温度控制系统的滞后超前校正
- 格式:doc
- 大小:253.00 KB
- 文档页数:13
串联超前校正和滞后校正的不同之处在控制系统中,超前校正和滞后校正是两种常见的校正方法。
它们都是为了提高系统的稳定性和性能而采取的措施。
然而,它们的实现方式和效果却有很大的不同。
本文将从理论和实践两个方面,分别探讨串联超前校正和滞后校正的不同之处。
一、理论分析1. 超前校正超前校正是指在控制系统中,通过提前控制信号的相位,使得系统的相位裕度增加,从而提高系统的稳定性和响应速度。
具体来说,超前校正是通过在控制信号中加入一个比例项和一个积分项,来提高系统的相位裕度。
这样,系统就能更快地响应外部干扰和变化,从而提高系统的性能。
2. 滞后校正滞后校正是指在控制系统中,通过延迟控制信号的相位,使得系统的相位裕度减小,从而提高系统的稳定性和抗干扰能力。
具体来说,滞后校正是通过在控制信号中加入一个比例项和一个微分项,来减小系统的相位裕度。
这样,系统就能更好地抵抗外部干扰和变化,从而提高系统的性能。
二、实践应用1. 超前校正超前校正在实践中的应用非常广泛。
例如,在电力系统中,超前校正可以用来提高电力系统的稳定性和响应速度。
在机械控制系统中,超前校正可以用来提高机械系统的精度和响应速度。
在化工生产中,超前校正可以用来提高化工生产的稳定性和生产效率。
2. 滞后校正滞后校正在实践中的应用也非常广泛。
例如,在飞行控制系统中,滞后校正可以用来提高飞行器的稳定性和抗干扰能力。
在汽车控制系统中,滞后校正可以用来提高汽车的稳定性和安全性。
在医疗设备中,滞后校正可以用来提高医疗设备的精度和稳定性。
总之,串联超前校正和滞后校正是两种常见的校正方法,它们都是为了提高系统的稳定性和性能而采取的措施。
然而,它们的实现方式和效果却有很大的不同。
在实践中,我们需要根据具体的应用场景和需求,选择合适的校正方法,以达到最佳的控制效果。
题 目: 温度控制系统的滞后超前校正初始条件:某温箱的开环传递函数为 1.5()(61)sp e G s s s -=+要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、 试用Matlab 绘制其波特图和奈奎斯特图,计算相角裕度和幅值裕度;2、 试设计滞后超前校正装置,使系统的相角裕度增加20度。
3、 用Matlab 对校正后的系统进行仿真,画出阶跃相应曲线时间安排:指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日温度控制系统的滞后超前校正1 滞后-超前校正设计目的和原理1.1 滞后-超前校正设计目的所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
校正方案主要有串联校正、并联校正、反馈校正和前馈校正。
确定校正装置的结构和参数的方法主要有两类:分析法和综合法。
分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。
在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。
超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。
滞后-超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。
在此课题中,滞后-超前校正设计的主要目的是使开环传递函数的相角裕度增加20度。
1.2 滞后-超前校正设计原理滞后-超前校正RC 网络电路图如图1所示:图1 滞后-超前校正RC 网络它的传递函数:)1)(1()1)(1()(asT s aT s T s T s G b a b a c ++++=其中a>1,(1+)s T a /(1+aT )s a 为网络的滞后部分,(1+s T b )/(1+s T b /a)为网络的超前部分。
滞后-超前校正RC 网络特性如图2所示图2 滞后-超前校正RC 网络特性无源滞后-超前网络的对数幅频特性如上图,其低频部分和高频部分均起于和终于零分贝水平线。
温度控制系统滞后校正环节设计一、引言在工业生产过程中,温度控制是一个非常重要的环节。
为了保持生产过程的稳定性和质量,需要对温度进行精确的控制。
然而,由于温度传感器存在滞后问题,控制系统输出的温度信号将滞后于实际测量值。
为了解决这个问题,需要设计一个滞后校正环节,用于补偿温度的滞后。
二、滞后校正原理温度传感器的滞后现象主要是由于传感器自身的响应速度和传输延迟引起的。
