则截面A 1MN 面积的最小值是( ) A .2 3 B .4 2 C .4 6 D .8 2答案 B解析 如图,过点A 作AE ⊥MN ,连接A 1E ,∵A 1A ⊥平面ABCD ,∴A 1A ⊥MN ,∴MN ⊥平面A 1AE ,∴A 1E ⊥MN ,平面A 1AE ⊥平面A 1MN ,∴∠AA 1E 为AA 1与平面A 1MN 所成的角,∴∠AA 1E =45°,在Rt △A 1AE 中,∵AA 1=2,∴AE =2,A 1E =22,在Rt △MAN 中,由射影定理得ME·EN =AE 2=4,由基本不等式得MN =ME +EN ≥2ME·EN =4,当且仅当ME =EN ,即E 为MN 的中点时等号成立,∴截面A 1MN 面积的最小值为12×4×22=4 2.故选B.7.(2020·四川雅安期末)如图,将矩形ABCD 沿对角线BD 把△ABD 折起,使点A 移到点A 1处,且A 1在平面BCD 上的射影O 恰好在CD 上,则BC 与A 1D 所成角是( ) A .30° B .45° C .60° D .90° 答案 D解析 本题主要考查异面直线所成角及线面垂直的判定与性质.因为A 1在平面BCD 上的射影O 恰好在CD 上,所以A 1O ⊥平面BCD.因为BC ⊂平面BCD ,所以A 1O ⊥BC.又因为BC ⊥CD ,A 1O ∩CD =O ,所以BC ⊥平面A 1CD.又A 1D ⊂平面A 1CD ,所以BC ⊥A 1D ,故BC 与A 1D 所成的角为90°.故选D.8.(2020·东北三省三校二模)在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是正方形,且PA =AB =2,则直线PB 与平面PAC 所成角为( ) A.π6 B.π4 C.π3D.π2答案 A解析 本题考查线面角及线面垂直的判定与性质.连接BD ,交AC 于点O.因为PA ⊥平面ABCD ,底面ABCD 是正方形,所以BD ⊥AC ,BD ⊥PA.又因为PA ∩AC =A ,所以BD ⊥平面PAC ,故BO ⊥平面PAC.连接OP ,则∠BPO 即为直线PB 与平面PAC 所成角.又因为PA =AB =2,所以PB =22,BO = 2.所以sin ∠BPO =BO PB =12,所以∠BPO =π6.故选A.9.(2020·保定模拟)在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G.则A 1B 与平面ABD 所成角的余弦值是( ) A.23 B.73 C.32 D.37答案 B解析 以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立直角坐标系,设CA =CB =a ,则A(a ,0,0),B(0,a ,0),A 1(a ,0,2),D(0,0,1),∴E ⎝⎛⎭⎫a 2,a 2,1,G ⎝⎛⎭⎫a 3,a 3,13,GE →=⎝⎛⎭⎫a 6,a 6,23,BD →=(0,-a ,1),∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE →⊥平面ABD ,∴GE →·BD →=0,解得a =2. ∴GE →=⎝⎛⎭⎫13,13,23,BA 1→=(2,-2,2),∵GE →⊥平面ABD ,∴GE →为平面ABD 的一个法向量. ∵cos 〈GE →,BA 1→〉=GE →·BA 1→|GE →|·|BA 1→|=4363×23=23,∴A 1B 与平面ABD 所成的角的余弦值为73. 10.(2020·豫南豫北精英对抗赛)在四面体ABCD 中,CA =CB =CD =BD =2,AB =AD =2,则异面直线AB 与CD 所成角的余弦值为( )A.23B.24C.144D .-24答案 B解析 取BD 的中点O ,连AO ,OC ,由CA =CB =CD =BD =2,AB =AD =2,得AO ⊥BD ,CO ⊥BO ,且OC =3,AO =1.在△AOC 中,AC 2=AO 2+OC 2,故AO ⊥OC ,又知BD ∩OC =O ,因此AO ⊥平面BCD ,以OB ,OC ,OA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则A(0,0,1),B(1,0,0),C(0,3,0),D(-1,0,0),∴AB →=(1,0,-1),CD →=(-1,-3,0),设异面直线AB 与CD 所成角为θ,则cos θ=|AB →·CD →||AB →||CD →|=12×1+3=24,即异面直线AB 与CD 所成角的余弦值为24.