《概率论与数理统计》课程自学指导书要点
- 格式:doc
- 大小:444.50 KB
- 文档页数:17
概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。
在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。
重点理解事件的概率定义、概率的性质和
概率的运算法则。
2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。
还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。
3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。
4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。
5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。
6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。
总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。
希望以上内容能够帮助你更好地理解概率论与数理统计。
《概率论与数理统计》学习指导一、教学目的与课程性质、任务。
教学目的:本课程为学生讲授概率论与数理统计的基本概念、基本方法、基本技巧和基本理论。
主要培养学生对随机数学理论的掌握和实际问题的分析与理解能力,尽量引导学生针对实际随机现象进行科学的分析,从而达到增强学生动手能力和提高学生数学思维能力。
二、教学要求概率论与数理统计是在理论基础上实践性很强的课程,它主要讲授随机现象统计规律性的一门数学科学。
要求学生能够奠定较扎实的概率论理论基础,同时也能利用随机变量及其分布有关理论知识讨论数理统计中的有关统计推断问题。
要求学生能对现实中的工程实际问题、保险问题、金融问题、可靠性问题等方面利用合理的概率论和数理统计有关理念予以解释和分析。
在教学环节上,对学生的学习提出“掌握”和“了解"两个层次上要求,所谓“掌握”,是指学生在课后,必须能将所学内容用自己理解后的数学术语复述出来,这是将所学知识熟练应用到实践中的基础。
所谓“了解”,是要求学生对所学内容有初步的认知,不要求完全复述出来,但在遇到相关问题时要求能够辨识。
教学以课堂讲授为主,辅之以课堂具体的事例分析等方式.三、教学进度表四、教学内容与讲授方法五、课程的重点内容及习题(一) 课程的重点内容(二) 课程的习题(71道题)[2]第一章随机事件与概率P28—31 2、6、10、11、13、14、15、16、18、20第二章条件概率与独立性P53—56 2、4、6、7、10、12、13、17、18、23、25第三章随机变量及其分布P88—92 3、5、7、9、10、15、16、17、24、27、30第四章多维随机变量及其分布P124—128 1、3、5、7、13、15、20、26第五章随机变量的数字特征P155-159 2、5、11、13、15、1720、21、23、25、28、29第七章数理统计的基本概念P200-203 6、8、9、10、12、13、15第八章参数估计P224—227 1、2、4、5、8、19、20第九章假设检验P254—257 1、3、5、7、8六、本课程的几点说明1. 本课程的板书为中英文目的是了解概率论与数理统计常用词汇、为将来外文文献的阅读与相关问题研究打下扎实的基本功.2。
《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第一章随机事件及其概率.................... 错误!未定义书签。
第二章随机变量及其分布.................... 错误!未定义书签。
第三章多维随机变量及其分布................ 错误!未定义书签。
第四章随机变量的数字特征.................. 错误!未定义书签。
第五章大数定律和中心极限定理.............. 错误!未定义书签。
第六章数理统计的基本概念.................. 错误!未定义书签。
第七章参数估计............................ 错误!未定义书签。
第八章假设检验............................ 错误!未定义书签。
第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22{}P X σμεε-≥≤或22{}1P X σμεε-<>-成立.2、大数定律(1)切贝雪夫大数定理:设ΛΛ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1(Λ=i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<∑-=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设ΛΛ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2Λ=≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y ni i ni i n ∑-=∑-===11)(的分布函数)(x F n 满足⎰=≤=∞--∞→∞→xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设ΛΛ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2Λ=≠=i X D i i σ .记 ∑==ni i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→∑-=++ni ii nX E B δδμ, 则随机变量nni in i i ni i ni i n i i n B X X D X E X Z ∑-∑=∑∑-∑======11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤∑-∑=∞--==∞→∞→x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ. 当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1(Λ=n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞--∞→x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析例1.设X 为连续型随机变量,c 为常数,0>ε,求证εε||}|{|c X E c X P -≤≥-分析 此类概率不等式的证明,一般考虑用切比雪夫不等式或直接从定义用类似切比雪夫不等式的方法来证.证 设X 的密度函数为)(x f ,则⎰=≥-≥-εε||)(}|{|c x dx x f c X P||1)(||1)(||)(||||c X E dx x f c x dxx f c x dx x f c x c x -=⎰-=⎰-≤⎰-≤∞∞-∞∞-≥-εεεεε例2.设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为,则根据切比雪夫不等式有≤≥-}6{Y X P .解121. 由于 ,0)(=-Y X E ,32)(=-+=-DXDY DY DX Y X D XY ρ 故≤≥-}6{Y X P 12/136/3=.例3.设在独立重复试验中,每次试验中事件A 发生的概率为1/4.问是否用的概率确信在1000次试验中A 发生的次数在200到300之间分析 在1000次试验中事件A 发生的次数)4/1,1000(~B X ,且2/375)4/11(4/11000,2504/11000=-⨯⨯==⨯=DX EX 而 }50250{}300200{≤-=≤≤X P X P 利用Chebychev 不等式得}50250{}300200{≤-=≤≤X P X P 925.050)(12=-≥X D所以可用的概率确信在1000次试验中A 发生的次数在200到300之间. 解 如分析所述,由Chebychev 不等式即可得例4.分布用切比雪夫不等式与隶美弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次,才能保证出现正面的频率在~之间的概率不小于90%.解 设X 为n 次掷硬币正面出现的次数,则),(~p n B X ,其中21=p (1)由切比雪夫不等式知{}n n X P n X P n X P 1.0|5.0|1.0|5.0|6.04.0≤-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧≤≤n n n n X D 25101.0411)1.0()(122-=⋅⨯-=-≥ 令 %.90251≥-n则得250≥n . (2) 由隶美弗-拉普拉斯的中心极限定理,得:}6.04.0{≤≤nXP.95.0)5(%901)5(21)5.01.0(225.05.06.025.05.025.05.04.0{}6.04.0{≥Φ⇒≥-Φ=-Φ≈-≤-≤-=≤≤=n n n n nn n nn X n n n P n X n P查表知:6.15≥n. 6864.67≥⇒≥n n例5. (1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度;(2)上述系统假如由n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使整个系统正常运行,问n 至少为多大时才能保证系统的可靠度不小于.解 (1)设⎩⎨⎧=个元件损坏第个元件没有损坏第i i X i ,0,1,S 为系统正常运行时完好的元件个数,于是∑==1001i i X S 服从)9.0,100(b ,因而.91.09.0100,909.0100=⨯⨯===⨯=npq DS ES 故所求的概率为.952.0351990859901)85(1)85(=⎪⎭⎫⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤-==≤-=>S P S P S P(2)此时)9.0,(~n b S ,要求95.0)8.0(≥≥n S P ,而.3313.09.08.03.09.01)8.0(⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤--=≥n n n n n n n S P n S P 故95.03≥⎪⎪⎭⎫⎝⎛Φn ,查表得,5.24,65.13≥⇒≥n n 取n =25 例6. 