传感器的响应速度是指传感器从接收输入信号到产生输出信号的过程中所需要的时间。
传输延迟是指信号从传感器到控制系统的传输时间。
滞后校正的原理是在温度控制系统的反馈回路中增加一个补偿环节,通过对输出信号进行滞后处理,实现对温度的滞后校正。
具体的滞后校正算法可以根据传感器的响应速度和传输延迟来确定。
1.滞后校正器的位置:滞后校正器应该放置在温度控制系统的反馈回路中,通常放在控制器的输出端。
2.滞后校正算法:滞后校正算法的设计需要考虑传感器的响应速度和传输延迟。
一种常用的滞后校正算法是通过对输出信号进行延迟处理,使得输出信号与实际温度值保持一致。
具体的算法可以根据实际需求来确定。
3.滞后校正器的参数调试:一旦滞后校正器的算法确定,就需要通过实验来调试滞后校正器的参数。
参数调试包括滞后时间和补偿幅度的确定。
滞后时间是指滞后校正器对输出信号的延迟时间,补偿幅度是指滞后校正器对输出信号的增益。
通过不断调试参数,使得滞后校正器对温度的滞后校正达到最佳效果。
4.稳定性分析:在设计滞后校正环节时,还需要进行稳定性分析。
稳定性分析是指分析滞后校正环节对温度控制系统稳定性的影响。
通过稳定性分析,可以确定滞后校正环节的参数范围,以保证温度控制系统的稳定性。
四、实验验证设计完成滞后校正环节后,还需要进行实验验证。
实验验证可以通过对比滞后校正前后的温度数据来评估滞后校正环节的性能。
实验结果应该接近滞后校正前的实际温度值,以验证滞后校正环节的效果。
五、总结滞后校正环节的设计是温度控制系统中非常重要的一个环节。
在自动控制系统中,为了改善系统的稳定性和瞬态性能,常采用一种称为超前滞后校正的方法。
这种控制策略涉及到对系统开环传递函数的修改,以改变系统的相位和幅值特性,使得闭环系统的性能满足设计要求。
具体来说,超前校正主要用于提高系统的响应速度和稳定性,而滞后校正则用以增强系统的稳态精度和抗干扰能力。
超前校正的原理是通过在控制系统中引入一个具有相位超前特性的校正器,该校正器在中频段产生正相位shift 并增加系统的截止频率。
这导致系统响应速度变快,过渡过程时间缩短,从而提高了系统动态性能。
由于相位的提前,系统的相位裕度增大,进而提升了系统的稳定性。
然而,超前校正通常会牺牲系统的低频增益,这可能会影响其稳态精度。
滞后校正则是通过加入一个具有相位滞后特性的校正器,它在低频段提供额外的增益而在高频段减少增益,从而增强了系统的低频响应。
这样做可以减小或消除静差,提高系统的稳态准确性。
滞后校正还会降低系统的截止频率,增加相角滞后,有助于滤除高频噪声,提升系统的抗干扰性。
不过,滞后校正会减小系统的相位裕度,可能导致系统反应缓慢,过渡过程时间变长。
在实际应用中,工程师会根据系统的实际需要选择合适的校正方式。
对于需要快速响应和良好动态性能的系统,可能会倾向于使用超前校正;而对于注重稳态精度和抗干扰能力的场合,则可能优先考虑滞后校正。
有时也会将超前和滞后校正结合起来形成超前-滞后校正,以期达到更优的综合性能。
总结而言,超前滞后校正是一种在控制系统设计中常用的方法,它通过改变系统的频率响应来满足不同的性能指标。
超前校正主要改善系统的动态性能和稳定性,而滞后校正则更注重于提升稳态精度和抗干扰能力。
掌握超前滞后校正的原理和适用场合,对于自动控制系统的设计至关重要。
课程设计任务书题 目: 温度控制系统超前校正环节设计 初始条件: 传递函数为))(s/)(s .(s/K G(s)151150+++=的三阶系统描述了一个典型的温度控制系统。
用超前补偿设计满足给定性能指标的补偿环节。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1) 设计一个超前补偿环节,使系统满足位置误差系数10=p K 和相角裕度︒≥30PM 的性能指标;(2) 画出系统在(1)校正前后的奈奎斯特曲线和波特图;(3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统的动态性能指标;(4) 用Matlab 画出校正前后系统的根轨迹;(5) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。