故选B. 11.(2018·课标全国Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A.334B.233C.324D.32答案 A解析 记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′-AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝⎛⎭⎫222=334,所以α截此正方体所得截面面积的最大值为334.故选A.12.(2018·课标全国Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78.SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin ∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,∴SA 2=80,SA =4 5.∵SA 与底面所成的角为45°,∴∠SAS ′=45°,AS ′=SA·cos45°=45×22=210.∴底面周长l =2π·AS ′=410π,∴圆锥的侧面积为12×45×410π=402π.13.(2020·河北承德期末)已知四棱锥P -ABCD 的底面是菱形,∠BAD =60°,PD ⊥平面ABCD ,且PD =AB ,点E 是棱AD 的中点,F 在棱PC 上.若PF ∶FC =1∶2,则直线EF 与平面ABCD 所成角的正弦值为________. 答案43535解析 如图,以D 点为坐标原点建立如图所示的空间直角坐标系D -xyz.设菱形ABCD 的边长为2,则D(0,0,0),E ⎝⎛⎭⎫32,-12,0,F ⎝⎛⎭⎫0,23,43,所以EF →=⎝⎛⎭⎫-32,76,43. 又平面ABCD 的一个法向量为n =(0,0,1),所以cos 〈EF →,n 〉=43⎝⎛⎭⎫-322+⎝⎛⎭⎫762+⎝⎛⎭⎫432×1=43535, 即直线EF 与平面ABCD 所成角的正弦值为43535.14.(2020·吉林一中期末)如图,在直三棱柱ABC -A 1B 1C 1中,AB =2,AC =1,CC 1=3,∠ABC =30°,D 为AB 的中点. (1)证明:AC 1∥平面B 1CD ;(2)求直线DC 1与平面B 1CD 所成角的正弦值. 答案 (1)略 (2)1510解析 (1)证明:连接BC 1,交B 1C 于点E ,连接DE.因为四边形BB 1C 1C 是矩形,所以点E 是BC 1的中点.又点D 为AB 的中点,所以DE 是△ABC 1的中位线,所以DE ∥AC 1,又DE ⊂平面B 1CD ,AC 1⊄平面B 1CD ,所以AC 1∥平面B 1CD. (2)由AB =2,AC =1,∠ABC =30°,可得BC =3,所以AC 2+BC 2=AB 2,所以AC ⊥BC.分别以CA ,CB ,CC 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系C -xyz.则有C(0,0,0),B 1(0,3,3),D ⎝⎛⎭⎫12,32,0,C 1(0,0,3),所以DC 1→=⎝⎛⎭⎫-12,-32,3,CB 1→=(0,3,3),CD →=⎝⎛⎭⎫12,32,0.设直线DC 1与平面B 1CD 所成角为θ,平面B 1CD 的一个法向量为m =(x ,y ,z).则⎩⎪⎨⎪⎧m ·CB 1→=0,m ·CD →=0,即⎩⎪⎨⎪⎧3y +3z =0,12x +32y =0,令z =1,得m =(3,-1,1).所以sin θ=|cos 〈m ,DC 1→〉|=|m ·DC 1→||m ||DC 1→|=⎪⎪⎪⎪32-32+33+1+1×14+34+3=325=1510.即直线DC 1与平面B 1CD 所成角的正弦值为1510. 15.(2016·课标全国Ⅲ)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. 答案 (1)略 (2)8525解析 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN.由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT. 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB.(2)取BC 的中点E ,连接AE.