一加法器同时收到20个噪声电压)20,,2,1(,Λ=i V i ,设它们是相互独立且都服从区间(0,10)上的均匀分布,求总和噪声电压超过计划105(伏)的概率.解 记∑==201i i V V ,因2021,,,V V V Λ是相互独立且都服从(0,10)上的均匀分布,且20,,2,1,12100)(,5)(Λ=====i V D V E i i i σμ 由独立同分布中心极限定理知),3500,100()1210020,520(201N N V V n i i =⨯⨯−−→−∑=∞→= 故.3483.0)39.0(1)3/500100105(1)105(1)105(=Φ-=-Φ-=≤-≈>V P V P例7.假设n X X X ,.,21Λ是来自总体X 的简单随机样本;已知),4,3,2,1(==k EX k k α证明当n 充分大时,随机变量∑==n i i n X n Z 121近似服从正态分布,并指出其分布参数.分析 此题主要考查对中心极限定理的理解与运用.解 依题意知n X X X ,,,21Λ独立同分布,从而其函数22221,,,n X X X Λ也是独立同分布,且)(11)1(,1,)(,224122122122242242222αααααα-=∑=∑==∑=-=-======n DX n X n D DZ EX n EZ EX EX DX EX EX n i i n i i n n i i n i i i i由中心极限定理nZ U n n /)(2242ααα--=的极限分布为标准正态分布,即当n 充分大时,n Z 近似地服从参数为),(2242nααα-的正态分布.例8.设随机变量,1,n i X i ≤≤独立同分布,且分布密度为)(x f ,记}{1x X P p n i i ≤∑==,当n 充分大时,则有A. p 可以根据)(x f 计算; B . p 不可以根据f (x)计算;C. p 一定可以用中心极限定理近似计算;D. p 一定不可以用中心极限定理近似计算解 由于,1,n i X i ≤≤独立同分布,它们的联合概率密度等于各边缘密度的乘积.因此p 可以如下计算:⎰⎰=≤++n n n xxx dx dx x f x f p n ΛΛΛΛ111)()(1由于不知道.1,n i X i ≤≤的期望和方差是否存在,故无法判断能否用中心极限定理. 综上所述,选A.测 试 题一、填空题1.随机变量X 的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(X E X P .2.设随机变量X 和Y 的期望都是2,方差分别为1和4,而其相关系数为,则根据切比雪夫不等式≤≥-}6|{|Y X P .3.设n X 是n 重贝努里试验中事件A 出现的次数,又A 在每次实验中出现的概率为)10(<<p p ,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εp n X P n n lim . 4.设随机变量ΛΛ,,,1n X X 相互独立同分布,且具有有限的均值与方差,0)(,)(2≠==σμi i X D X E ,随机变量σμn n X Y ni i n -∑==1的分布函数)(x F n ,对任意的x ,满足P x F n n =∞→)(lim { }= .5.设随机变量序列ΛΛ,,,,21n X X X 相互独立同分布,且0)(=n X E ,则=∑<=∞→)(lim 1ni i n n X P .二、选择题6.设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.7.设随机变量序列}{n X 相互独立,],[~n n U X n -,Λ,2,1=n ,则对}{n X ( ).(A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律; (C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律.8.设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1Λ=.m 表示事件A 在n 次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. 9.设ΛΛ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X Pn i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→; (C) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. 10.设随机变量序列ΛΛ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (D) 01lim 212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P . 三、解答题11.某年的统计资料表示,在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数. (1)写出X 的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值. 12.某单位设置一电话总机,共有200架分机.设每个电话分机是否使用外线通话是相互独立的.设每时刻每个分机有5%的概率要使用外线通话.问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用13.设5021,,,X X X Λ是相互独立的随机变量,且都服从参数为03.0=λ的泊松分布,记∑==501i i X Y ,试计算}3{≥Y P .14.一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体.从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21Λ称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21Λ是随机变量n X X X ,,,21Λ的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21Λ是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f Λ称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值(2)样本方差(3)样本标准差(4)样本k 阶原点矩(5)样本k 阶中心矩 2、经验分布函数设n x x x ,,,21Λ是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤Λ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(n k k n x x x x x nk x x x n x x x F ΛΛ为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21Λ是X 的一个样本,n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且YX ,n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21Λ是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ(2)样本方差(3)统计量设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X Λ是X 的一个样本, 2,,,21n Y Y Y Λ是Y 的一个样本,两者相互独立.则(1)统计量(2)当21σσ=时,统计量2)1()1(21222211-+-+-=n n S n Sn S w ;(3)统计量(4)统计量疑难分析1、数理统计的研究对象和目的是什么“数理统计学”是数学的一个分支,它的任务是研究怎样用有效的方法去收集和使用带随机性影响的数据,它的具体含义包括以下几层意思:1)能否假定数据有随机性,是区别数理统计方法与其他数据处理方法的根本点。
统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。
下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。
一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。
2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。
3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。
5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。
二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。
2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。
三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。
2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。
3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。
四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。
2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。
3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。
五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。