时间安排: 任务时间(天) 指导老师下达任务书,审题、查阅相关资料2 分析、计算2 编写程序1 撰写报告2 论文答辩 1指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日目录摘要 (I)1控制系统超前校正环节设计的意义和任务 (1)1.1控制系统超前校正环节设计的意义 (1)1.2控制系统超前校正环节设计的任务 (1)2 设计方案 (2)2.1校正前系统分析 (2)2.2 校正方案 (2)3校正前后波特图比较 (3)4校正前后根轨迹比较 (5)4.1未校正系统的根轨迹 (5)4.2校正后系统根轨迹 (5)5校正前后奈奎斯特图 (7)5.1校正前的奈奎斯特图 (7)5.2校正后的奈奎斯特图 (8)6校正前后单位阶跃响应比较 (9)6.1系统校正前阶跃响应动态性能 (9)6.2系统校正后阶跃响应动态性能 (10)6.3系统校正前后性能比较 ............................. 错误!未定义书签。
7小结与体会........................................................... 错误!未定义书签。
课 程 设 计题 目: 控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是)2)(1()(++=s s s Ks G要求系统的静态速度误差系数110v K S -≥,相角裕度 45≥γ。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1)用MATLAB画出满足初始条件的最小K值的系统伯德图,计算系统的幅值裕度和相角裕度。
(2)前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。
(3)用MATLAB画出未校正和已校正系统的根轨迹。
(4)用Matlab画出已校正系统的单位阶跃响应曲线、求出超调量、峰值时间、调节时间及稳态误差。
(5)课程设计说明书中要求写清楚计算分析的过程,列出MATLAB程序和MATLAB输出。
说明书的格式按照教务处标准书写。
时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录 (I)摘要 (II)1设计题目和设计要求 (1)1.1题目 (1)1.2初始条件 (1)1.3设计要求 (1)1.4主要任务 (1)2设计原理 (2)2.1滞后-超前校正原理 (2)3设计方案 (4)3.1校正前系统分析 (4)3.1.1确定未校正系统的K值 (4)3.1.2未校正系统的伯德图和单位阶跃响应曲线和根轨迹 (4)3.1.3未校正系统的相角裕度和幅值裕度 (7)3.2方案选择 (7)4设计分析与计算 (8)4.1校正环节参数计算 (8)的确定 (8)4.1.1已校正系统截止频率ωcω的确定 (8)4.1.4校正环节滞后部分交接频率aω的确定 (8)4.1.1校正环节超前部分交接频率b4.2校正环节的传递函数 (8)4.3已校正系统传递函数 (9)5已校正系统的仿真波形及仿真程序 (10)5.1已校正系统的根轨迹 (10)5.2已校正系统的伯德图 (11)5.3已校正系统的单位阶跃响应曲线 (12)6结果分析 (13)7总结与体会 (14)参考文献 (14)本科生课程设计成绩评定表........................................ 错误!未定义书签。
1 无源滞后校正的原理1.1设计原理所谓校正,就是在系统中加入一些其参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,从而满足给定的各项性能指标。
系统校正的常用方法是附加校正装置。
按校正装置在系统中的位置不同,系统校正分为串联校正、反馈校正和复合校正。
按校正装置的特性不同,又可分为PID 校正、超前校正、滞后校正和滞后-超前校正。
这里我们主要讨论串联校正。
一般来说,串联校正设计比反馈校正设计简单,也比较容易对信号进行各种必要的形式变化。
在直流控制系统中,由于传递直流电压信号,适于采用串联校正;在交流载波控制系统中,如果采用串联校正,一般应接在解调器和滤波器之后,否则由于参数变化和载频漂移,校正装置的工作稳定性很差。
串联超前校正是利用超前网络或PD 控制器进行串联校正的基本原理,是利用超前网络或PD 控制器的相角超前特性实现的,使开环系统截止频率增大,从而闭环系统带宽也增大,使响应速度加快。
1.2 无源滞后网络校正的原理无源滞后网路电路图如下。
1R图1-1无源滞后网络电路图如果信号源的内部阻抗为零,负载阻抗为无穷大,则滞后网络的传递函数为T s T s Ts Ts s U s U s G c 1111)()()(12++⋅=++==ααα分度系数时间常数在设计中力求避免最大滞后角发生在已校系统开环截止频率''c ω附近。