由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB 2-⎝⎛⎭⎫BC 22= 5.以A 为坐标原点,AE →,AD →,AP →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz.由题意知,P(0,0,4),M(0,2,0),C(5,2,0),N ⎝⎛⎭⎫52,1,2,PM →=(0,2,-4),PN →=⎝⎛⎭⎫52,1,-2,AN →=⎝⎛⎭⎫52,1,2.设n =(x ,y ,z)为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).设直线AN 与平面PMN 所成角为θ, 于是sin θ=|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525. 所以直线AN 与平面PMN 所成角的正弦值为8525.。
题组层级快练(五十七)1.(2020·河北徐水一中模拟)如图所示,在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD ,则在三棱锥A -BCD 中,下列命题正确的是( ) A .平面ABD ⊥平面ABC B .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDC D .平面ADC ⊥平面ABC答案 D解析 ∵在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,∴BD ⊥CD ,又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,故CD ⊥平面ABD ,则CD ⊥AB ,又AD ⊥AB ,故AB ⊥平面ADC ,所以平面ABC ⊥平面ADC.2.(2020·河北冀州中学月考)如图,已知二面角α-PQ -β的大小为60°,点C 为棱PQ 上一点,A ∈β,AC =2,∠ACP =30°,则点A 到平面α的距离为( )A .1 B.12 C.32D.32答案 C解析 如图,过A 作AO ⊥α于O ,点A 到平面α的距离为AO. 作AD ⊥PQ 于D ,连接OD ,则AD ⊥CD ,AO ⊥CD ,且AD ∩AO=A ,所以CD ⊥平面AOD ,所以CD ⊥OD ,所以∠ADO 就是二面角α-PQ -β的平面角,即为60°.因为AC =2,∠ACP =30°,所以AD =ACsin30°=2×12=1.在Rt △AOD 中,AO =ADsin60°=1×32=32.故选C. 3.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,若F 是DD 1的中点,则B 1到平面ABF 的距离为( )A.33B.55C.53D.255答案 D解析 方法一:由VB 1-ABF =VF -ABB 1可得解.方法二:建立如图所示的空间直角坐标系,设E 为BC 中点,连接EF ,B 1E , 则A(1,0,1),B 1(1,1,0).设F ⎝⎛⎭⎫0,0,12,E ⎝⎛⎭⎫12,1,1,B(1,1,1),AB →=(0,1,0),B 1E →=⎝⎛⎭⎫-12,0,1,AF →=⎝⎛⎭⎫-1,0,-12.∵AF →·B 1E →=⎝⎛⎭⎫-1,0,-12·⎝⎛⎭⎫-12,0,1=0, ∴AF →⊥B 1E →.同理AB →⊥B 1E →,∴B 1E ⊥平面ABF.平面ABF 的法向量为B 1E →=⎝⎛⎭⎫-12,0,1,又AB 1→=(0,1,-1). ∴B 1到平面ABF 的距离为⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·B 1E →|B 1E →|=255. 4.(2020·广东深圳月考)如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为1,E ,F 分别为C 1D 1与AB 的中点,B 1到平面A 1FCE 的距离为( )A.36B.33C.66D.63答案 D解析 设点B 1到平面A 1FCE 的距离为h.∵正方体ABCD -A 1B 1C 1D 1的棱长为1,∴A 1F =FC =52,A 1C =3,EF =2,∴S △A 1CF =12×3×22=64,S △A 1B 1F =12×1×1=12. 又V 三棱锥B 1-A 1CF =V 三棱锥C -A 1B 1F ,∴13×64h =13×12×1,解得h =63.