《概率论与数理统计》知识点简单汇总第一章1.事件的基本关系与运算(和事件、积事件、差事件、对立事件等)2. 加法公式和乘法公式(条件概率,结合事件的独立性)3. 全概率公式、贝叶斯公式(结合书上例题和课后习题)P17例5、例6第二章1.有关这章的概念制表格一(把握概率分布、概率密度与分布函数的关系)2.常用离散型和连续型分布制表二熟记书上P82表4-13.理解第4节随机变量函数的概念(侧重离散型,包括二维离散型)(P36例1 ;P40定理1;P41例4;P43习题1、2 ;P44例1;P46习题1等)(此章概念是重点也同时是基础,与后续3,4章紧密关联)第三章1 . 理解离散型的联合分布律和边缘分布律(结合书上P51例1、P55例1)2 . 理解连续型的联合概率密度和边缘概率密度(结合P52例3、P57例3、P59习题4)3. 理解随机变量的独立性(P60例题)4. 随机变量函数(P62 例1)第四章1. 熟练数学期望的定义、性质、计算(P71例2、例3;P74例7)2. 熟练方差的定义、性质、计算(书上例题)期望和方差两个概念与第2章和后面的统计部分紧密关联,重点掌握3. 熟悉协方差、相关系数和矩三个概念及计算公式 建议上述数字特征自制表格三第五章1. 熟练 切比雪夫不等式 (P92 定理、P92例1)2. 了解大数定律和中心极限定理(P101定理2、P102例4) 第六章1. 理解样本和总体的概念;(统计就是用样本来研究总体)2. 熟练常用统计量 109P ; 掌握P110两个例题;3. 三个重要分布自制表格四 (0,1)N )4. 上分位点 (P42定义5、P113定义3 、P115定义5)结合2()n χ和()t n 两个的图形来理解; 注意与随机变量的分布函数()F x (特别是标准正态分布()x Φ)的区别 上述所有都是重点,必须理解加熟记,是整个统计部分的基础。
第七章1. 第一节,熟练掌握点估计的矩估计法和极大似然估计法;P127例2、3P130例62. 第二节,理解无偏性和有效性3. 区间估计P136例1,例139例2,例3(见P140表7-1)以上都结合书上例题,予以熟练掌握。
概率论与数理统计知识点一、概率论知识点1.1 概率基本概念概率是研究事物变化规律的一门学科。
在概率学中,我们需要掌握一些基本概念:•随机试验:一种在相同条件下重复的可以观察到不同结果的试验。
•样本空间:随机试验所有可能结果的集合。
•事件:样本空间的子集。
•频率和概率:在大量重复实验中,某个事件出现的频率称为频率,其极限称为概率。
1.2 概率计算公式•加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)•乘法公式:P(A∩B) = P(A|B)P(B) = P(B|A)P(A)•条件概率公式:P(A|B) = P(A∩B)/P(B)•全概率公式:P(B) = Σi=1nP(Ai)P(B|Ai)•贝叶斯公式:P(Ai|B) = P(Ai)P(B|Ai)/Σj=1nP(Aj)P(B|Aj)1.3 随机变量和分布随机变量是用来描述随机试验结果的数学量。
离散型随机变量和连续型随机变量是概率论中两个重要的概念。
•离散型随机变量:在一个范围内,只有有限个或无限个可能值的随机变量。
•连续型随机变量:在一个范围内,有无限个可能值的随机变量。
概率分布是反映随机变量取值情况的概率规律,可分为离散型概率分布和连续型概率分布。
•离散型概率分布:包括伯努利分布、二项分布、泊松分布等。
•连续型概率分布:包括正态分布、指数分布、卡方分布等。
1.4 常用概率分布概率论涉及到很多的分布,其中一些常用的分布如下:•二项分布•泊松分布•正态分布•均匀分布•指数分布1.5 统计推断在概率论中,统计推断是指根据样本数据来对总体进行参数估计和假设检验的方法。
统计推断主要涉及以下两个方面:•点估计:使用样本数据来推断总体参数的值。
•区间估计:使用样本数据来推断总体参数的一个区间。
二、数理统计知识点2.1 统计数据的描述为了更准确地描述数据,我们需要使用以下几个参数:•平均数:所有数据的和除以数据个数。
•中位数:将数据按大小排序,位于中间位置的数。
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。
以下是对概率论与数理统计知识点的超详细总结。
一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
随机事件通常用大写字母 A、B、C 等来表示。
(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。
(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。
2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。
3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。
4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。
5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。
6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。
(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。
2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。
3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。
《概率论与数理统计》课程自学指导书《概率论与数理统计》课程自学指导书前言.. 《概率论与数理统计》是城市规划专业和地理信息系统专业的专业必修课。
《概率统计》教材系统阐述了概率论和数理统计的基本内容、理论和应用方法。
概率统计是研究随机现象客观规律的数学学科,它的应用非常广泛,并具有独特的思维和方法。
通过概率论的学习能使学生了解概率与数理统计的基本概念和基本理论,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
通过本课程的学习,能够为学生学习后继课程及进一步提高打下必要的数学基础。
其内容可分为三大部分。
第一部分概率论部分,包括第一、二、三、四、五章。
作为基础知识,为读者提供了必要的理论基础。
第二部分数理统计部分,包括第六、七、八、九章,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析。
第三部分随机过程部分,主要讨论了平稳随机过程,还介绍了马尔可夫过程。
本指导书是作为函授学员在集中授课后,指导自学而编制的。
内容较为简明扼要。
主要是为了让学员能够抓住要领,掌握重点,理解难点,从而达到能够融会贯通、灵活掌握概率统计的基本概念、基本理论从而解决实际问题的目的。
本指导书的主要参考书目:1.景泰等编。
概率论与数理统计.上海科学技术文献出版社,1991.2.玉麟主编。
概率论与数理统计.复旦大学出版社,1995。
3.大茵,陈永华编。
概率论与数理统计。
浙江大学出版社.1996本课程的考核内容以教学大纲为依据,注重基本概念、基本理论的掌握和应用的考核。
主要考核方式为笔试。
第一章概率论的基本概念一、内容概述 #本章介绍了概率论的基本概念:随机试验、样本空间、随机事件、频率与概率,讨论研究等可能概型问题、条件概率及独立性问题。
二、教学目的要求 #(1)理解并掌握概率论的基本概念。
(2)理解掌握等可能概型问题。
(3)理解并掌握条件概率。
(4)了解独立性。
三、重、难点内容解析 #1.随机试验,样本空间,概率的概念。
《概率论与数理统计》自学指导书一、课程名称:槪率论与数理统讣二、自学学时:120三、课件学时:四、教材名称:《概率论与数理统讣》,袁荫棠编,中国人民大学出版社。
五、参考资料:六、考核方式:章节同步习题(10%) +笔试(90%)七、课程简介本课程主要讲解概率统汁的基本概念、理论与方法。
内容主要包括:随机事件及其概率、随机变量及其分布、随机变量的数字特征、几种常见的分布、大数泄律与中心极限立理、样本分布、参数估计、假设检验以及回归分析等。
八、自学内容指导第一章随机事件及其概率(一)本章内容概述本章主要讲授随机试验、样本空间、古典概型、概率的立义和性质,加法及乘法公式、条件概率公式、全概率公式及贝叶斯公式,事件的独立性及独立试验概型等。
(二)自学课时安排(三)知识点1、随机事件(1)随机试验是指具有下列特点的试验:•在相同条件下可重复进行;•每次试验的结果不唯一,且试验前可确知所有可能结果;•每次试验前不可准确预知该次试验会岀现哪一种结果。
(2)随机事件在每次试验中,可能发生也可能不发生,而在大量试验中具有某种规律性的事件。
必然事件一一每次试验中一泄发生的事件,记不可能事何一每次试验中一定不发生的事件,记①。
基本事件与样本空间。
(3)事件的关系和运算①熟悉两个事件的和事件、积事件、差事件的含义及符号表示,并熟悉推广到多个事件的情形。
②此外,还有互斥事件、对立事件以及完备事件组的槪念。
互斥事件:如果事件A与B不能同时发生,即= ©,称事件A与B互不相容(也称互斥)。
对立事件:事件“非A”称为A的对立事件(或逆事件),记作7。
注意:AA=^,A + A = Q.,A = Q.-A,A = A O③事件的运算规律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律、对偶律,特别要注意对偶律:2、概率注意:三种概率的泄义(概率三种定义:统计泄义、古典定义、公理化左义),但重点是概率的古典左义,它是我们计算事件概率的主要依据。
概率论与数理统计(经管系)自考大纲代码4183第一章随机事件与概率(一)考核的知识点1.随机事件的关系及其运算2.概率的定义与性质3.古典概型4.条件概率、乘法公式、全概率公式、贝叶斯公式5.事件的独立性、贝努利概型(二)自学要求本章总的要求是:掌握随机事件之间的关系及其运算;理解概率的定义,掌握概率的基本性质,会用这些性质进行概率的基本计算;理解古典概型的定义,会计算简单的古典概型问题;理解条件概率的概念,会用乘法公式、全概率公式和贝叶斯公式进行概率计算;理解事件独立性的概念,会用事件独立性进行概率计算.重点:随机事件的关系与运算,概率的概念、性质;条件概率,事件独立性的概念,乘法公式、全概率公式,贝叶斯公式。
