高中数学知识点精讲精析 结构图
- 格式:docx
- 大小:50.42 KB
- 文档页数:2
1.3.2 全集与补集1.全集:一般地,在研究某些集合的时候,这些集合往往是某个给定的集合的子集,这个给定的集合叫作全集,常用符号U 表示.全集含有我们所要研究的这些集合的全部元素.2.补集(或余集):设U 是全集,A 是U 的一个子集(即A U ),则由U 中所有不属于A 的元素组成的集合,叫作U 中子集A 的补集(或余集),记作:C U A ,即 C U A={x|x ∈U ,且x A}.3. 求集合的交集.并集和补集都是集合的运算; 两个集合运算的结果仍然是一个集合. ②主要运算性质:A ∩A=A ,A ∪A=A ;A ∩B=B ∩A ,A ∪B=B ∪A ;(A ∩B )∩C=A ∩(B ∩C ),(A ∪B )∪C=A ∪(B ∪C );A ∩(B ∪C )=(A ∩B )∪(B ∩C ),A ∪(B ∩C )=(A ∪B )∩(B ∪C ); C U (A ∩B )=C U A ∪C U B ,C U (A ∪B )=C U A ∩C U B③主要运算关系:A ∩B A ,A ∩B B ;A ∪B A ,A ∪B B ;A ∩B=A AB ,A ∪B=A A B ;说明:对以上运算法则和运算关系的理解可结合Venn 图进行例1 已知集合A={x|0≤x<1},求C R A.分析:本题求解集合A 在实数集R 中的补集,即求所有不属于A 的元素组成的集合. 解:C R A={x|x<0或x ≥1}.例2. (1)试写出集合A ={a ,b ,c}的所有子集;(2)已知A ={x ∣x<a},B ={x ∣x<3},若A B ,试求a 的取值范围.解:(1)集合{a ,b ,c}的所有子集是(2)借助于数轴知例2不等式组的解集为A ,,试求A 及,并把它们分别表示在数轴上.解:⊆∉⊆⊆⊇⊇⇔⊆⇔⊇⊆,{},{},{}{,},{,},{,},a b c a b a c b c ∅},,{c b a 3a ≤⎩⎨⎧≤->-063012x x R U =A U C }221|{}063,012|{≤<=≤->-=x x x x x A 且}2,21|{>≤=x x x A U C 或例3 设,求和.解:=={x|0<x 1}==R 例4(1)若U =Z ,A ={x|x =2k ,k ∈Z}B ={x| x =2k +1,k ∈Z},则C U A = B .C U B = A .(2)设S =R ,A ={x ∣-1<x<2},求C S A.解:C S A ={x|x}1|{},0|{≤=>=x x B x x A B A B A A B {|0}x x>{|1}x x ≤≤A B {|0}x x>{|1}x x ≤21}x ≥≤-或。
空间直角坐标系中点的坐标1.空间中点的坐标:P (x ,y ,z ),确定方法:由P 作PP '⊥坐标平面xOy ,则P '点是平面xOy 上的点,其坐标为(x ,y ,O ),这样就确定了P 的横坐标x 和纵坐标y.若PP '与z 轴正半轴在平面xOy 同侧,则z=|PP '|;若PP '与z 轴正半轴在平面xOy 异侧,则z=-|PP '|,这样就确定了P点的竖坐标z.2.坐标平面上点的坐标:①xOy 平面上点的坐标:(x ,y ,0);xOz 平面上点的坐标:(x ,O ,z );yOz 平面上点的坐标:(0,y ,z );②x 轴上点的坐标:(x ,0,0);y 轴上点的坐标:(0,y ,0);z 轴上点的坐标:(0,0,z )3.空间直角坐标系中长方体各顶点的坐标:设长方体ABCD -A 'B 'C 'D '的长.宽.高分别为,将A 点放在坐标原点,AB 放在x 轴正半轴上,AD 放在y 轴正半轴上,如图:则A (0,0,0),B (a ,0,0),C (a ,b ,0),D (0,b ,0),A '(0,0,c ),B '(a ,0,c ),C '(a ,b ,c ),D '(0,b ,c ).例1 已知A (x ,2,3).B (5,4,7),且|AB |=6,求x 的值.解:Q |AB |=6,∴ (x - 5)× (x - 5) + (2 - 4) ×(2 - 4)2+ (3 - 7)×(3 - 7) = 36 ,即 (x - 5)2 = 16 ,解得x =1 或x =9.例3求点P (1,2,3)关于坐标平面xOy 的对称点的坐标.解:设点P 关于坐标平面xOy 的对称点为P ¢ ,连PP ¢ 交坐标平面xOy 于Q , 则PP ¢ ^ 坐标平面xOy ,且|PQ |=| P ¢ Q|,∴ P ¢ 在 x 轴.y 轴上的射影分别与 P 在 x 轴.y 轴上的射影重合, P ¢ 在 z 轴上的射影与 P 在 z 轴上的射影关于原点对称,∴ P ¢ 与P 的横坐标.纵坐标分别相同,竖坐标互为相反数,,,a b c∴点P(1,2,3)关于坐标平面xOy 的对称点的坐标为(1,2,3).。
6.2.1 频率分布表频率分布表或频率分布条形图相互补充,使我们对数据的频率分布情况了解得更加清楚.(2)①各长条的宽度要相同;②相邻长条之间的间隔要适当.频率分布表——当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.全距:我们将取值区间的长度称为全距.分成区间的长度称为组距.编制频率分布表的步骤(1)求全距,决定组数和组距,组距=全距/组数;(2)分组,组内数值所在区间取左闭右开区间,最后一组取闭区间;.1. 从规定尺寸为25.40mm的一堆产品中任意抽取100件,测得它们的实际尺寸如下:25.39 25.36 25.34 25.42 25.45 25.38 25.39 25.42 25.47 25.35 25.41 25.43 25.44 25.48 25.45 25.43 25.46 25.40 25.51 25.45 25.40 25.39 25.41 25.36 25.38 25.31 25.56 25.43 25.40 25.38 25.37 25.44 25.33 25.46 25.40 25.49 25.34 25.42 25.50 25.37 25.35 25.32 25.45 25.40 25.27 25.43 25.54 25.39 25.45 25.43 25.40 25.43 25.44 25.41 25.53 25.37 25.38 25.24 25.44 25.40 25.36 25.42 25.39 25.46 25.38 25.35 25.31 25.34 25.40 25.36 25.41 25.32 25.38 25.42 25.40 25.33 25.37 25.41 25.49 25.35 25.47 25.34 25.30 25.39 25.36 25.46 25.29 25.40 25.37 25.33 25.40 25.35 25.41 25.37 25.47 25.39 25.42 25.47 25.38 25.39求该组数据的频率分布.【解析】求一组数据的频率分布,可以按以下的步骤进行:一、求全距即数据中最大值与最小值的差二、决定组距与组数组距=全距/组数三、分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;四、登记频数,计算频率,列出频率分布表2. 为了考察某种大麦穗长的分布情况,在一块试验地里抽取了100个穗,量得它们的长度如下(单位:厘米):列出样本的频率分布表【解析】先将学生分成4人一小组,对于每一步,先由各小组提出做法,再由各小组报告每一步的结果,在第2步可开展一些讨论,确定分成多少组比较合适,这样由学生动脑、动手亲自实践,有利于学生熟悉解题每一步的要求,教师也能及时发现学生在理解解题每一步要求中存在的问题再及时解决.解:(1)计算最大值与最小值的差在样本数据中,最大值是7.4,最小值是4.0它们的差是7.4-4.0=3.4(厘米)(2)决定组距与组数于是取定组距为0.3厘米,组数为12.(3)决定分点使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么,所分的12个小组可以是:3.95~4.25,4.25~4.55,4.55~4.85,……,7.25~7.55.。
1 全等与相似1、在数学上,两个图形可以完全重合,或者说两个物体大小、形状完全相等,那么这两个物体全等。
“全等”用符号“≌”表示,读作“全等于”.2、一个图形经过翻折、平移和旋转变换所得到的新图形一定与原图形全等。
反过来,两个全等的图形经过上述变换后一定可以互相重合.3、两个多边形全等,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合角的叫对应角.三角形全等的判定公理及推论有 (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS”(5)“斜边、直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA 和SSA ,这两种情况都不能唯一确定三角形的形状. 全等三角形的性质全等三角形的对应角相等、对应边相等. 注意:1)性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反.2)利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便.1. 如图1,在正方体ABCD A B C D 1111中,M 、N 分别是棱AB 、BC 上的点,P 是棱DD 1的中点。