如图1-2所示,选择滞后网络参数时,通常使网络的交接频率Tα1远小于''c ω一般取=T α1''c ω/10图1-2校正装置的波德图当它与由于滞后校正网络具有低通滤波器的特性,因而系统的不可变部分串联相连时,会使系统开环频率特性的中频和高频段增益降低和截止频率减小,从而有可能使系统获得足够大的相位裕度,它不影响频率特性的低频段。
由此可见,滞后校正在一定的条件下,也能使系统同时满足动态和静态的要求。
1.3 设计步骤所研究的系统为最小相位单位反馈系统,则采用频域法设计串联无源滞后网络的步骤如下:C R R T R R R )(121212+=<+=α1) 根据稳态误差要求,确定开环增益K 。
课程设计任务书学生姓名: 梁智升 专业班级: 自动化1102指导教师: 谭思云 工作单位: 自动化学院题 目: 温度控制系统超前校正环节设计 初始条件: 传递函数为))(s/)(s .(s/K G(s)121150+++=的三阶系统描述了一个典型的温度控制系统。
用超前补偿设计满足给定性能指标的补偿环节。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1) 设计一个超前补偿环节,使系统满足位置误差系数9=P K 和相角裕度 25≥PM 的性能指标;2) 画出系统在(1)校正前后的奈奎斯特曲线和波特图3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统的动态性能指标;4) 用Matlab 画出校正前后系统的根轨迹;5) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。
时间安排:1) 课程设计任务书的布置,讲解 (一天)2) 根据任务书的要求进行设计构思。
(一天)3) 熟悉MATLAB 中的相关工具(一天)4) 系统设计和仿真分析。
(四天)5) 撰写说明书。
(两天)6) 课程设计答辩(一天)指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日目录目录 ....................................................................................................... 0 关键字:控制系统 传递函数 相角裕度 超前校正错误!未定义书签。
1控制系统超前校正环节设计的意义和任务 (2)1.1控制系统超前校正环节设计的意义 (2)1.2控制系统超前校正环节设计的任务 (2)2 设计方案 (2)2.1 校正前系统分析 (3)2.2 校正方案 (3)3校正前后伯德图比较 (3)4校正前后根轨迹比较 (5)5校正前后奈奎斯特图 (7)6校正前后单位阶跃响应比较 (9)6.1系统校正前阶跃响应动态性能 (10)6.2系统校正后阶跃响应动态性能 ............... 错误!未定义书签。
题 目: 温度控制系统的滞后超前校正初始条件:某温箱的开环传递函数为 1.5()(61)sp e G s s s -=+要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、 试用Matlab 绘制其波特图和奈奎斯特图,计算相角裕度和幅值裕度;2、 试设计滞后超前校正装置,使系统的相角裕度增加20度。
3、 用Matlab 对校正后的系统进行仿真,画出阶跃相应曲线时间安排:指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日温度控制系统的滞后超前校正1 滞后-超前校正设计目的和原理1.1 滞后-超前校正设计目的所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
校正方案主要有串联校正、并联校正、反馈校正和前馈校正。
确定校正装置的结构和参数的方法主要有两类:分析法和综合法。
分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。
在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。
超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。
滞后-超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。
在此课题中,滞后-超前校正设计的主要目的是使开环传递函数的相角裕度增加20度。