难点:古典概型的概率计算,全概率公式,贝叶斯公式,事件独立性的概念.(三)考核要求1随机事件的关系与运算1.1随机事件的概念及表示,要求达到“识记”层次1.2事件的包含与相等、和事件、积事件、互不相容、对立事件的概念1.3和事件、积事件、对立事件的基本运算规律,要求达到简单应用层次2率的定义与性质2.1频率的定义,要求达到“领会”层次2.2概率的定义,要求要求达到“领会”层次2.3概率的性质,要求达到“简单应用”层次3古典概型3.1古典概型的定义,要求达到“领会”层次3.2简单古典概型的概率运算,要求达到“简单应用”层次4条件概率4.1条件概率的概念,要求达到“领会”层次4.2乘法公式.会用乘法公式进行有关概率的计算,要求达到“简单应用’’层次4.3 全概率公式与贝叶斯公式,会用这两个公式进行计算,要求达到“综合应用’’层次5事件的独立性5.1 事件独立性的概念,要求达到“领会”层次5.2用事件的独立性计算概率,要求达到“简单应用”层次5.3 贝努利概型,要求达到“简单应用”层次第二章随机变量及其概率分布(一)考核的知识点1.随机变量的概念2.分布函数的概念和性质3.离散型随机变量及其分布律4.连续型随机变量概率密度函数5.随机变量函数的分布(二)自学要求本章总的要求是:理解随机变量及其分布函数的概念;理解离散型随机变量及其分布律的概念;掌握较简单的离散型随机变量的分布律的计算;掌握两点分布、二项分布与泊松分布;掌握连续型随机变量及其概率密度函数的概念、性质及有关计算;掌握均匀分布、指数分布及计算;熟练掌握正态分布及其计算;了解随机变量函数的概念,会求简单随机变量函数的概率分布.重点:随机变量的分布律与概率密度函数的概念、性质和计算,随机变量函数的分布,几种常用分布.难点:随机变量的分布律、概率密度函数,随机变量的函数的分布律、分布函数、概率密度函数.(三)考核要求1.随机变量的概念随机变量的概念及其分类,要求达到“识记”层次2.离散型随机变量的分布律2.1 离散型随机变量的概念,要求达到“识记’’层次2.2求较简单的离散型随机变量的概率分布律,要求达到“简单应用’’层次2.3两点分布,二项分布、泊松分布、要求达到“简单应用’’层次3.随机变量的分布函数3.1随机变量分布函数的定义、性质,要求达到“领会”层次3.2求简单离散型随机变量的分布函数,要求达到。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计 知识点总结一、随机事件与概率1.随机事件(1)事件间的关系与运算● 事件的差:A B A AB AB -=-= ● 对立事件:,AA A A =∅⋃=Ω ● 完备事件组:设12,,,,n A A A 是有限或可数个事件,如果其满足:① ,,,1,2,i j A A i j i j =∅≠=; ②i iA =Ω,则称12,,,,n A A A 是一个完备事件组.(2)随机事件的运算律 ● 求和运算:①A B B A +=+(交换律)②()()A B C A B C A B C ++=++=++(结合律) ● 求交运算:①AB BA =(交换律)②()()AB C A BC ABC ==(结合律) ● 求和运算与求交运算的混合:①()()()A B C AB AC +=+(第一分配律) ②()()()A BC A B A C +=++(第二分配律) ● 求对立事件的运算:()A A =(自反律) ● 和及交事件的对立事件:①A B AB +=(第一对偶律) ②AB A B =+(第二对偶律)2.随机事件的概率(1)概率的公理化定义● 公理1:()1P Ω=;公理2:对任意事件A ,有()0P A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A P A ∞∞===∑.(2)概率测度的其他性质 ● 性质1:()0P ∅=性质2(有限可加性):12,,,n A A A 是两两互不相容的,则有11()()nni i i i P A P A ===∑性质3:()1()P A P A =-性质4:()()()P A B P A P AB -=-特别地,若A B ⊃,则①()()()P A B P A P B -=-;②()()P A P B ≥ 性质5:0()1P A ≤≤性质6:()()()()P A B P A P B P AB +=+-推论:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+3.古典概型与几何概型(1)古典概型● 古典概型的概率测度:()==A A P A Ω中元素个数使发生的基本事件数中元素个数基本事件总数(2)几何概型● 几何概型的概率测度:()()()S A P A S =Ω 4.条件概率(1)条件概率的数学定义 ●()()(()0)()P AB P B A P A P A =>● ()1()P B A P B A =- ●()1()P B A P B A =-● 条件概率测度满足概率的三条公理:公理1:()1P A Ω=;公理2:对任意事件B ,有()0P B A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A A P A A ∞∞===∑.(2)乘法公式 ● ()()(),()0P AB P A P B A P A => ● ()()(),()0P AB P B P A B P B => ● ()()()()P ABC P A P B A P C AB = ●12121312121()()()()()n n n P A A A P A P A A P A A A P A A A A -=(3)全概率公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且i iA =Ω,则对任意事件B ,有()()()i i iP B P A P B A =∑.(4)贝叶斯公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且1i i A ∞==Ω,则对任意事件B , ()0P B >,有()()()()()()()i i i i j j jP A P B A P A B P A B P B P A P B A ==∑. 5.事件的独立性(1)两个事件的独立性 ●()()()P AB P A P B =(2)有限个事件的独立性● 两两独立:()()()i j i j P A A P A P A = ● 相互独立:1212()()()()k k i i i i i i P A A A P A P A P A =(3)相互独立性的性质 ● 性质1:如果n 个事件12,,,n A A A 相互独立,则将其中任何(1)m m n ≤≤个事件改为相应的对立事件,形成的新的n 个事件仍然相互独立. 性质2:如果n 个事件12,,,n A A A 相互独立,则有1111()1(1())n n ni i i i i i P A P A P A ===⎛⎫=-=-- ⎪⎝⎭∏∏(4)伯努利概型● 伯努利定理:在一次试验中,事件A 发生的概率为(01)p p <<,则在n 重伯努利试验中,事件A 恰好发生k 次的概率为:(;,)C k k n kn b k n p p q-=,其中1q p =-. ● 在伯努利试验序列中,设每次试验中事件A 发生的概率为p ,“事件A 在第k 次试验中才首次发生”(1)k ≥,这一事件的概率为1(,)k g k p q p -=.二、随机变量的分布与数字特征1.随机变量及其分布(1)离散型随机变量的概率分布● 离散型随机变量的概率分布满足性质:①()0,1,2,i p x i ≥=②()1iip x =∑● 一旦知道一个离散型随机变量X 的概率分布{}i p x (),便可求得X 所生成的任何事件的概率.特别地,对任意a b ≤,有{}({}){}()i i i i i i a x ba x ba x bP a X b P X x P X x p x ≤≤≤≤≤≤≤≤=====∑∑.一般地,若I 是一个区间,则{}=()i ix IP X I p x ∈∈∑.(2)分布函数● 随机变量的分布函数性质:①单调性,若12x x <,则12()()F x F x ≤; ②()lim ()0x F F x →-∞-∞==,()lim ()1x F F x →+∞+∞==;③右连续性,(0)()F x F x +=. (3)连续型随机变量及其概率密度 ●(){}()xF x P X x f t dt -∞=≤=⎰,()f x 为X 的概率密度函数.● 密度函数性质:①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.● {}()()()b aP a X b F b F a f x dx <≤=-=⎰● {}0P X x ==(连续型)●'()()F x f x =2.随机变量的数字特征(1)离散型随机变量的数学期望 ●1=i i i EX x p ∞=∑(2)连续型随机变量的数学期望 ●()EX xf x dx +∞-∞=⎰(3)随机变量函数的数学期望● 设X 是一个随机变量,()g x 是一个实函数.①若X 为离散型随机变量,概率分布为{},1,2,i i P X x p i ===.且1()iii g x p∞=<∞∑,则()Eg X 存在,且1()()i i i Eg X g x p ∞==∑.②若X 为连续型随机变量,()f x 是其密度函数,且()()g x f x dx +∞-∞<∞⎰,则()Eg X 存在,且()()()Eg X g x f x dx +∞-∞=⎰.(4)数学期望的性质● ①对任意常数a ,有Ea a =;②设12,αα为任意实数,12(),()g x g x 为任意实函数,如果12(),()Eg X Eg X 均存在,则11221122[()()]()()E g X g X Eg X Eg X αααα+=+;③如果EX 存在,则对任意实数a ,有()E X a EX a +=+. (5)随机变量的方差 ● 离差:X EX -● 方差:2()DX E X EX =-● ● ①若X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,则22()()i i iDX E X EX x EX p =-=-∑②若X 为连续型随机变量,()f x 为其密度函数,则22()()()DX E X EX x EX f x dx +∞-∞=-=-⎰③22()DX EX EX =-● 方差的基本性质:设X 的方差DX 存在,a 为任意常数,则 ①0Da =;②()D X a DX +=; ③2()D aX a DX =.(6)随机变量的矩与切比雪夫不等式● 矩定义:X 为一个随机变量,k 为正整数,如果kEX 存在(即kE X<∞),则称kEX 为X的k 阶原点矩,称kE X 为X 的k 阶绝对矩.定理:随机变量X 的t 阶矩存在,则其s 阶矩(s t <为正整数)也存在. 推论:设k 为正整数,C 为常数,如果kEX 存在,则()kE X C +存在,特别地,)k E X EX -(存在.● 中心矩定义:X 为一个随机变量,k 为正整数,如果k EX 存在,则称()kE X EX -为X 的k阶中心矩,称kE X EX -为X 的k 阶绝对中心矩.● 定理:设()h x 是x 的一个非负函数,X 是一个随机变量,且()Eh X 存在,则对任意0ε>,有(){()}Eh X P h X εε≥≤.推论1(马尔可夫不等式):设X 的k 阶矩存在(k 为正整数),即kE X <∞,则对任意0ε>有{}kkE XP X εε≥≤.推论2(切比雪夫不等式):设X 的方差存在,则对任意0ε>有2{}DXP X EX εε-≥≤.推论3:随机变量X 的方差为0当且仅当存在一个常数a ,使得{}=1P X a =.3.