求M 、N 在什么位置时,PB ⊥面MNB 1,并证明之.图1【解析】当M 、N 分别是棱AB 、BC 的中点时,PB ⊥面MNB 1 连接AC 、DB ,则AC ⊥DB又PD ⊥AC ,由三垂线定理得AC ⊥PB 在正方形ABCD 中,由MN ∥AC ,得MN ⊥PB 取C C 1中点E ,连接PE ,则PE ⊥面BCC B 11 在正方形BCC B 11中,Rt B BN Rt BCE ∆∆1≅ 则∠∠BB N CBE 1=,而∠∠BB N BNB 1190+=︒ 故∠∠CBE BNB +=︒190 即B N BE 1⊥由三垂线定理得:PB ⊥B N 1 从而PB ⊥面MNB 1。
容斥原理一、知识结构图容斥原理二、方法讲解1、容斥原理Ⅰ:两量重叠问题A 类与B 类元素个数的总和=A 类元素的个数+B 类元素个数—既是A 类又是B 类的元素个数用符号可表示成:A ∪B=A+B-A ∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思;符号“∩”读作“交”,相当于中文“且”的意思。
)则称这一公式为包含于排除原理,简称容斥原理。
图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A ∩B ,即阴影面积。
包含与排除原理告诉我们,要计算两个集合A 、B 的并集A ∪B 的元素的个数,可分以下两步进行:第一步:分别计算集合A 、B 的元素个数,然后加起来,即先求A+B (意思是把A 、B 的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=A ∩B (意思是“排除”了重复计算的元素个数)。
2、容斥原理Ⅱ:三量重叠问题A 类、B 类与C 类元素个数的总和=A 类元素的个数+B 类元素个数+C 类元素个数—既是A 类又是B 类的元素个数—既是B 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数。
用符号表示为:A ∪B ∪C=A+B+C-A ∩B-B ∩C-A ∩C+A ∩B ∩C 图示如下:3、解答有关包含排除问题的一般方法在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考。
三、例题精讲例题1、把面积35cm ²和面积27cm ²的大小两个圆平放在桌面上,有一部分重叠,重叠部分面积为8cm ²,求被盖住桌面的面积? 答案:面积为35+27-8=54cm 2练习1、实验小学四年级二班,参加语文兴趣小组的有 28 人,参加数学兴趣小组的有 29 人,有12 人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组? 答案:参加的人有:28+29-12=45人例2、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加,那么有多少人两个小组都不参加? 答案:参加兴趣小组:15+18-10=23(人) 都不参加:40-23=17(人)40 航模 数学1810 15练习2、四(二)班有 48 名学生,在一节自习课上,写完语文作业的有 30 人,写完数学作业的有 20 人,语文数学都没写完的有 6 人. ⑴ 问语文数学都写完的有多少人? ⑵ 只写完语文作业的有多少人? 答案:(1)至少完成一科作业:48-6=42人 两科都写完:30+20-42=8人 (2)只写完语文:30-8=22人∩CC ∩1. 先包含——A +B +C重叠部分A ∩B 、B ∩C 、C ∩A 重叠了2次,多加了1次. 2. 再排除——A +B +C -A ∩B -B ∩C -A ∩C 重叠部分A ∩B ∩C 重叠了3次,但是在进行A +B +C -A ∩B -B ∩C -A ∩C 计算时都被减掉了.C B A 例3、在 1—100 的全部自然数中,不是 3 的倍数也不是 5 的倍数的数有多少个? 答案:3的倍数:100÷3=33个···1 5的倍数:100÷5=20个既是3又是5的倍数:100÷15=6个···10 所以3或5的倍数:33+20-6=47个既不是3也不是5的倍数:100-47=53个练习3、50 名同学面向老师站成一行.老师先让大家从左至右按 1,2,3,...,49,50 依次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 6 的倍数的同学向后转.问:现在面向老师的同学还有多少名? 答案:4的倍数:50÷4=12人...2 6的倍数:50÷6=8人 (2)既是4又是6的倍数:50÷12=4人···2 所以4或6的倍数:12+8-4=16人既不是4也不是6的倍数:50-16=34人最后向前的同学包含:既不是4和6的倍数和同时是4和6的倍数 共有:4+34=38人例4、在桌面上放置着三个两两重叠的近圆形纸片(如图,三个纸片等大),它们的面积都是100 cm ²,并知A 、B 两圆重叠的面积是20 cm ²,A 、C 两圆重叠的面积为45 cm ²,B 、C 两圆重叠的面积为31 cm ²,三个圆共同重叠的面积为15 cm ²,求盖住桌子的总面积。
1.2 子集.全集.补集1.子集的定义:如果集合A 的任一个元素都在集合B 中 则称集合A 为集合B 的子集,记作:A B特别的: 2.真子集的定义:如果A B 并且,则称集合A 为集合B 的真子集.解读:(1)空集是任何集合的子集. 任何一个集合是它本身的子集.空集是任何非空集合的真子集.谈起子集,特别要注意的是空集,记住空集是任何集合的子集,而不是任何集合的真子集,如空集就不是空集的真子集,故空集是任何非空集合的真子集.(2)元素与集合的关系是属于与不属于的关系,用符号""""∉∈表示;集合与集合之间的关系是包含,真包含,相等的关系.3.补集的定义:设A 为S 的子集,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记作:={x ∣x ∈S 且x A},如果集合S 包含我们所要研究的各个集合,就把S 称为全集.[例1].下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有( )A .0个B .1个C .2个D .3个解析:空集合不含任何元素,与{0}不同,故(1)错;空集市本身的子集;(3)(4)是正确的.故选C.[例2] 已知集合且B A ,求a 的值. 解析:由已知,得:A ={-3,2}, 若BA ,则B =Φ,或{-3},或{2}.若B =Φ,即方程ax +1=0无解,得a =0. 若B ={-3}, 即方程ax +1=0的解是x = -3, 得a = .若 B ={2}, 即方程ax +1=0的解是x = 2, 得a = .综上所述,可知a 的值为a =0或a =,或a = .⊆B A ⊇或A AA ⊆∅⊆⊆B A ≠AC S ∉},01|{},06|{2=+==-+=ax x B x x x A 3121-3121-。
第六节球面距离
要点精讲
球面上两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度.(大圆就是经过球心的平面截球面所得的圆)
我们把这个弧长叫做两点的球面距离
求法如下:
如下图,设若角AOB(球心角)为θ,大球的半径为R,则球面距离为Rθ
球面距离计算公式:d(x1,y1,x2,y2)=r*arccos(sin(x1)*sin(x2)+cos(x1)*cos(x2)*cos(y1-y2))
典型例题
【例1】球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过这3个点的小圆的周长为,那么这个球的半径为()
A. B. C. 2 D.
【答案】B
【解析】设球心为O,由题设知三棱锥O—ABC是正四面体,且的外接圆半径是2,设球半径为R,则,∴
【例2】如图,A、B、C是表面积为的球面上三点,AB=2,BC=4,,O为球心,则直线OA与截面ABC所成的角是()
A. B. C. D.
【答案】D
【解析】易得该球的半径是,在截面圆上AB=2,BC=4,,得
,则截面圆的圆心是BC的中点O1,截面圆半径是2,由球的知识知OO1⊥截面ABC
所以是直线OA与截面ABC所成的角
在中,
所以
故直线OA与截面ABC所成的角是。