即点B 1到平面A 1FCE 的距离为63.故选D. 5.(2020·哈尔滨模拟)正方体ABCD -A 1B 1C 1D 1的棱长为3,在正方体表面上与点A 距离是2的点形成一条封闭的曲线,这条曲线的长度是( ) A .π B.32π C .3π D.52π 答案 D解析 在面ABCD ,面AA 1B 1B ,面AA 1D 1D 内与点A 的距离是2的点的轨迹分别是以A 为圆心,2为半径,圆心角为π6的圆弧,在面A 1B 1C 1D 1,面BB 1C 1C ,面CC 1D 1D 内与点A的距离是2的点的轨迹是分别以A 1为圆心,以B 为圆心,以D 为圆心,1为半径,圆心角为π2的圆弧,故圆弧的长为3×π6×2+3×π2×1=52π. 6.(2020·江西南昌调研)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,PA 为球O 的直径,且PA =4,则点P 到底面ABC 的距离为( ) A. 2 B .2 2 C. 3 D .2 3 答案 B解析 ∵三棱锥P -ABC 的所有顶点都在球O 的球面上,且直径PA =4,∴球心O 是PA 的中点,球O 的半径R =OC =12PA =2.过点O 作OD ⊥平面ABC ,垂足为D.在△ABC 中,AB=22,∠ACB =90°,∴D 为AB 的中点,且AD =BD =CD =2,∴OD =OC 2-CD 2=4-2=2,∴点P 到底面ABC 的距离d =2OD =2 2.故选B.7.(2020·西安五校联考)如图,梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD ∶BC ∶AB =2∶3∶4,E ,F 分别是AB ,CD 的中点,将四边形ADFE 沿直线EF 进行翻折,给出以下四个结论:①DF ⊥BC ;②BD ⊥FC ;③平面DBF ⊥平面BFC ;④平面DCF ⊥平面BFC.则在翻折过程中,可能成立的结论的个数为( ) A .1 B .2 C .3 D .4答案 B解析 因为BC ∥AD ,AD 与DF 相交不垂直,所以BC 与DF 不垂直,故①错误;设点D 在平面BCF 上的射影为点P ,当BP ⊥CF 时,有BD ⊥FC ,而AD ∶BC ∶AB =2∶3∶4,可使条件满足,故②正确;当点P 落在BF 上时,DP ⊂平面BDF ,从而平面BDF ⊥平面BCF ,故③正确;因为点D 的投影不可能在FC 上,所以平面DCF ⊥平面BFC 不成立,故④错误.故选B.8.(2020·湖北宜昌期末)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,BB 1的中点,G 为棱A 1B 1上一点,且A 1G =λ(0<λ<2),则点G 到平面D 1EF 的距离为( ) A .2 3 B. 2 C.223 D.255答案 D解析 本题考查点到平面的距离.方法一:因为E ,F 分别为棱AA 1,BB 1的中点,所以A 1B 1∥EF.又G 在A 1B 1上,所以点G 到平面D 1EF 的距离即为点A 1到平面D 1EF 的距离.作A 1M ⊥D 1E ,交D 1E 于点M ,因为EF ⊥平面AA 1D 1D ,所以A 1M ⊥EF ,又D 1E ∩EF =E ,所以A 1M ⊥平面D 1EF.所以点A 1到平面D 1EF 的距离即为A 1M 的长.又A 1E =1,A 1D 1=2,所以D 1E =5,所以点G 到平面D 1EF 的距离为A 1M =1×25=255.方法二:连接EG ,以D 为原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.则G(2,λ,2),D 1(0,0,2),E(2,0,1),F(2,2,1),所以ED 1→=(-2,0,1),EF →=(0,2,0),EG →=(0,λ,1). 设平面D 1EF 的一个法向量为n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·ED 1→=-2x +z =0,n ·EF →=2y =0,取x =1,得n =(1,0,2).所以点G 到平面D 1EF 的距离d =|EG →·n ||n |=25=255.故选D.9.(2020·广东佛山一模)如图,在矩形ABCD 中,AB =3,AD =1,E ,F 分别是CD 边上的三等分点,将△ADF 和△BCE 分别沿AF ,BE 折起到△AD ′F ,△BC ′E 的位置,且使平面AD ′F ⊥底面ABCD ,平面BC ′E ⊥底面ABCD ,连接D ′C ′. (1)求证:D ′C ′∥平面ABEF ; (2)求点A 到平面EFD ′C ′的距离. 