常用的离散型分布,n),n kp -,ndef(,),g k p k =几何分布的无记忆性:设{P X二项分布可作为超几何分布的近似,即1212C C Ck n kk n kN N k n nNN N C N N --⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭.这一近似关系的严格数学表述是:当N →∞时,1N →∞,2N →∞,且1N p N →,21Np N→-,则对任意给定的n 和k ,有()12C C lim1Ck n kn kN N k kn nN NC p p --→∞=-.泊松定理:在n 重伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关),如果n →∞时,n np λ→(0λ>为常数),则对任意给定的k ,有lim (;,)e !kn n b k n p k λλ-→∞=.当二项分布(,)b n p 的参数n 很大,而p 很小时,可以将它用参数为np λ=的泊松分布来近似,即有()(;,)e !k npnp b k n p k -≈.4.常用的连续型分布正态分布● 定理:设2~(,),,,X N Y aX b a b μσ=+为常数,且0a ≠,则22~(,)Y N a b aμσ+.推论1:如果2~(,)X N μσ,则~(0,1)X N μξσ-=.ξ通常称为X 的标准化.推论2:2~(,)X N μσ的充要条件是存在一个随机变量~(0,1)N ξ,使得X σξμ=+. 推论3:设2~(,),(),()X N x x μσϕΦ分别为其分布函数与密度函数,00(),()x x ϕΦ是标准正态分布的分布函数和密度函数,则有00()(),1()().x x x x μσμϕϕσσ-Φ=Φ-=● 一般正态分布的概率计算:【例】已知2~(,)X N μσ,求()a Φ. 解 0(){}{}{}()X a X a P X a P P b b μμμσσσ---Φ=≤=≤=≤=Φ5.随机变量函数的分布(1)离散型随机变量函数的分布● 离散型随机变量函数的概率分布的一般方法:先根据自变量X 的可能取值确定因变量Y 的所有可能取值,然后对Y 的每一个可能取值(1,2,)i y i =确定相应的{()}i j j i C x g x y ==,则有{}{()}{},{}{}{},j ii i i i i jx C Y y g X y X C P Y y P X C P X x ∈====∈==∈==∑从而求得Y 的概率分布. (2)连续型随机变量函数的分布● 连续型随机变量函数的概率分布的一般方法:一般地,已知X 的分布函数()X F x 或密度函数()X f x ,为求()Y g X =的分布函数,有()(){()}{},Y x F x P Y x P g X x P X C =≤=≤=∈其中{()}x C t g t x =≤.而{}x P X C ∈往往可由X 的分布函数()X F x 来表达或用其密度函数()X f x 的积分来表达:{}()xx X C P X C f t dt ∈=⎰.进而,Y 的密度函数,可直接从()Y F x 导出.三、随机向量1.随机向量的分布(1)随机向量及其分布函数 ●1212{,}P x X x y Y y <≤<≤22122111(,)(,)(,)(,)F x y F x y F x y F x y =--+● 由(联合)分布函数的定义得出性质:①0(,)1F x y ≤≤;②(,)F x y 关于x 和y 均单调非降、右连续; ③(,)lim (,)0,x F y F x y →-∞-∞==(,)lim (,)0,y F x F x y →-∞-∞==(,)(,)(,)lim (,)0,x y F F x y →-∞-∞-∞-∞== (,)(,)(+,+)lim(,) 1.x y F F x y →+∞+∞∞∞==●(,)F x y 的边缘分布函数:(){}{,}(,)X F x P X x P X x Y F x =≤=≤<+∞=+∞, (){}{,}(,)Y F y P Y y P X Y y F y =≤=<+∞≤=+∞.(2)离散型随机向量的概率分布● 离散型随机向量的概率分布{,},,1,2,i i ij P X x Y y p i j ====,ij p 满足性质:①0,,1,2,ij p i j ≥=;②1ijijp=∑∑.● 边缘概率分布:{},1,2,X i i ij jp P X x p i ====∑ {},1,2,Y j j ij ip P Y y p j ====∑(3)连续型随机向量的概率密度函数 ● 二维连续型随机向量(,)(,)x yF x y f s t dsdt -∞-∞=⎰⎰,(,)f x y 为(),X Y 的概率密度函数或X 与Y 的联合密度函数. (,)f x y 具有性质:①(,)0f x y ≥; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;③若D 是平面上的一个区域,则(){,}(,)DP X Y D f x y dxdy ∈=⎰⎰● 边缘密度函数:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰● 均匀分布的密度函数:1,(,)()(,)0,x y G S G f x y ⎧∈⎪=⎨⎪⎩其他,若(),X Y 服从G 上的均匀分布,则对任何平面区域D ,有()1(){,}(,)=()()DD GS D G P X Y D f x y dxdy dxdy S G S G ⋂⋂∈==⎰⎰⎰⎰. (4)二元正态分布 ● 密度函数:()2211222221212()()()()122(1),x x y y x y μμμμρσσρσσϕ⎡⎤------+⎢⎥-⎢⎥⎣⎦=,记作()221212,~(,;,;)X Y N μμσσρ.● 边缘密度函数分布:()2121()2()=,x X x x y dy μσϕϕ--+∞-∞⎰,()2222()2()=,y Y y x y dx μσϕϕ--+∞-∞⎰.注意:比较联合密度函数(),x y ϕ和边缘密度函数()X x ϕ,()Y y ϕ,当且仅当0ρ=时,对一切(),x y ,有(),()()X Y x y x y ϕϕϕ=.2.条件分布与随机变量的独立性(1)条件分布与独立性的一般概念● 随机变量X 和Y 相互独立:(,)()()X Y F x y F x F y =● 定理1:随机变量X 和Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立,即对任意实数集A 和B ,有{,}{}{}P X A Y B P X A P Y B ∈∈=∈∈.定理2:如果随机变量X 和Y 相互独立,则对任意函数12(),()g x g y ,均有1()g X 与2()g Y 相互独立. ● 相互独立:12,,,n X X X 相互独立,()121122,,,()()()n n n F x x x F x F x F x =.(2)离散型随机变量的条件概率分布与独立性 ● 概率分布:{,},,1,2,i j ij P X x Y y p i j ====●i j p (当{}0i P Y y =>时):{,}{}{}iji i i j Y i jP P X x Y y P X x Y y P Y y P =======性质:①0i j p ≥;②1i jip=∑.● 已知j Y y =的条件下X 的条件概率分布:{},1,2,i i i j P X x Y y p i ====; 已知i X x =的条件下Y 的条件概率分布:{},1,2,i i j i P Y y X x p j ====.●X Y ij i j j i i j p p p p p =⋅=⋅● 定理:设,X Y 是离散型随机变量,其联合概率分布为{,}(,1,2,)i j ij P X x Y y p i j ====,边缘概率分布分别为X i p 和Yj p (,1,2,)i j =,则X 与Y 相互独立的充要条件是,,1,2,X Y ij i j p p p i j ==.(3)连续型随机变量的条件密度函数与独立性● 在Y y =的条件下X 的条件分布:0(,){,}{}lim {}()xy Y f u y du P X x y y Y y P X x Y y P y y Y y f y -∞∆→≤-∆<≤≤===-∆<≤⎰● 条件分布和条件密度函数● (,)()()()()X Y Y X X Y f x y f x f y x f y f x y ==● 定理:设连续型随机向量(),X Y 的密度函数为(,)f x y ,边缘密度函数分别为()X f x 和()Y f y ,则X 与Y 相互独立的充要条件是(,)()()X Y f x y f x f y =.3.随机向量的函数的分布与数学期望(1)离散型随机向量的函数分布 ●(,){}{(,)}{,},1,2,i j kk k i j g x y z P Z z P g X Y z P X x Y y k ========∑● 设,X Y 是两个相互独立的随机变量,分别服从参数为1λ和2λ的泊松分布,则X Y ξ=+的分布为()()1212e ,0,1,2,!kk k λλλλ-++=,可见X Y ξ=+服从参数为()12λλ+的泊松分布.结论:泊松分布具有独立可加性.2,(2)连续型随机向量的函数分布● 分布函数:(){}{(,)}{(,)}(,)zZ z D F z P Z z P g X Y z P X Y D f x y dxdy =≤=≤=∈=⎰⎰,其中z D ={(,)(,)}x y g x y z ≤. ● 密度函数:'()=()Z Z f z F z .● 随机变量的和:设(,)X Y 的联合密度函数为(,)f x y ,则X Y +的密度函数为()=(,)Z f z f z y y dy +∞-∞-⎰或 ()=(,)Z f z f x z x dx +∞-∞-⎰特别地,如果X 和Y 是相互独立的随机变量,则有(卷积公式)()=()()Z X Y f z f x f z x dx +∞-∞-⎰或 ()=()()Z X Y f z f z y f y dy +∞-∞-⎰即,()=*()*()Z X Y Y X f z f f z f f z =.● 独立正态随机变量之和:设随机变量221122~(,),~(,)X N Y N μσμσ,且X 与Y 独立,则221212~(,)X Y N μμσσ+++,即2122212()2()()z X Y f z μμσσ⎡⎤---⎢⎥+⎢⎥⎣⎦+=,结论:独立正态分布的和服从正态分布.推论:X 与Y 相互独立且分别服从正态分布211(,)N μσ和222(,)N μσ,则其任意非零线性组合仍服从正态分布,且22221212~(,)aX bY N a b a b μμσσ+++.进一步地,12,,n X X X 相互独立,2~(,)i i iX N μσ,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.