专题3.1函数(精讲精析篇)提纲挈领点点突破热门考点01 求函数的定义域1.(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.2.已知函数的具体解析式求定义域的方法(1)若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.3.抽象函数的定义域的求法(1)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由a≤g(x)≤b求出.(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.【典例1】(2019·江苏高考真题)函数2=+-_____.76y x x【典例2】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2B.1[1]3,C.[-15],D.无法确定【典例3】(2018·上海上外浦东附中高一月考)已知()f x 的定义域为[]3,3-,则()21f x -的定义域为_______________. 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达.热门考点02 求函数的解析式1. 求函数解析式的四种方法【典例4】(2016·浙江高考真题(文))设函数f(x)=x 3+3x 2+1.已知a≠0,且f(x)–f(a)=(x –b)(x –a)2,x R ∈,则实数a=_____,b=______.【典例5】(2019·邵阳市第十一中学高一期中)若()22144f x x x +=+,则()f x 的解析式为__________.【典例6】(2018·上海市金山中学高一期末)设()f x 是定义在R 上的函数,且满足对任意,x y 等式()()()22343f y x f x y x y -=-+-+恒成立,则()f x 的解析式为_____________.【特别提醒】谨防求函数解析式的两种失误:(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围. (2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).热门考点03 分段函数及其应用1.(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.3.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒:当分段函数的自变量范围不确定时,应分类讨论. 【典例7】(山东省2018年普通高校招生(春季))已知函数,则的值等于__________.【典例8】(2018·上海市金山中学高一期末)已知()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误的是( )A.(1)f x -的图象B.()f x -的图象C.(||)f x 的图象D.|()|f x 的图象【典例9】(上海高考真题(理))设若,则a 的取值范围为_____________.【典例10】(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________.【典例11】(2014浙江高考理第15题)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______ 【总结提升】关于分段函数的命题角度主要有:一是分段函数求值,二是分段函数与方程、不等式结合.由于分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值、解方程(不等式)时,一定要注意自变量的值所在子集,再代入相应的解析式求值.热门考点04 函数的单调性与最值(值域)1.增函数、减函数(1)增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.函数的最值(1)最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:①对于任意的x I ∈,都有()f x M ≤; ②存在0x I ∈,使得()0f x M =.那么,我们称M 是函数()y f x =的最大值.(2)最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: ①对于任意的x I ∈,都有()f x m ≥; ②存在0x I ∈,使得()0f x m =.那么,我们称m 是函数()y f x =的最小值.【典例12】函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞-时是减函数,则(1)f 等于( )A .-3B .13 C. 7 D . 5【典例13】(2019·山西省长治市第二中学校高一期中)若函数2()21f x x mx =-+在[2,)+∞上是增函数,则实数m 的取值范围是( ) A.(,1]-∞B.[1,)+∞C.[2,)+∞D.(,2]-∞【典例14】函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的最大值为( )A.1B.2C.12D.13【总结提升】1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反; (3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).3.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).*4.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函数值的大小比较.5.函数单调性的应用(1)比较函数值大小(随着基本初等函数的学习,逐步体会)比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (2)求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )). (3)利用单调性求参数的范围(或值)的方法①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. 6.函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法. (3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +kx(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决.*(5)导数法利用导函数求出最值,从而确定值域.热门考点05 函数的奇偶性、周期性与单调性1.判断函数的奇偶性的两种方法 (1)定义法:(2)图象法:2.函数奇偶性的应用 (1)求函数解析式①将所求解析式自变量的范围转化为已知解析式中自变量的范围;②将转化后的自变量代入已知解析式;③利用函数的奇偶性求出解析式. (2)求参数值在定义域关于原点对称的前提下,根据奇函数满足f (-x )=-f (x )或偶函数满足f (-x )=f (x )列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f (0)=0列式求解,若不能确定则不可用此法. *3.函数周期性的判定及应用(1)只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. 【典例15】(2017·全国高考真题(理))函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ).A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【典例16】(2018·全国高考真题(理))已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( ) A.50-B.0C.2D.50【典例17】(2017·山东高考真题(文))已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【典例18】(2013·上海高考真题(理))设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是 .【总结提升】 拓展:1.函数奇偶性的判断(1)复合函数奇偶性的判断:若复合函数由若干个函数复合而成,则复合函数的奇偶性可根据若干个函数的奇偶性而定,概括为“同奇为奇,一偶则偶”.(2)抽象函数奇偶性的判断:应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判断. 2.熟记4种常见抽象函数的周期 (1)若f (x +a )=-f (x ),则T =2|a |; (2)若f (x +a )=1f x,则T =2|a |; (3)若f (x +a )=-1f x,则T =2|a |;(4)若f (x +a )=f (x -a ),则T =2|a |.3.当函数具有两个对称时函数一般也是周期函数.当函数()f x 是奇函数,又有对称轴x m =时,则函数一定是周期函数,且周期为4T m =;若()f x 有两条对称轴x a =和x b =,则函数是周期函数,2b a -是函数的一个周期;同样若()f x 有两个对称中心(,0)a 和(,0)b ,则函数是周期函数,2b a -是函数的一个周期.巩固提升1.有意义的实数x 的取值范围是( )A.{|0x x >或}1x <-B.{|0x x …或}1x -„ C.