答案 (1)略 (2)63解析 (1)证明:如图,分别过点D ′,C ′作AF ,BE 的垂线,垂足为M ,N ,连接MN.因为平面AD ′F ⊥底面ABEF ,且平面AD ′F ∩底面ABEF =AF , 所以D ′M ⊥平面ABEF.同理可证,C ′N ⊥平面ABEF ,所以D ′M ∥C ′N. 又△AD ′F ≌△BC ′E ,所以D ′M =C ′N.所以四边形D ′MNC ′为平行四边形,则D ′C ′∥MN. 又因为D ′C ′⊄平面ABEF ,所以D ′C ′∥平面ABEF. (2)连接DD ′,在Rt △D ′AF 中,D ′F =AD ′=1,所以D ′M =22. 因为S △ADF =12·DF ·AD =12×1×1=12,所以V D ′-ADF =13S △ADF ·D ′M =13×12×22=212.设点A 到平面EFD ′C ′的距离为h ,因为DD ′=D ′M 2+DM 2=1,D ′F =DF =1,所以S △DFD ′=12×1×32=34.所以V A -DFD ′=13S △DFD ′·h =13×34h =312h ,由V A -DFD ′=V D ′-ADF 得312h =212,所以h =63, 故点A 到平面EFD ′C ′的距离为63. 10.如图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC. (1)求证:BC ⊥平面PAC ;(2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的余弦值; (3)是否存在点E 使得二面角A -DE -P 为直二面角?并说明理由. 答案 (1)略 (2)144(3)存在点E 解析 方法一:(1)证明:∵PA ⊥底面ABC , ∴PA ⊥BC.又∠BCA =90°,∴AC ⊥BC ,又PA ∩AC =A ,∴BC ⊥平面PAC. (2)∵D 为PB 的中点,DE ∥BC ,∴DE =12BC.又由(1)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E. ∴∠DAE 是AD 与平面PAC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB.又PA =AB ,∴△ABP 为等腰直角三角形. ∴AD =12AB.在Rt △ABC 中,∠ABC =60°.∴BC =12AB.∴Rt △ADE 中,sin ∠DAE =DE AD =BC 2AD =24.∴cos ∠DAE =144. (3)∵DE ∥BC ,又由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC. 又∵AE ⊂平面PAC ,PE ⊂平面PAC , ∴DE ⊥AE ,DE ⊥PE.∴∠AEP 为二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC. 这时,∠AEP =90°.故存在点E 使得二面角A -DE -P 是直二面角.方法二:如图所示,以A 为原点建立空间直角坐标系A -xyz.设PA =a ,由已知可得A(0,0,0),B ⎝⎛⎭⎫-12a ,32a ,0,C ⎝⎛⎭⎫0,32a ,0,P(0,0,a).(1)证明:∵AP →=(0,0,a),BC →=⎝⎛⎭⎫12a ,0,0, ∴BC →·AP →=0,∴BC ⊥AP.又∵∠BCA =90°,∴BC ⊥AC.又AP ∩AC =A , ∴BC ⊥平面PAC.(2)∵D 为PB 的中点,DE ∥BC , ∴E 为PC 的中点.∴D ⎝⎛⎭⎫-14a ,34a ,12a ,E ⎝⎛⎭⎫0,34a ,12a .又由(1)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E.∴∠DAE 是AD 与平面PAC 所成的角. ∵AD →=⎝⎛⎭⎫-14a ,34a ,12a ,AE →=⎝⎛⎭⎫0,34a ,12a ,∴cos ∠DAE =AD →·AE→|AD →|·|AE →|=144.(3)同方法一.11.(2020·长沙统一模拟)已知三棱锥P -ABC(如图1)的平面展开图(如图2)中,四边形ABCD 为边长等于2的正方形,△ABE 和△BCF 均为正三角形.