● 随机变量的商:设二维随机向量(,)X Y 的密度函数为(,)f x y ,则XZ Y=的密度函数为'()=()(,)Z Z f z F z y f zy y dy +∞-∞=⎰.● 最大值与最小值:设,X Y 的分布函数分别为(),()F x G x ,密度函数分别为(),()f x g x ,且X与Y 相互独立,令max{,},min{,}M X Y N X Y ==,则有(3)随机向量函数的数学期望● 二维离散型随机向量的数学期望:,(,)(,)ijiji jEZ Eg X Y g x y p==∑.● 二维连续型随机向量的数学期望:(,)(,)(,)EZ Eg X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.●(,)g X Y XY =型:()(),,,(,),,i j ij i jx y p X Y EXY xyf x y dxdy X Y +∞+∞-∞-∞⎧⎪=⎨⎪⎩∑⎰⎰若为离散型若为连续型 (4)数学期望的进一步性质● (1)对任意两个随机变量,X Y ,如果其数学期望均存在,则()E X Y +存在,且()=E X Y EX EY ++(2)设,X Y 为任意两个相互独立的随机变量,数学期望均存在,则EXY 存在,且=EXY EXEY推广: (1)12,,,n X X X 是任意n 个随机变量,数学期望均存在,则()12n E X X X +++存在,且()1212n n E X X X EX EX EX +++=+++(2)设12,,,n X X X 是个相互独立的随机变量,且数学期望均存在,则()12n E X X X 存在,且()1212n n E X X X EX EX EX =.4.随机变量的数字特征(1)协方差● 协方差:()()()cov ,X Y E X EX Y EY =--⎡⎤⎣⎦1,2,)●()cov ,X Y EXY EXEY =-● 定理:(1)()cov ,X X DX = (2)()()cov ,cov ,X Y Y X =(3)()()cov ,cov ,,,aX bY ab X Y a b =为任意常数 (4)()cov ,0,C X C =为任意常数(5)()()()1212cov ,cov ,cov ,X X Y X Y X Y +=+ (6)如果X 与Y 相互独立,则()cov ,0X Y =推论:设,X Y 为任意两个随机变量,如果其方差均存在,则X Y +的方差也存在,且()()2cov ,D X Y DX DY X Y +=++.()()2cov ,D X Y DX DY X Y -=+-特别地,如果X 与Y 相互独立,则()D X Y DX DY +=+.● 定理:设()12,,,n X X X 是n 维随机向量,如果()1,2,,i X i n =的方差均存在,则对任意实向量()12,,,n λλλ,1ni i i X λ=∑的方差必存在,且()21112cov ,n n i i i i i j i j i i i j n D X DX X X λλλλ==≤<≤⎛⎫=+ ⎪⎝⎭∑∑∑.特别地,如果12,,,n X X X 两两独立,则211n n i i i i i i D X DX λλ==⎛⎫= ⎪⎝⎭∑∑. (2)协方差矩阵 ● 记()T 12,,,n X X X =X ,其协差阵通常记作D X .对任意实向量()T12,,,n λλλ=λ,有()T T D D =λX λX λ.对任意实向量()T12,,,n λλλ=λ,()T T 0D D =≥λX λλX .(3)相关系数 ●,cov ,X Y X Y ρ,,1X Y ρ≤● 定理:设(),X Y 是一个二维随机向量,,DX DY 均存在且为正,则,1X Y ρ=的充要条件是X 与Y 具有线性关系,即存在常数0a ≠及常数b ,使得{}1P Y ax b =+=.而且,当0a >时,,1X Y ρ=;当0a <时,,1X Y ρ=-.● 如果,DX DY 均存在且为正,那么X 与Y 不相关等价以下条件:①()cov ,0X Y =; ②EXY EXEY =;③()D X Y DX DY +=+; ④,0X Y ρ=.5.大数定律与中心极限定理(1)依概率收敛 ● 定义:设12,,,,,n X X X X 是一列随机变量,如果对任意0ε>,恒有{}lim 0n n P X X ε→∞->=,则称{}n X 依概率收敛到X ,记作Pn X X −−→或lim n n P X X →∞-=.(2)大数定律 ● 定理:①伯努利大数定律:设n μ是n 重伯努利试验中事件A 发生的次数,已知在每次试验中A 发生的概率为()01p p <<,则对任意0ε>,有lim 0n n P p n με→∞⎧⎫->=⎨⎬⎩⎭, 即Pnp nμ−−→或limnn P p nμ→∞-=.②切比雪夫大数定律:设12,,,n ξξξ是一列两两不相关的随机变量,它们的数学期望iE ξ和方差i D ξ均存在,且方差有界,即存在常数C ,使得()1,2,i D C i ξ≤=,则对任意0ε>,有1111lim 1n ni i n i i P E n n ξξε→∞==⎧⎫-<=⎨⎬⎩⎭∑∑. 推论:设12,,,nξξξ是一列独立同分布的随机变量,其数学期望和方差均存在,记=i E ξμ,则对任意0ε>,有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. 即11n Pi i n ξμ=−−→∑.③辛钦大数定律:设12,,,nξξξ是一列相互独立同分布的随机变量,且数学期望存在,记=i E ξμ,则有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. (3)中心极限定理● 定理:林德伯格-列维 设12,,,n ξξξ是一列相互独立同分布的随机变量,且=i E ξμ,2=0,1,2,,i D i ξσ>=则有22lim en t i xn n P x dt ξμ--∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑.● 定理:设()~,,01,n X b n p p <<则22lim et xn P x dt --∞→∞⎧⎫⎪≤=⎬⎪⎭.四、数理统计的基础知识1.总体与样本样本与样本分布● 总体X 的分布函数为()F x ,则样本()12,,,n X X X 的分布函数为:()()121,,,nn n i i F x x x F x ==∏,称之为样本分布.特别地,若总体X 为连续型随机变量,其密度函数为()f x ,则样本的密度函数为()()121,,,nn n i i f x x x f x ==∏.若总体X 为离散型随机变量,概率分布为(){}p x P X x ==,x 取遍X 所有可能取值,则样本的概率分布为()()()1211221,,,,,,nn n n n i i p x x x P X x X x X x p x ======∏.),n i x =∏为伯努利总体,如果它服从以}{,p P X =)12,,,n X X X 的概率分布为,n n X i =取1或0,而n i +,它恰等于样本中取值为服从参数为λ的泊松分布,)12,,,n X X 为其样本,则样本的概率分布为)21,,ee !!!!kinn n n k k k n i X i X i i i i i λλλλ--======∏,其中取非负整数,而n i ++.2.统计量常用的统计量)n X +2)X -1(ni i X X =-∑3.常用的统计分布(1)分位数● 上侧分位数:设随机变量X 的分布函数为()F x ,对给定的实数(01)αα<<,如果实数F α满足{}P X F αα>=,即()1F F αα-=或()1F F αα=-,则称F α为随机变量X 的分布的水平α上的上侧分位数. ● 有关等式:{}1P X F αα-≤= 1221P F X F ααα-⎧⎫<≤=-⎨⎬⎩⎭推论:()()122,,P X F m n X F m n ααα-⎛⎫⎧⎫⎧⎫<⋃>= ⎪⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭或()()122,,1P F m n X F m n ααα-⎧⎫<<-⎨⎬⎩⎭. ● 双侧分位数:设X 是对称分布的连续型随机变量,其分布函数为()F x ,对给定的实数(01)αα<<,如果正实数T α满足{}P X T αα>=,即()()1F T F T ααα--=-.则称T α为随机变量X 的分布的水平α的双侧分位数. 注意:由于对称性,上式可改写为:()12F T αα=-或{}()12P X T F T ααα>=-=.对于具有对称密度函数的分布函数的上侧分位数,恒有1F F αα-=-. (2)2χ分布 ● 命题:设()12,,,n X X X 是n 个相互独立的随机变量,且()~0,1,1,2,,i X N i n =,则22212n X X X X=+++的密度函数为()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭.● Γ函数:()()10e 0a x a x dx a +∞--Γ=>⎰.●2χ分布:一个随机变量X 称为服从以n 为自由度的2χ分布,如果其密度函数由()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭给出,记作()2~X n χ.● 命题:①若()()22~,~X m Y n χχ,且X 与Y 相互独立,则()2~X Y m n χ++. ②若()2~X n χ,则,2EX n DX n ==.(3)F 分布 ● 命题:设Z 由/=/X m n X Z Y n m Y=(设()()22~,~X m Y n χχ,且X 与Y 相互独立.)所定义,则Z 的密度函数为()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭.● B 函数:()()()1110,=10,0q p p q x x dx p q --B ->>⎰.●F 分布:如果一个随机变量X 的密度函数由()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭给出,则称其服从第一自由度为m ,第二自由度为n 的F 分布,记作()~,X F m n . ● 若()~,X F m n ,则()1~,XF n m -.● 当α接近1时,可利用()()11,=,F m n F n m αα-求出所需上侧分位数.(3)t 分布● 定义式:设()()2~0,1,~X N Y n χ,且X 与Y相互独立,记T =,则()2~1,/X T F n Y n=.● 命题:T 的密度函数为()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭.●t 分布:如果一个随机变量X 的密度函数由()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭给出,则称其为服从自由度为n 的t 分布,记作()~X t n .注意:当自由度n 很大时,t 分布接近于标准正态分布,因为2+11222lim 1=en x n x n --→∞⎛⎫+ ⎪⎝⎭.●当α接近1时,()()1t n t n αα-=-.4.抽样分布(1)正态总体的抽样分布● 定理:设总体()()212~,,,,,n X N X X X μσ是其容量为n 的一个样本,X 与2S 分别为此样本的样本均值与样本方差,则有①2~,X N n σμ⎛⎫⎪⎝⎭;②()2221~1n S n χσ--;③X 与2S 相互独立. ● 单正态总体的抽样分布定理:设()12,,,n X X X 为正态总体()2~,X N μσ的样本,X 与2S 分别为该样本的样本均值与样本方差,则有①()~0,1X U N =;②()2221~1n S n χσ--;③()~1X T t n =-.● 双正态总体的抽样分布定理:设()211~,X N μσ与()222~,Y N μσ是两个相互独立的正态总体.又设()112,,n X X X是总体X 的容量为1n 的样本,X 与21S 分别为该样本的样本均值与样本方差.再设()212,,n Y Y Y 是总体Y 的容量为2n 的样本,Y 与22S 分别为此样本的样本均值与样本方差.记2S 是21S 与22S 的加权平均:222121212121122n n S S S n n n n --=++-+-,则有 ①()()~0,1X Y U N μμ---=;②()222112212~1,1S F F n n S σσ⎛⎫=-- ⎪⎝⎭;③当22212==σσσ时,()12~2X Y T t n n μμ---=+-.(2)一般总体抽样分布的极限分布 ● 定理:设()12,,,n X X X 为总体X 的样本,并设总体X 的数学期望与方差均存在,分别记为2,EX DXμσ==.再记n n X X U T ==X 与S 分别表示上述样本的样本均值与样本方差,则有①()()0n dU F x x −−→Φ; ②()()0n dT F x x =−−→Φ.以上()n U F x ,n T F 与()0x Φ分别表示n U ,n T 及标准正态分布的分布函数.五、参数估计与假设检验1.点估计概述评价估计量的标准 ),n X 为参数的有偏估计量.若),n X 为未知参数}-<=θε),n X 为取自总体①样本均值X 是μ的无偏估计量;②样本方差2S 是σ③未修正的样本方差,即样本二阶中心矩),n X 是取自总体,n .则1n 的相合估计量,,n .(~,X N μ),n X 为其样本,则样本方差2S 是2σ的相合估计2.参数的最大似然估计与矩估计(1)最大似然估计 ● ),n x ,存在),n x ,使()*1,,n x x θ为θ的最大似然估计值,称相应的统),n X 为的最大似然估计量.它们统称为θ的最大似然估计,可MLE . 如果未知参数为12,,,r θθθ,那么似然函数是多元函数(,,)r L θθ.若对任意),n x 存在),,,1,2,=n x i r ,使1*1(,,),,)max (,,)∈Θ=r r r L θθθθθ,则称*i θ为i θ的,1,2,,=MLE i r .当似然函数关于未知参数可微时,一般可通过求导数得到MLE ,其主要步骤①写出似然函数1(,,)r L θθ;0∂=∂L θ或ln 0,1,,∂==∂L i r θ,从中求得驻点注意,函数L 与ln L有相同的最值点,而使用后者往往更方便;③判断驻点为最大值点; MLE .● 最大似然估计的不变性:如果ˆθ为θ的最大似然估计,()=u g θ是θ的函数且存在单值反函数()=h u θ.那么()ˆg θ是()g θ的最大似然估计. (2)矩估计 ● 1,2,,ˆ2,3,=k B β.这种求点估计的方用矩法确定的估计量称为矩估计量,相应的估计值为矩估计值,矩估计量. 表示为总体矩的函数,即)2,;,l s αββ; k B 分别替换g 中的k α,)()1212ˆˆˆˆ,,;,,;,,=l s l sg A A B B ααββ即为θ的3.置信区间(1)寻求置信区间的方法● ①选取θ的一个较优的点估计ˆθ; ②围绕ˆθ寻找一个依赖于样本与θ的函数()1,,;=n u u X X θ.u 的分布为已知分布.像u 这样的函数,称为枢轴量;③对给定的置信水平1-α,确定1λ与2λ,使{}121<<=-P u λλα,一般可选取满足{}{}122≤=≥=P u P u αλλ的1λ与2λ;④利用不等式变形导出套住θ的置信区间(),θθ. (2)正态总体参数的置信区间4.假设检验概述假设检验的一般步骤 ①建立零假设0H ;②构造一个含待检验参数θ(不含其他未知参数)且分布已知的枢轴量()12,,,;n u X X X θ,并确定其分布;③对给定的显著性水平α,由上述枢轴量及其分布,结合零假设0H ,确定拒绝域C ,使得(){}120,,,∈≤n P X X X C H α;④根据样本值()12,,,n x x x 是否落在C 中做出是否拒绝0H 的统计决断:如果()12,,,∈n x x x C ,则拒绝0H ,如果()12,,,∉n x x x C ,则不能拒绝0H .5.单正态总体的参数假设检验编辑:李雪伟 2013年5月25日。
《概率论与数理统计》自学指导书一、课程编码及适用专业课程编码:114011211总学时:48面授学时:16自学学时:32适用专业:理工科函授本科各专业二、课程性质《概率与数理统计》是应用非常广泛的数学学科,其理论和方法的应用遍及所有科学技术领域、工农业生产、医药卫生以及国民经济的各个部门。
本课程是理工科函授本科各专业的重要课程。
属于理工类专业的数学基础课程。
三、本课程的作用概率论研究随机现象的统计规律性;数理统计研究样本数据的收集、整理、分析和推断的各种统计方法。
本课程在教学过程中主要培养学生运用概率统计独特的思维方式分析问题和解决问题的能力,并为后续专业课程的学习和未来的工作实践,提供必备的研究随机性问题的数学基础。
四、学习目的与要求《概率与数理统计》分两部分,前四章是概率论部分,主要包括事件及其概率,随机变量及其概率分布,随机变量的数字特征,极限定理和大数定律,其中心内容是随机变量及其分布;后三章是数理统计部分,主要包括统计推断的三个内容,即抽样分布、参数估计和假设检验。
具体要求有如下几点:(一)掌握各章的主要内容,主要是定理、公式与结论。
(二)重点学习基本概念、基本理论和基本方法。
(三)尽量多的了解概率统计中丰富的实际背景、特有的思维方式、广泛的应用范围。
(四)把学习的重点放在对概念、定理和方法的直观理解和数学表达上。
(五)掌握解题的方法和思想,寻找解题的思路。
(六)积极思考,掌握蕴含于课程中的综合技巧性和应用性。
(七)对各章节及概率与数理统计的结构要熟悉。
五、本课程的学习方法学习本课程的关键应该着眼于应用,要用好统计方法,除了与问题有关的专业知识外,对统计概念的直观理解,以及对方法的理论根据的认识和准确的数学表达也是很重要的。
在学习过程中要熟悉各章的知识结构,归纳提炼各章节之间的联系,对于各章节的问题的来源,明确解决问题的思想方法方法,学习时以学习和理解各种统计方法为主,把握整体结构,多做习题,通过深入的独立思考,对所学内容有切实的掌握,并在一定程度上能灵活运用,从题目中掌握主要内容以及常用的解题思路和方法。
概率论与数理统计知识要点教材习题册一.1事件概率的计算与条件概率P9-例1.4P42-一.1一.2贝叶斯公式(全概率公式)P19-例1.18、1.19、1.20 P4-3和4P51-三.1一.3事件的独立性及伯努利概型P5-3 P12-一.1 P42-一.3二.连续型随机变量的分布函数P34-分布函数的基本性质P43-定义2.3P46-均匀分布P48-正态分布P51-例2.12P61-47P12-二P13-4P54-三P57-2(此页第一个第2题)三.1二维离散型随机变量及其分布、边缘分布、独立性P15-2P18-一.2和二.1三.2二维连续型随机变量函数的概率分布P65-定义3.4P78-例3.17和例3.19P17-4密度四.1相关系数P104-例4.18P114-33四.2期望P92-例4.5P94-例4.10P21-1P23-二。
1和三.1五.独立分布的中心极限定理P121-例5.3和例5.4 P26-5六.1抽样分布P132-t分布和F分布P134-定理6.1P135-重要结果(见此页的最后)P31-二.2 P48-一.4 P50-一.9六.2最小样本容量P134-例6.2P136-2P31-三.1 七.1矩估计P139-例7.2和例7.3七.2无偏估计量P145-例7.9和例7.10 P36-一.1、二.1七.3置信区间P148-例7.12 P35-2 P37-3(1)八.1简单的假设检验P40-一1和一.2。
概率论与数理统计教学指南第1章随机事件与概率一、教学目标通过本章的学习,学生应达到如下基本要求:1、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算.2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、减法公式、全概率公式以及贝叶斯(Bayes)公式.3、理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、知识点1、随机事件页码:P2;教学目标序号:12、样本空间页码:P3;教学目标序号:13、事件的关系页码:P3;教学目标序号:14、事件运算的性质页码:P5;教学目标序号:15、概率的统计定义页码:P8;教学目标序号:26、古典概型页码:P8;教学目标序号:27、几何概型页码:P10;教学目标序号:28、概率的公理化定义页码:P11;教学目标序号:29、概率的基本性质页码:P12;教学目标序号:210、条件概率页码:P15;教学目标序号:211、乘法公式页码:P16;教学目标序号:212、事件的独立性页码:P18;教学目标序号:313、全概率公式页码:P21;教学目标序号:214、贝叶斯(Bayes)公式页码:P23;教学目标序号:215、n 重伯努利概型页码:P24;教学目标序号:3三、本章提要1、随机试验与随机事件的概念.2、事件的关系及运算性质。
事件的关系:事件的包含、事件的相等、事件的并、事件的交、事件的差、互不相容事件和对立事件。
事件运算的性质:基本性质和四个运算律(交换律、结合律、分配律、对偶律).3、随机事件的概率及其性质.4、条件概率和乘法公式.5、全概率公式和贝叶斯(Bayes)公式.6、事件的独立性和伯努利(Bernoulli)概型.四、本章重点难点1、重点:古典概型的计算,利用加法公式、乘法公式、全概率公式和贝叶斯公式解决实际应用题,事件的独立性及其应用.2、难点:古典概型的计算,加法公式、乘法公式、全概率公式和贝叶斯公式.*五、教学过程(可选)1、授课.2、课堂练习.3、本章小结.4、留作业,布置预习内容.六、教学参考内容1、《概率论与数理统计》第1章内容.2、课后练习:《概率论与数理统计》第1章习题.3、《概率论与数理统计学习辅导》第1章内容.。