{}10x x -<<D.{}10x x -剟2.(2019·重庆高一)若()335f x x +=+,则()f x 等于( ). A.32x + B.38x + C.31x -D.34x -3.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关4.(2019·江苏高一月考)函数()()02f x x =-+ ) A.()2,+∞ B.()1,-+∞ C.()()1,22,-+∞UD.R5.(2014·全国高考真题(文))奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .2-B .1-C .0D .16.(2019·山西省长治市第二中学校高一期中)已知函数2()3f x ax bx =++是定义在[3,2]a a -上的偶函数,则+a b 的值是( ) A.1-B.1C.3-D.07.(2019·浙江学军中学高一期中)函数()f x = )A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数8.(2017·全国高考真题(文))已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________.9.(2016·四川高考真题(文))若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+f (2)= .10.(2019·上海闵行中学高一期中)已知21(1)()(1)(1)x x f x f x x -<⎧=⎨-≥⎩,则(3)f =________11.(2019·上海市第二中学高二期末)若函数()3f x x a =+为奇函数,则()1f =______.12.(2018·上海上外浦东附中高一月考)函数()21y k x b =++在R 上是增函数,则实数k 的取值范围是_________.13.(2018·上海上外浦东附中高一月考)已知函数2y x =,[]0,3x ∈,则函数的值域为__________.14.(2015·浙江高考真题(文))已知函数()2,1{ 66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ , ()f x 的最小值是 .15.(2019·上海市高桥中学高一期末)已知偶函数()f x 在[)0,+∞单调递减,()20f =,若()10f x -<,则x 的取值范围是_________.16.(2018·上海曹杨二中高一期末)设函数()1f x x =-,若0a b <<且()()f a f b =,则ab 的取值范围是_________;专题3.1函数(精讲精析篇)提纲挈领点点突破热门考点01 求函数的定义域1.(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 2.已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集. (2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 3.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【典例1】(2019·江苏高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】由已知得2760x x +-≥,即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例2】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2 B.1[1]3,C.[-15],D.无法确定【答案】C 【解析】由已知02x ≤≤,1315x ∴-≤-≤,即函数()f x 的定义域是[-15],, 故选:C .【典例3】(2018·上海上外浦东附中高一月考)已知()f x 的定义域为[]3,3-,则()21f x -的定义域为_______________.【答案】[]22-,【解析】由于函数()y f x =的定义域为[]3,3-,对于函数()21y f x =-,有2313x -≤-≤,即224x -≤≤,即24x ≤,解得22x -≤≤.因此,函数()21y f x =-的定义域为[]22-,. 故答案为:[]22-,. 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达.热门考点02 求函数的解析式1. 求函数解析式的四种方法【典例4】(2016·浙江高考真题(文))设函数f(x)=x 3+3x 2+1.已知a≠0,且f(x)–f(a)=(x –b)(x –a)2,x R ∈,则实数a=_____,b=______.【答案】-2,1【解析】()()32323232313133f x f a x x a a x x a a -=++---=+--,()()()()2322222x b x a x a b x a ab x a b --=-+++-,所以223223{20 3a b a ab a b a a --=+=-=--,解得2{ 1a b =-=. 【典例5】(2019·邵阳市第十一中学高一期中)若()22144f x x x +=+,则()f x 的解析式为__________.【答案】2()1f x x =- 【解析】 令21x t +=,12t x -∴=,代入()22144f x x x +=+, ()22114()4122t t f t t --∴=+⋅=-,故答案为:2()1f x x =-.【典例6】(2018·上海市金山中学高一期末)设()f x 是定义在R 上的函数,且满足对任意,x y 等式()()()22343f y x f x y x y -=-+-+恒成立,则()f x 的解析式为_____________.【答案】()()31f x x x =+ 【解析】Q ()f x 是定义在R 上的函数,且对任意,x y ,()()()22343f y x f x y x y -=-+-+恒成立,∴令y x =,得()()()22343f x x f x x x x -=-+-+, 即()()()2333f x f x x x =-++,()()3333f x x x ∴=+, ()()31f x x x ∴=+.故答案为:()()31f x x x =+ 【特别提醒】谨防求函数解析式的两种失误:(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围. (2)利用换元法求解析式时要注意新元的取值范围.如已知f )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).热门考点03 分段函数及其应用1.(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.3.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒:当分段函数的自变量范围不确定时,应分类讨论. 【典例7】(山东省2018年普通高校招生(春季))已知函数,则的值等于__________. 【答案】【解析】 因为,所以.【典例8】(2018·上海市金山中学高一期末)已知()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误的是( )A.(1)f x -的图象B.()f x -的图象C.(||)f x 的图象D.|()|f x 的图象【答案】D 【解析】作出()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,如下图(1)f x -的图象,由()f x 的图象向右平移一个单位,故A 正确;()f x -的图象,由()f x 的图象y 轴右侧的翻折到左侧,左侧翻折到右侧,故B 正确; (||)f x 的图象,由()f x 的图象右侧的保留不变,且把右边的翻折到左边,故C 正确;|()|f x 的图象,把x 轴下方的翻折到上方,图象与()f x 一样,故D 错误;故选:D【典例9】(上海高考真题(理))设若,则a 的取值范围为_____________.【答案】(,2]-∞ 【解析】由题意,若2a >,则(2)2f =不合题意,因此2a ≤,此时[,)x a ∈+∞时,2()f x x =,满足(2)4f =.【典例10】(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________. 【答案】.【解析】 由,得或,得或,即得取值范围是,故答案为.【典例11】(2014浙江高考理第15题)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______【答案】a ≤【解析】由题意()()()202f a f a f a <⎧⎪⎨+≤⎪⎩或()()202f a f a ≥⎧⎪⎨-≤⎪⎩,解得()2f a ≥-,当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得,0a <或a ≤≤,故a ≤【总结提升】关于分段函数的命题角度主要有:一是分段函数求值,二是分段函数与方程、不等式结合.