1.2 滞后-超前校正设计原理滞后-超前校正RC 网络电路图如图1所示:图1 滞后-超前校正RC 网络它的传递函数:)1)(1()1)(1()(asT s aT s T s T s G b a b a c ++++=其中a>1,(1+)s T a /(1+aT )s a 为网络的滞后部分,(1+s T b )/(1+s T b /a)为网络的超前部分。
滞后-超前校正RC 网络特性如图2所示图2 滞后-超前校正RC 网络特性无源滞后-超前网络的对数幅频特性如上图,其低频部分和高频部分均起于和终于零分贝水平线。
由图可见,只要确定a ω,b ω,和a ,或者确定T a ,T b ,和a 三个独立变量,上图的形状即可确定。
滞后-超前校正的频域设计实际是超前校正和滞后校正频域法设计的综合,基本方法是利用滞后校正将系统校正后的穿越频率调整到超前部分的最大相角处的频率。
具体方法是先合理地选择截止频率“c ω,然后设计滞后校正部分,再根据已经选定的a 设计超前部分。
应用频率法确定滞后-超前校正参数的步骤:1、根据稳态性能指标,绘制待校正系统的伯德图,求出待校正系统的截止频率’c ω相角裕度γ及幅值裕度h ;2、在待校正系统的伯德图上选择斜率从-20dB/dec 变为-40dB/dec 的交接频率作为网络超前部分的交接频率b ω,即可确定超前部分的参数b T ;3、选择校正后的截止频率“c ω; 4、确定校正参数a ; 5、确定超前部分的参数a T ;6、将滞后部分和超前部分的传递函数组合在一起,即得滞后-超前校正的传递函数;7、绘制校正后的伯德图,检验性能指标。
2 滞后-超前校正设计过程2.1 校正前系统的参数计算2.2.1计算校正前系统的幅值裕度和相角裕度系统的开环传递函数为:1.5()(61)sp e G s s s -=+。
设c ω为系统的截止频率, 令A (c ω)=|G(jw)|=1, A(w)=1w 36w 12+=1 ⇒ c ω=0.39则系统的相角裕度为:γ= 180+ϕ(c ω)= 4.10- 设x ω为系统的穿越频率,令ϕ(x ω)= 180 ⇒ x ω=0.32 则系统的幅值裕度为:h=)(ωA 1=0.692.1.2绘制校正前系统的伯德图和奈奎斯特图图3 校正前系统的伯德图和奈奎斯特图2.1.3 用MATLAB绘制校正前系统的伯德图和奈奎斯特图在malab软件中编写程序:num=[1];den=conv([1 0],[6 1]);w=logspace(-2,1,100);[mag,phase,w]=bode(num,den,w);phase1=phase-w*57.3*1.5;subplot(211),semilogx(w,20*log10(mag));v=[0.01,10,-150,100];axis(v)gridsubplot(212),semilogx(w,phase1);v=[0.01,10,-210,-90];axis(v)grid得到的伯德图如图4所示:图4 校正前系统的伯德图在matlab软件中编写程序:num=[1];den=conv([1 0],[6 1]);w=logspace(-1,2,100);[mag,phase,w]=bode(num,den,w);phase1=phase*pi/180-w*1.5;hold onpolar(phase1,mag)v=[-2.5,1,-1,1];axis(v)grid得到的奈奎斯特图如图5所示:图5 校正前系统的奈奎斯特图2.1.4 用MATLAB求校正前系统的幅值裕度和相角裕度用Matlab里面的margin函数进行验算:在上面伯德图程序的后面加上[gm,pm,wcg,wcp]=margin(mag,phase1,w)运行结果:gm =0.6929 pm =-10.6110,wcg =0.3200 wcp =0.3916则幅值裕度是0.6929,相角裕度是-10.6110,和上面求的相近。
2.1.5 对校正前系统进行仿真分析Simulink是可以用于连续、离散以及混合的线性、非线性控制系统建模、仿真和分析的软件包,并为用户提供了用方框图进行建模的图形接口,很适合于控制系统的仿真。