在三棱锥P -ABC 中: (1)证明:平面PAC ⊥平面ABC ;(2)若点M 在棱PA 上运动,当直线BM 与平面PAC 所成的角最大时,求二面角P -BC -M 的余弦值.答案 (1)略 (2)53333解析 (1)证明:如图,设AC 的中点为O ,连接BO ,PO.由题意,得PA =PB =PC =2, PO =BO =1.因为在△PAC 中,PA =PC ,O 为AC 的中点,所以PO ⊥AC. 因为在△POB 中,PO 2+OB 2=PB 2,所以PO ⊥OB.因为AC ∩OB =O ,AC ,OB ⊂平面ABC ,所以PO ⊥平面ABC. 因为PO ⊂平面PAC ,所以平面PAC ⊥平面ABC.(2)由(1)知,BO ⊥PO ,由题意可得BO ⊥AC ,且PO ∩AC =O ,所以BO ⊥平面PAC , 所以∠BMO 是直线BM 与平面PAC 所成的角,且tan ∠BMO =BO OM =1OM ,所以当线段OM 最短,即M 是PA 的中点时,∠BMO 最大.由PO ⊥平面ABC ,OB ⊥AC ,得PO ⊥OB ,PO ⊥OC ,OB ⊥OC ,以O 为坐标原点,OC ,OB ,OP 所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则O(0,0,0),C(1,0,0),B(0,1,0),A(-1,0,0),P(0,0,1),M ⎝⎛⎭⎫-12,0,12,BC →=(1,-1,0),PC →=(1,0,-1),MC →=⎝⎛⎭⎫32,0,-12. 设平面MBC 的法向量为m =(x 1,y 1,z 1),由⎩⎪⎨⎪⎧m ·BC →=0,m ·MC →=0,得⎩⎪⎨⎪⎧x 1-y 1=0,3x 1-z 1=0,令x 1=1,得y 1=1,z 1=3,即m =(1,1,3)是平面MBC 的一个法向量. 设平面PBC 的法向量为n =(x 2,y 2,z 2),由⎩⎪⎨⎪⎧n ·BC →=0,n ·PC →=0,得⎩⎪⎨⎪⎧x 2-y 2=0,x 2-z 2=0,令x 2=1,得y 2=1,z 2=1,即n =(1,1,1)是平面PBC 的一个法向量. 所以cos 〈m ,n 〉=m ·n |m |·|n |=533=53333.结合图可知,二面角P -BC -M 的余弦值为53333.12.(2020·河北九校第二次联考)等边三角形ABC 的边长为3,点D ,E 分别是边AB ,AC 上的点,且满足AD DB =CE EA =12,如图甲,将△ADE 沿DE 折起到△A 1DE 的位置,使二面角A 1-DE -B 为直二面角,连接A 1B ,A 1C ,如图乙.(1)求证:BD ⊥平面A 1DE.(2)在线段BC 上是否存在点P ,使平面PA 1E 与平面A 1BD 所成的角为60°?若存在,求出PB 的长;若不存在,请说明理由.答案 (1)略 (2)存在,PB =2解析 (1)证明:因为等边三角形ABC 的边长为3,且AD DB =CE EA =12, 所以AD =1,AE =2.在△ADE 中,∠DAE =60°,由余弦定理得DE =12+22-2×1×2×cos60°=3, 从而AD 2+DE 2=AE 2,所以AD ⊥DE ,即BD ⊥DE. 因为二面角A 1-DE -B 是直二面角, 所以平面A 1DE ⊥平面BCED.又平面A 1DE ∩平面BCED =DE ,BD ⊥DE. 所以BD ⊥平面A 1DE.(2)存在.由(1)的证明可知,BD ,DA 1,DE 两两垂直,以D 为坐标原点,分别以DB ,DE ,DA 1所在的直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系D -xyz.设PB =2a ,作PH ⊥BD 于点H ,连接A 1H ,A 1P ,PE , 则BH =a ,PH =3a ,DH =2-a ,所以D(0,0,0),A 1(0,0,1),P(2-a ,3a ,0),E(0,3,0),所以A 1P →=(2-a ,3a ,-1),A 1E →=(0,3,-1), 因为ED ⊥平面A 1BD ,所以平面A 1BD 的一个法向量为DE →=(0,3,0). 设n 1=(x ,y ,z)为平面PA 1E 的法向量,由⎩⎪⎨⎪⎧n 1⊥A 1E →⇒3y -z =0,n 1⊥A 1P →⇒(2-a )x +3ay -z =0,可取n 1=⎝ ⎛⎭⎪⎫3(1-a )2-a ,1,3.所以cos60°=|cos 〈n 1,DE →〉|=⎪⎪⎪⎪⎪⎪33×1+3+3(1-a )2(2-a )2,得a =1. 所以存在点P ,且PB =2,使平面PA 1E 与平面A 1BD 所成的角为60°.。