由于分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值、解方程(不等式)时,一定要注意自变量的值所在子集,再代入相应的解析式求值.热门考点04 函数的单调性与最值(值域)1.增函数、减函数(1)增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.函数的最值(1)最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: ①对于任意的x I ∈,都有()f x M ≤; ②存在0x I ∈,使得()0f x M =.那么,我们称M 是函数()y f x =的最大值.(2)最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: ①对于任意的x I ∈,都有()f x m ≥;②存在0x I ∈,使得()0f x m =.那么,我们称m 是函数()y f x =的最小值.【典例12】函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞-时是减函数,则(1)f 等于( )A .-3B .13 C. 7 D . 5 【答案】B【解析】由题意知函数()f x 的对称轴224b mx a =-==-,所以8m =-,所以(1)28313f =++=,故选B .【典例13】(2019·山西省长治市第二中学校高一期中)若函数2()21f x x mx =-+在[2,)+∞上是增函数,则实数m 的取值范围是( ) A.(,1]-∞ B.[1,)+∞ C.[2,)+∞ D.(,2]-∞【答案】D 【解析】由题意,函数2()21f x x mx =-+,开口向上,其对称轴x m =,∵在[2,)+∞上是增函数,∴2m ≤,即实数m 的取值范围为(,2]-∞, 故选D.【典例14】函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的最大值为( )A.1B.2C.12D.13【答案】B 【解析】当1x ≥时,函数()1f x x=在()1,+∞单调递减,此时()f x 在1x =处取得最大值,最大值为()11f =; 当1x <时,函数()22f x x =-+在0x =处取得最大值,最大值为()02f =. 综上可得,()f x 的最大值为2.故选:B . 【总结提升】1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反; (3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).3.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).*4.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函数值的大小比较.5.函数单调性的应用(1)比较函数值大小(随着基本初等函数的学习,逐步体会)比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (2)求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )). (3)利用单调性求参数的范围(或值)的方法①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. 6.函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法.(3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +kx(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决. *(5)导数法利用导函数求出最值,从而确定值域.热门考点05 函数的奇偶性、周期性与单调性1.判断函数的奇偶性的两种方法 (1)定义法:(2)图象法:2.函数奇偶性的应用 (1)求函数解析式①将所求解析式自变量的范围转化为已知解析式中自变量的范围;②将转化后的自变量代入已知解析式;③利用函数的奇偶性求出解析式.(2)求参数值在定义域关于原点对称的前提下,根据奇函数满足f (-x )=-f (x )或偶函数满足f (-x )=f (x )列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f (0)=0列式求解,若不能确定则不可用此法. *3.函数周期性的判定及应用(1)只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. 【典例15】(2017·全国高考真题(理))函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]- B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【典例16】(2018·全国高考真题(理))已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( ) A.50- B.0C.2D.50【答案】C 【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.【典例17】(2017·山东高考真题(文))已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【答案】6 【解析】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+= ()16f =-=. 【典例18】(2013·上海高考真题(理))设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是 .【答案】87a ≤- 【解析】∵()y f x =是定义在R 上的奇函数,∴当0x >时,2()()97a f x f x x x=--=+-,而229729767a a x x a x x+-≥⋅-=-,当些仅当3x a =时,“=”成立,∴当0x >时,要使()1f x a ≥+恒成立,只需86717a a a -≥+⇒≤-或85a ≥,又∵0x =时,(0)01f a =≥+,∴1a ≤-,综上,故实数a 的取值范围是8(,]7-∞-.【总结提升】 拓展:1.函数奇偶性的判断(1)复合函数奇偶性的判断:若复合函数由若干个函数复合而成,则复合函数的奇偶性可根据若干个函数的奇偶性而定,概括为“同奇为奇,一偶则偶”.(2)抽象函数奇偶性的判断:应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判断. 2.熟记4种常见抽象函数的周期 (1)若f (x +a )=-f (x ),则T =2|a |; (2)若f (x +a )=1f x,则T =2|a |; (3)若f (x +a )=-1f x,则T =2|a |;(4)若f (x +a )=f (x -a ),则T =2|a |.3.当函数具有两个对称时函数一般也是周期函数.当函数()f x 是奇函数,又有对称轴x m =时,则函数一定是周期函数,且周期为4T m =;若()f x 有两条对称轴x a =和x b =,则函数是周期函数,2b a -是函数的一个周期;同样若()f x 有两个对称中心(,0)a 和(,0)b ,则函数是周期函数,2b a -是函数的一个周期.巩固提升1.有意义的实数x 的取值范围是( )A.{|0x x >或}1x <-B.{|0x x …或}1x -„ C.{}10x x -<< D.{}10x x -剟【答案】C 【解析】依题有,2x x ⎧--≥⎪≠,解得10x -<<.故选:C .2.(2019·重庆高一)若()335f x x +=+,则()f x 等于( ). A.32x + B.38x + C.31x - D.34x -【答案】D 【解析】令3x t +=,所以3x t =-,所以()()33534f t t t =-+=-,所以()34f x x =-, 故选:D.3.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .4.(2019·江苏高一月考)函数()()02f x x =-+ ) A.()2,+∞ B.()1,-+∞ C.()()1,22,-+∞U D.R【答案】C 【解析】幂函数的零次方底数不为0,即20x -≠ ,2x ≠;偶次方根被开方数大于等于零,分式分母不为零,即10x +>,1x >- 所以()()1,22,x ∈-+∞U . 故选:C5.(2014·全国高考真题(文))奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .2-B .1-C .0D .1【答案】D 【解析】(2)f x +是偶函数,则()f x 的图象关于直线2x =对称,又()f x 是奇函数,则(0)0f =,且()f x 是周期函数,且周期为4,所以(8)(9)(0)(1)1f f f f +=+=.