校正前系统的仿真图连接如下:图6 校正前系统的仿真图校正前系统仿真的阶跃响应曲线如下:图7 校正前系统仿真的阶跃响应曲线2.2 滞后-超前校正设计的参数计算2.2.1确定滞后部分的参数b T因为待校正系统伯德图上斜率从-20dB/dec 变为-40dB/dec 的交接频率为1/6,所以取b ω=1/6,从而可以得到b T =1/b ω=62.2.2选择校正后的截止频率"c ω和a考虑到中频区的斜率和动态过程调节时间,取"c ω=0.35,又因为0lgT 20L 20lga -c b =++““‘)(ωω,带入数值可得a=2.562.2.3确定超前部分的参数a T“γ=180+arctg "c ω/a ω+ arctg "c ω/b ω- arctga "c ω/a ω-arctg "c ω/a b ω-90- arctg6"c ω-1.5"c ω*57.3=9.6 ⇒ a ω=1/7, a T =72.2.4确定滞后-超前校正装置的传递函数传递函数的形式:)1)(1()1)(1()(asT s aT s T s T s G b a b a c ++++=带入参数得:)34.21)(92.171()61)(71()(G s s s s s c ++++=则校正后的系统为: )34.21)(92.171()71()()(5.1s s s e s s G s G sp c +++=-2.3 滞后-超前校正后的验证由于校正过程中,多处采用的是近似计算,可能会造成滞后-超前校正后得到的系统的传递函数不满足题目要求的性能指标或者是校正的不够完善。
所以需要对滞后-超前校正后的系统进行验证。
2.3.1 用MATLAB 求校正后系统的幅值裕度和相角裕度程序:num=[7 1]; den=conv([conv([1 0],[17.92 1])],[2.34 1]); w=logspace(-2,1,100); [mag,phase,w]=bode(num,den,w); phase1=phase-w*57.3*1.5; [gm,pm,wcg,wcp]=margin(mag,phase1,w); gm=gm' pm=pm'wcg=wcg'wcp=wcp'运行结果:gm = 1.3654 pm = 9.9437wcg =0.4060 wcp =0.3314由结果可知相角裕度增加了20.5度,所以此校正满足要求。
2.3.2 用MATLAB绘制校正后系统的伯德图程序:num=[7 1];den=conv([conv([1 0],[17.92 1])],[2.34 1]);w=logspace(-2,1,100);[mag,phase,w]=bode(num,den,w);hase1=phase-w*57.3*1.5;subplot(211),semilogx(w,20*log10(mag));v=[0.01,10,-150,100];axis(v)gridsubplot(212),semilogx(w,phase1);v=[0.01,10,-210,-90];axis(v)grid得到的伯德图如图8所示:图8 校正后系统的伯德图2.3.4 用MATLAB对校正后的系统进行仿真分析用Simulink对校正后的系统进行仿真。
校正后系统的仿真图连接如下:图9 校正后系统的仿真图校正后系统仿真的阶跃响应曲线如下:图10 校正后系统仿真的阶跃响应曲线3 心得体会此次课程设计的内容是对一个温度控制系统的滞后-超前校正。
回顾此次实践的整个过程,虽然只有短短的几天,但是在这个自己独立学习的过程中我学到了很多知识。
课程设计开始阶段我就遇到了麻烦,对于带有延迟环节的开环传递函数,我感到很陌生,特别的,在用MATLAB画其伯德图和奈奎斯特图时无从下手,后来查阅了很多资料及多次修改程序参数后,才勉强完成要求。
后来在设计滞后超前校正装置时,在计算上也遇到了很多挫折,第一次设计好后感觉不够理想,又进行了第二次设计,最终完成整个课程设计。
在课程设计过程中,我用到了MATLAB这一款强大的软件,虽然以前用过这个软件,但是在这次课程设计时对它还是感到很陌生,通过不断的摸索,我对这款软件有了初步的了解,我学会了用它来画系统的伯德图和奈奎斯特图,求系统的相角裕度和幅值裕度,也学会了用它对某一电路图进行仿真。
与此同时,通过此次课程设计,加深了我对系统进行滞后-超前设计过程的理解,熟练了我对系统各参量的计算过程。
总而言之,这次课程设计让我受益匪浅。
不仅加深了我对课本理论知识的理解,也锻炼了我的动手设计能力。
参考文献[1]陈杰主.MATLAB宝典.北京:电子工业出版.2007.[7]薛定宇.MATLAB语言及应用.北京:清华大学出版社.2004.[3]李国勇.智能控制与其MATLAB实现.北京:电子工业出版社.2005.[4]胡寿松.自动控制原理.北京:科学出版社.2007.[5]王万良.自动控制原理.北京:高等教育出版社.2008.[6]黄坚.自动控制原理及其应用[M].北京:高等教育出版社.2004.。