《概率论与数理统计》课程自学指导书前言.. 《概率论与数理统计》是城市规划专业和地理信息系统专业的专业必修课。
《概率统计》教材系统阐述了概率论和数理统计的基本内容、理论和应用方法。
概率统计是研究随机现象客观规律的数学学科,它的应用非常广泛,并具有独特的思维和方法。
通过概率论的学习能使学生了解概率与数理统计的基本概念和基本理论,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
通过本课程的学习,能够为学生学习后继课程及进一步提高打下必要的数学基础。
其内容可分为三大部分。
第一部分概率论部分,包括第一、二、三、四、五章。
作为基础知识,为读者提供了必要的理论基础。
第二部分数理统计部分,包括第六、七、八、九章,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析。
第三部分随机过程部分,主要讨论了平稳随机过程,还介绍了马尔可夫过程。
本指导书是作为函授学员在集中授课后,指导自学而编制的。
内容较为简明扼要。
主要是为了让学员能够抓住要领,掌握重点,理解难点,从而达到能够融会贯通、灵活掌握概率统计的基本概念、基本理论从而解决实际问题的目的。
本指导书的主要参考书目:1.景泰等编。
概率论与数理统计.上海科学技术文献出版社,1991.2.玉麟主编。
概率论与数理统计.复旦大学出版社,1995。
3.大茵,陈永华编。
概率论与数理统计。
浙江大学出版社.1996本课程的考核内容以教学大纲为依据,注重基本概念、基本理论的掌握和应用的考核。
主要考核方式为笔试。
第一章概率论的基本概念一、内容概述#本章介绍了概率论的基本概念:随机试验、样本空间、随机事件、频率与概率,讨论研究等可能概型问题、条件概率及独立性问题。
二、教学目的要求#(1)理解并掌握概率论的基本概念。
(2)理解掌握等可能概型问题。
(3)理解并掌握条件概率。
(4)了解独立性。
三、重、难点内容解析#1.随机试验,样本空间,概率的概念。
自然界和社会经济生活中存在许多随机现象,我们通过随机试验研究随机现象的统计规律.随机试验的研究采用集合的方法,因而引入样本空间、随机事件和概率的概念。
需要掌握事件的运算关系、概率的定义及性质。
2.等可能概型(古典概型)。
掌握古典概型的特点及计算公式:P(A)= k/n。
掌握超几何分布的概率公式。
3.条件概率。
掌握条件概率的定义、公式,乘法定理,全概率公式,贝叶斯公式4.独立性。
两个事件的相互独立,三个及多个事件的相互独立。
四、复习思考与作业题#1.(P32T2)。
设A,B,C为三事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B与C不发生,(2)A与B都发生,而C不发生,(3)A,B,C中至少有一个发生,(4)A,B,C都发生(5)A,B,C都不发生(6)A,B,C中不多于一个发生(7)A,B,C中不多于两个发生(8)A,B,C中至少有两个发生2.(P33T6)。
在房间里有10个人,分别佩带从1号到10号的纪念章,任选3人记录其纪念章的号码,(1)求最小号号码为5的概率。
(2)求最大号为5的概率3.(P33T10)。
在11张卡片上分别写上probability这11个字母,从中任意连抽7张,求其排列结果为ability的概率。
4.(P33T16)。
据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=0.6,P{母亲得病|孩子得病}=0.5,P{父亲得病|母亲及孩子得病}=0.4。
求母亲及孩子得病但父亲位得病的概率。
5.(P34T19)设甲袋中抓哏内有n 只白球,m只红球;乙袋中装有N只白球,M只红球。
今从甲袋中任意取一只放入乙袋中,再从乙袋中任意取一只球。
问取到白球的概率是多少?6.(P35T29)设第一只盒子装有3只蓝球,2只绿球,2只白球,第二只盒子中装有2只蓝球,3只绿球,4只白球。
独立地分别在两只盒子中各取一只球,(1)求至少有一只蓝球的概率;(2)(2)求有一只蓝球一只白球的概率;(3)(3)已知至少有一只蓝球,求有一只蓝球一只白球的概率7.(P36T33)设根据以往的记录的数据分析,某船只余数的某种物品损坏的情况共有三种:损坏2%(这一事件记为A1),损坏10%(事件A2),损坏90%(事件A3),且知P(A1)=0.8,P(A2)=0.15,P(A3)=0.05,现在从已被运输的物品中随机得取三件,发现这3件都是好的(这一事件记为B),试求:P(A1|B),P(A2|B),P(A3|B)。
(这里设物品件数很多,取出一件后不影响取后一件是否为好品的概率)第二章随机变量及其分布一、内容概述本章包含随机变量、离散型随机变量及其分布、随机变量的分布函数、连续型随机变量及其概率密度、随机变量的函数的分布。
二、教学目的要求(1)正确理解并掌握随机变量、概率密度、分布函数等基本概念及性质。
(2)牢固掌握二项分布、指数分布、泊松分布、正态分布等重要类型的分布的概率分布、分布函数及有关概率计算。
(3)了解随机变量的函数的分布。
三、重、难点内容解析1.离散型随机变量及其分布律 (1)、二项分布:()qp c kn k nkk X P -==(2) 泊松分布:()ek k X P kλλ-==!2.随机变量的分布函数.分布函数的定义和性质(){}x X P x F ≤= 3.连续型随机变量及其概率密度(1)连续型随机变量概率密度的定义和性质 ()()dt t f x F x⎰∞-=(2)均匀分布:(),1a b x f -=b x a <<;()0=x f ,其他。
(3)指数分布:()θ1=x f e x θ/-,0<x ;()0=x f ,其他。
(4)正态分布:()()e x x f σπσμ22221--=,+∞<<∞-x 4.随机变量的函数的分布四、复习思考与作业题1. (P69T6)。
一大楼装有5个同类型的供水设备。
调查表明在任一时刻t 每个设备被使用的概率为0.1,问在同一时刻(1) 恰有2个设备被使用的概率是多少? (2) 至少有3个设备被使用的概率是多少? (3) 至多有3个设备被使用的概率是多少? (4) 至少有1个设备被使用的概率是多少? 2. (P70T12)。
一电话总机每分钟收到呼唤的次数服从参数为4的泊松分布。
求:(1) 某一分钟恰有8次呼唤的概率。
(2) 某一分钟的呼唤次数大于3的概率。
3. (P71T16)。
以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),X 的分布函数是{0,10,04.0)(>-≤-=x x x ex xF , 求下述概率:(1)P{至多3分钟};(2) P{至少4分钟}(3) P{3分钟至4分钟之间}(4) P{至多3分钟或至少4分钟} (5)P{恰好2.5分钟}4. (P71T18)。
设随机变量X 的概率密度为(1){,21),/11(2,02)(≤≤-=x x x f 其他,(2)⎪⎩⎪⎨⎧<≤-≤≤= 其他1 ,021,2,0,)(x x x x x f 求X 的分布函数F (x ),并画出(2)中的f (x )及F(x )的图形5. (P72T21)。
设顾客在某银行的窗口等待服务的时间X (以分计)服从指数分布,其概率密度为⎪⎩⎪⎨⎧>=- 其他,0,0,51)(5/x x f e x 某顾客在窗口等待服务,若超过10分钟,他就离开。
他一个月要来银行5次。
以Y 表示一个月内他未等到服务饿而离开窗口的次数。
写出Y 的分布律,并求P{Y ≥1}6. (P72T24)。
某地区18岁的女青年的血压(收缩压,以mm-Hg 计)服从N (110,122)。
在该地区任选一18岁的女青年,测量她的血压X 。
(1)求P{X ≤105),P{100<X ≤120};(2)确定最小的x ,使P{X>x}≤0.05. 7. (P73T29)。
设X-N (0,1)。
(1)求eX=Y 的概率密度;(2)求12Y 2+=X的概率密度。
(3)求Y=|X|的概率密度。
8. (73T33)某物体的温度)(F T o 是一个随机变量,且有T —N (98.6,2),已知)32)(9/5(-=ΘT ,试求)(C o Θ的概率密度。
第三章 多维随机变量及其分布一、内容概述 #二维随机变量和分布函数,条件分布函数;离散型随机变量(X,Y )的分布律,边缘分布律,条件分布律;连续型随机变量(X,Y )的概率密度,边缘概率密度,条件概率密度;两个随机变量X,Y 的独立性;Y X Z +=的概率密度,),min(),,max(Y X N Y X M ==的概率密度。
二、教学目的要求 #(1) 理解并掌握二维随机变量和分布函数,条件分布函数。
(2) 理解并掌握离散型随机变量(X,Y )的分布律,边缘分布律,条件分布律。
(3) 理解并掌握连续型随机变量(X,Y )的概率密度,边缘概率密度,条件概率密度(4) 理解两个随机变量X,Y 的独立性。
(5) 掌握Y X Z +=的概率密度,),min(),,max(Y X N Y X M ==的概率密度。
三、重、难点内容解析 # 1. 二维随机变量二维离散型随机变量的联合分布律,二维连续型随机变量的联合概率密度 2. 边缘分布二维离散型随机变量的边缘分布律,二维连续型随机变量的边缘概率密度 3.条件分布二维离散型随机变量的条件分布律,二维连续型随机变量的条件概率密度4.相互独立的随机变量相互独立的随机变量的定义及性质 5.两个随机变量的函数的分布Y X Z +=的概率密度,),min(),,max(Y X N Y X M ==的概率密度四、复习思考与作业题 #1. (P104T4)将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数。
求X ,Y 的联合分布律以及(X ,Y )的边缘分布。
2. (P104T6)设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧<<=- 其他,),(0,0,y x y x f e y 求边缘概率密度3. (P105T9)以X 记某医院一天出生婴儿的个数,Y 记其中男婴的个数,设X 和Y的联合分布律为。
,⋯=-===--,2,1,0,)!(!}{86.6)14.7(14m m n m m Y n X P mn me (1)求边缘分布规律;(2)求条件分布律;(3)特别,写出当X=20时,Y 的条件分布律。
4. (P105T11)(1)求条件密度)|(|y x fYX ,特别,写出当Y=1/2时X 的条件概率密度;(2)求条件概率密度)|(|y x fYX ,特别,分别写出当X=1/3,X=1/2时Y 的条件概率密度;(3)求条件概率。