故选D .6.(2019·山西省长治市第二中学校高一期中)已知函数2()3f x ax bx =++是定义在[3,2]a a -上的偶函数,则+a b 的值是( ) A.1- B.1C.3-D.0【答案】B 【解析】∵函数2()3f x ax bx =++是定义在[3,2]a a -的偶函数, ∴320a a -+=,解得1a =,由()()f x f x =-得0b =,即1a b +=, 故选:B.7.(2019·浙江学军中学高一期中)函数()249x x f x x+-=-的奇偶性为( )A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数【答案】B 【解析】 函数()249x x f x x +-=-,所以有290->x ,解得33x -<<, 所以()f x 定义域为()3,3- 此时40x -<恒成立, 所以()2224999x x f x x x x +-===---,()()()2299f x f x xx -===---,所以()f x 是偶函数, 故选:B8.(2017·全国高考真题(文))已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________. 【答案】12 【解析】函数()f x 是定义在上的奇函数,()()f x f x -=-,则()()f x f x =--,()()()()322222212f f ⎡⎤=--=-⨯-+-=⎣⎦.9.(2016·四川高考真题(文))若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+。
1.8相关性散点图:在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。
从散点图可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线近似,这样近似的过程成为曲线拟合,若两个变量x 和y的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的,如下图所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关为非线性相关的。
此时,可以用一条曲线来拟合,如下图如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的,如下图典型例题例.一般说来,一个人的身高越高,他的手就越大,相应地,他的右手就越长,因此,人的身高与右手之间存在着一定的关系。
为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手长的数据如下表(1)根据上表中的数据,制成散点图。
你能从散点图中发现身高与右手长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系(3)如果一个学生的身高是188cm,你能估计他的右手大概有多长吗?解:根据上表中的数据,制成的散点图如下图从散点图上可以发现,身高与右手之间的总体趋势是成一直线,也就是说,它们直线是线性相关的。
如下图设这条直线的方程是:b kx y +=,其中154.0321641771921≈=--=k ,代人一点的坐标求出231.61381-≈-=b ,进而231.6154.0-=x y ,即为所求直线方程。
所以身高为188cm 的学生,他的右手长大概是22.7cm 左右。
6.2.2 频率分布直方图与折线图画频率分布直方图的步骤:(1)计算最大值与最小值的差(知道这组数据的变动范围)(2)决定组距与组数(将数据分组)组数:将数据分组,当数据在100个以内时,按数据多少常分5-12组.组距:指每个小组的两个端点的距离.(4)决定分点.(5)列出频率分布表.(6)画出频率分布直方图.画频率分布直方图应注意的问题:(1)频率分布直方图的横轴和纵轴与前面学的直角坐标系中的横轴和纵轴有所不同,两轴的单位长度可以不同;两轴的交点也不一定是坐标为(0,0)的点.(2)各个小长方形的面积等于相应各组的频率;各小长方形的面积的和等于1.如果将频率分布直方图中各相临的矩形的上底边中点顺次连接起来,就得到频率分布折线图.当样本容量无限增大,组距无限缩小,这时与直方图相应的频率折线图将趋于一条光滑曲线——总体密度曲线.总体密度曲线反映了总体在各个范围内取值的概率,精确地反映了总体的分布规律.是研究总体分布的工具.100名年龄为17.5岁~18岁试根据上述数据画出样本的频率分布直方图,并对相应的总体分布作出估计.【解析】解:按照下列步骤获得样本的频率分布.(1)求最大值与最小值的差.在上述数据中,最大值是76,最小值是55,它们的差(又称为极差)是76-55=21.所得的差告诉我们,这组数据的变动范围有多大.(2)确定组距与组数.(3)决定分点.根据本例中数据的特点,第1小组的起点可取为54.5,第1小组的终点可取为56.5,为了避免一个数据既是起点,又是终点从而造成重复计算,我们规定分组的区间是“左闭右开”的.这样,所得到的分组是[54.5,56.5],[56.5,58.5],…,[74.5,76.5](4)列频率分布表.频率分布表(5)绘制频率分布直方图,频率分布直方图如图所示由于图中各小长方形的面积等于相应各组的频率,这个图形的面积的形式反映了数据落在各个小组的频率的大小.在反映样本的频率分布方面,频率分布表比较确切,频率分布直方图比较直观,它们起着相互补充的作用.在得到了样本的频率后,就可以对相应的总体情况作出估计.例如可以估计,体重在(64.5,66.5)kg的学生最多,约占学生总数的16%;体重小于58.5kg的学生较少,约占8%等等.2. 抽查某地区55名12岁男生的身高(单位:cm)的测量值如下:128.1 144.4 150.3 146.2 140.6 126.0 125.6 127.7 154.4 142.7 141.2 142.7 137.6 136.9 132.3 131.8 147.7 138.4 136.6 136.2 141.6 141.1 133.1 142.8 136.8 133.1 144.5 142.4 140.8 127.7 150.7 160.3 138.8 154.3 147.9 141.3 143.8 138.1 139.7 142.9 144.7 148.5 138.3 135.3 134.5 140.6 138.4 137.3 149.5 142.5 139.3 156.1 152.2 129.8 133.2试根据以上数据画出样本的频率分布直方图和折线图.【解析】3. 关于频率 分布直方图的下列说法中,正确的是( ) (A )、直方图的高表示某数的频率; (B )、直方图的高表示该组上的个体在样本中出现的频率; (C )、直方图的高表示该组上的个体与组距的比值; (D )、直方图的高表示该组上的个体在样本中出现的频率与组距的比值; 【解析】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,其面积表示数据的取值落在相应区间上的频率,因此每一个小矩形的高表示该组上的个体在样本中出现的频率与组距的比值,所以选(D ).4. 某校高一某班共有64名学生,下图是该班某次数学考试成绩的频率分布直方图,根据该图可知,成绩在110120间的同学大约有( )A 、 10B 、11C 、13D 、16 【解析】通过直方图可知:成绩在110120的频率是:2.023.015.01.005.01=----,所以成绩在110120之间的同学大约有:64×0.2=12.813≈人.故选择C点评:解决本题需要注意两点:所有小矩形的面积之和等于1;在分布图中若有高度相同的两个矩形,不能出现计算失误.5. 为了了解一大片经济林的生长情况,随机测量其中的100株的底部周长,得到如下数据表(长度单位:cm ):(1)编制频率分布表;(2)绘制频率分布直方图【分析】绘制频率分布直方图之前,一般地可先编制频率分布表,这样便于对数据进行分组及计算频数和频率. 分组一般以7~11组为宜.【解】(1)频率分布表(2)频率分布直方图:6. 如第5题,试画出树林底部周长的频率分布折线图.【分析】在频率分布直方图中,按照分组原则,在左边和右边各加一个区间,从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,这样得到的一条折线就是频率折线图.【解】取[75,80]的中点作为折线的起点,以(135,140)的中点作为折线的终点,连接各矩形上底中点所得折线即为所求(如图).。
3 柱坐标系和球坐标系
1.球坐标系
球坐标是一种三维坐标。
设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。
这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为
0 ≤ r < +∞,
0 ≤φ≤ 2π,
0 ≤θ≤ π.
r = 常数,即以原点为心的球面;
θ= 常数,即以原点为顶点、z轴为轴的圆锥面;
φ= 常数,即过z轴的半平面。
其中
x=rsinθcosφ
y=rsinθsinφ
z=rcosθ
在球坐标系中,沿基矢方向的三个线段元为:
dl(r)=dr, dl(θ)=rdθ, dl(φ)=rsinθdφ
球坐标的面元面积是:
dS=dl(θ)* dl(φ)=r^2*sinθdθdφ
体积元的体积为:
dV=dl(r)*dl(θ)*dl(φ)=r^2*sinθdrdθdφ
2.柱坐标系
如右图所示,柱坐标系中的三个坐标变量是r、φ、z。
与直角坐标系相同,柱坐标系中也有一个z变量。
各变量的变化范围是:0 ≤ r < +∞,
0 ≤φ≤ 2π
-∞<z<+∞
其中
x=rcosφ
y=rsinφ
z=z。
6.2.3 茎叶图
情景:某篮球运动员在某赛季各场比赛中的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50
如何分析该运动员的整体水平及发挥的稳定程度?
我们可以制作茎叶图,将数据有条理地列出来,方法是:
将所有两位数的十位数字作为茎,个位数字作为叶,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出.这样就得到该运动员得分的茎叶图.
1. 甲、乙两篮球运动员上赛季每场比赛的得分如下: 甲:12,15,24,25,31,31,36,36,37,39,44,49,50
乙:8,13,14,16,23,26,28,33,38,39,51
用茎叶图将这些数据列出来,观察数据的分布情况,比较这两位运动员的得分水平.
【解析】
从这张茎叶图可以看出,甲运动员的得分大致对称,平均得分、众数、中位数都0
1
2
3
4
5 52 54 976611 94 0
8 346 368 389 1 甲
乙
是30多分,乙运动员的得分没有甲对称,而且平均得分、众数、中位数都是20多分,因此甲运动员发挥比较稳定,得分情况比乙好.。
1.1.1 棱柱、棱锥、棱台1.棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.棱柱主要从下面几点把握:(1)组成元素:底面.侧面.侧棱.顶点.(2)本质特征:①有两个面相互平行;②其余各面的两面的公共边相互平行.(3)结构特征:①侧棱都相等,侧面是平行四边形;②两个底面相互平行;③过不相邻的两条侧棱的截面是平行四边形.(4)分类:棱柱的分类方法有两种:①按底面多边形的边数可分为三棱柱.四棱柱.五棱柱等;②按侧棱与底面是否垂直分为直棱柱.斜棱柱.2.棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.棱锥主要从下面几点把握:(1)组成元素:底面.侧面.侧棱.顶点.(2)结构特征:①有一个面是多边形;②其余各面是有一个公共点的三角形.(3)分类:①棱柱根据侧棱和底面的关系分为两种:一种当侧棱与底面不垂直时,称为斜棱柱;另一种当侧棱与底面垂直时,称为直棱柱.直棱柱的面若为正多边形则称为正棱柱.②按底面多边形的边数分为三棱锥.四棱锥.五棱锥等.棱锥主要从下面几点把握:(1)组成元素:底面.侧面.轴.母线.(2)结构特征:①平行于底面的截面都是圆;②过轴的截面是全等的等腰三角形.(3)表示方法:用表示轴的字母表示.3.棱台与多面体:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面.侧棱.顶点.棱台主要从下面几点把握:(1)组成元素:上.下底面.侧面.侧棱.顶点.(2)结构特征:各侧棱延长后相交于一点,两底面是平行的相似多边形.(3)分类:棱台是由棱锥用平行于底面的平面截得的,故其分类和棱锥的分类方法一样.多面体的结构特征由平面多边形(包括它们内部的平面部分)围成的几何体称为多面体.其中,各个额多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.连结不在同一面上的两个顶点的线段叫做多面体的对角线.把多面体的任一个平面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.一个多面体至少四个面.多面体按照它的面数分别叫做四面体.五面体.六面体等.几种常凸多面体间的关系几种特殊四棱柱的特殊性质名称特殊性质平行六面体底面和侧面都是平行四边行;四条对角线交于一点,且被该点平分直平行六面体侧棱垂直于底面,各侧面都是矩形;四条对角线交于一点,且被该点平分长方体底面和侧面都是矩形;四条对角线相等,交于一点,且被该点平分正方体棱长都相等,各面都是正方形四条对角线相等,交于一点,且被该点平分例1 用一个平面去截棱锥, 得到两个几何体, 下列说法正确的是()A 一个几何体是棱锥, 另一个几何体是棱台B 一个几何体是棱锥, 另一个几何体不一定是棱台C 一个几何体不一定是棱锥, 另一个几何体是棱台D 一个几何体不一定是棱锥, 另一个几何体不一定是棱台答案:D。
1.3.2 三角函数的图像与性质一、三角函数的性质1. 几何法作图第一步:列表.首先在单位圆中画出正弦线和余弦线.在直角坐标系的x 轴上任取一点,以为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成几等份,过圆上的各分点作x 轴的垂线,可以得到对应于角,,,…,2π的正弦线及余弦线(这等价于描点法中的列表).第二步:描点.我们把x 轴上从0到2π这一段分成几等份,把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点.第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.将y=sinx 的图象向左平移即得y=cosx 的图象2.用五点法作正弦函数和余弦函数的简图(描点法)(1)正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (,1) (π,0) (,-1) (2π,0) 1O 1O 6,0π3π2π2π2π23π(2)余弦函数y=cosx x ∈[0,2π]的图象中,五个关键点是:(0,1) (,0) (π,-1) (,0) (2π,1)3. 正弦函数的性质(1)定义域:正弦函数、余弦函数的定义域都是实数集R分别记作: y =sin x ,x ∈R y =cos x ,x ∈R(2)值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =+2k π,k ∈Z 时,取得最大值1.②当且仅当x =-+2k π,k ∈Z 时,取得最小值-1.而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.(3)周期性正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.函数及函数(其中A ,为常数,且)的周期(4)奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称(5)单调性 正弦函数在每一个闭区间[-+2k π,+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[+2k π,+2k π](k ∈Z )上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.二、正切函数的图象和性质1. 正切函数图象的作法在的区间作出它的图象2π23π2π2πR x ),x sin(A y ∈+=ϕωR x ),x cos(A y ∈+=ϕωωφ0,0A >≠ωωπ2T =2π2π2π23π⎪⎭⎫ ⎝⎛-2,2ππ,且的图象,称“正切曲线”正切函数的性质: 1. 定义域: 2. 值域:R3. 当时,当时4. 周期性:5. 奇偶性:奇函数6. 单调性:在开区间内,函数单调递增h(mm)与时间t(s)之间的函数关系如图所示(1)求该函数的周期;(2)求t =10s 时钟摆的高度.【解析】R x x y ∈=tan ()z k k x ∈+≠ππ2⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππz k k k x ∈⎪⎭⎫ ⎝⎛+∈2,πππ0>y z k k k x ∈⎪⎭⎫ ⎝⎛-∈πππ,20<y π=T ()x x tan tan -=-z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2解:(1)由图象知,周期为1.5s(2)故高度为20mm.2. 利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:;【解析】(1)解:作出正弦函数y=sinx ,x ∈[0,2π]的图象:由图形可以得到,满足条件的x 的集合为:(2)解:作出余弦函数y=cosx ,x ∈[0,2π]的图象:3. 求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么.(1)y =cos x +1,x ∈R ;(2)y =sin2x ,x ∈R .【解析】解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取得最大值的x 的集合{x |x =2k π,k ∈Z }.函数y =cos x +1,x ∈R 的最大值是1+1=2.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且使函数y =sin Z ,Z ∈R 取得最大值的Z 的集合是{Z |Z =+2k π,k ∈Z }由2x =Z =+2k π,得x =+k π即使函数y =sin2x ,x ∈R 取得最大值的x 的集合是{x |x =+k π,k ∈Z }.函数y =sin2x ,x ∈R 的最大值是1.4. 求下列函数的定义域:(1)y = (2)y=【解析】(10)(16 1.5)(1)20f f f =+⨯==21sin )1(≥x 21cos )2(≤x Z k k k ∈⎥⎦⎤⎢⎣⎡++,265,26ππππ2π2π4π4π11sin x +x cos解:(1)由1+sin x ≠0,得sin x ≠-1即x ≠+2k π(k ∈Z )∴原函数的定义域为{x |x ≠+2k π,k ∈Z }(2)由cos x ≥0得-+2k π≤x ≤+2k π(k ∈Z )∴原函数的定义域为[-+2k π,+2k π](k ∈Z )5. (1)函数y =sin(x +)在什么区间上是增函数?(2)函数y =3sin(-2x )在什么区间上是减函数?【解析】解:(1)函数y =sin x 在下列区间上是增函数:2k π-<x <2k π+(k ∈Z )∴函数y =sin(x +)为增函数,当且仅当2k π-<x +<2k π+即2k π-<x <2k π+(k ∈Z )为所求.(2)∵y =3sin(-2x )=-3sin(2x -)由2k π-≤2x -≤2k π+得k π-≤x ≤k π+(k ∈Z )为所求.或:令u =-2x ,则u 是x 的减函数又∵y =sin u在[2k π-,2k π+](k ∈Z )上为增函数,∴原函数y =3sin(-2x )在区间[2k π-,2k π+]上递减.设2k π-≤-2x ≤2k π+解得k π-≤x ≤k π+(k ∈Z )∴原函数y =3sin(-2x )在[k π-,k π+](k ∈Z )上单调递减.23π23π2π2π2π2π4π3π2π2π4π2π4π2π3π4π3π3π2π3π2π12π125π3π2π2π3π2π2π2π3π2π12π125π3π12π125π6. 求函数的定义域、值域,并指出它的周期性、奇偶性、单调性. 【解析】由得, 所求定义域为 值域为R ,周期,是非奇非偶函数在区间上是增函数.7. 观察正切曲线写出满足下列条件的x 的值的范围:tanx >0.【解析】画出y =tanx 在(-,)上的图象,不难看出在此区间上满足tanx >0的x 的范围为:0<x <结合周期性,可知在x ∈R ,且x ≠k π+上满足的x 的取值范围为(k π,k π+)(k ∈Z ) ⎪⎭⎫ ⎝⎛-=33tan πx y 233πππ+≠-k x 1853ππ+≠k x ∴⎭⎬⎫⎩⎨⎧∈+≠∈z k k x R x x ,1853,|ππ且3π=T ()z k k k ∈⎪⎭⎫ ⎝⎛+-1853,183ππππ2π2π2π2π2π。
4.2 结构图
1.表示一个系统中各部分之间的组成结构的框图叫做结构图。
2.绘制结构图: 步骤:
(1)确定组成系统的基本要素,及他们之间的关系。
(2)将系统的主体要素及其之间的关系表示出来。
(3)确定主体要素的下位要素(从属主体的要素) “下位”要素比“上位”要素更为具体, “上位”要素比“下位”要素更为抽象。
(4)逐步细化各层要素,直到将整个系统表示出来为止。
1.设计一个求一个实数的绝对值的算法并画出相应的程序框图.
【解析】
算法如下:第一步:输入;
第二步:如果,使,否则,使;
x x 0x ≥x x =x x =-
第三步:输出. 程序框图为:
2.通过我们对角的认识
和学习,试用树形的结构图将内的角分类表示出来. 解:
x []0360,
°°。