变量间的相互关系解析
- 格式:ppt
- 大小:532.50 KB
- 文档页数:25
变量之间的影响关系和多重影响因素的共同作用类型目录一、内容概览 (2)1.1 研究背景 (3)1.2 研究意义 (3)二、变量之间的影响关系 (5)2.1 直接影响关系 (6)2.1.1 正向影响 (7)2.1.2 负向影响 (8)2.2 间接影响关系 (9)2.2.1 长期影响 (10)2.2.2 短期影响 (11)2.3 混合影响关系 (13)2.3.1 共同影响 (14)2.3.2 交互影响 (16)三、多重影响因素的共同作用类型 (17)3.1 同时影响 (18)3.2 顺序影响 (19)3.3 加权影响 (20)3.4 非线性影响 (21)四、结论与展望 (23)4.1 结论总结 (24)4.2 研究不足 (25)4.3 未来研究方向 (25)一、内容概览本文档旨在分析和探讨变量之间的影响关系以及多重影响因素的共同作用类型。
我们将首先介绍变量之间的基本概念,然后详细讨论影响关系及其类型,最后探讨多重影响因素的共同作用类型。
通过对这些主题的深入研究,我们希望能够为决策者、研究人员和实践者提供有关如何理解和处理变量之间关系的有益见解。
相关性和因果性:我们将探讨变量之间的相关性和因果性,以便更好地理解它们之间的关系。
相关性是指两个变量之间的程度或方向上的关联,而因果性则是指一个变量的变化导致另一个变量的变化。
影响关系类型:我们将讨论不同类型的影响关系,如直接效应、间接效应、调节效应等,并分析它们在实际问题中的应用。
多重影响因素:我们将探讨多重影响因素的共同作用类型,如多元回归分析、主成分分析等方法,以揭示多个变量之间的相互作用。
模型构建与验证:我们将介绍如何构建和验证各种类型的模型,以确保我们的分析结果具有较高的可靠性和有效性。
通过本文档的学习,读者将能够掌握变量之间影响关系的基础知识,了解不同类型的影响关系及其应用,以及如何运用多种方法来分析多重影响因素的共同作用。
这将有助于读者在实际问题中做出更明智的决策和预测。
【概述】在数学领域中,二次函数是一种非常重要的函数类型,它在实际生活中有着广泛的应用。
二次函数有两个自变量,即x和y,它们之间存在着相互影响的关系。
在本文中,我们将针对二次函数中两个自变量的相互影响进行深入探讨,并给出一些具体的例子进行说明。
【例子一:抛物线运动】1. 例子描述:假设有一个抛物线运动的例子,其中x表示时间,y表示高度。
那么,时间的增加会导致什么变化呢?2. 分析:随着时间的增加,抛物线的高度会发生变化,使得y值随之改变。
这就是x和y两个自变量之间的相互影响。
【例子二:收入和消费的关系】1. 例子描述:假设一个人的收入是x,消费是y,两者之间存在着一定的关系。
当收入增加时,消费会发生怎样的变化?2. 分析:一般情况下,随着收入的增加,消费也会相应增加。
这就表明了收入和消费这两个自变量之间的相互影响。
【例子三:商品价格与销量的关系】1. 例子描述:某商品的价格是x,销量是y,它们之间存在着怎样的关系?2. 分析:通常情况下,商品价格的提高会导致销量的下降,而价格的降低则会促进销量的增加。
这就展现了商品价格和销量之间的相互影响。
【总结】通过以上几个例子的分析,我们可以得出结论:在二次函数中,两个自变量之间存在着相互影响的关系。
这种互相影响的特性在实际生活中有着广泛的应用,能够帮助我们更好地理解和分析各种现象和问题。
【结尾】二次函数中两个自变量之间的相互影响是我们数学学习中的重要内容,深入理解和掌握这一特性对于我们在实际应用中能够更好地运用数学知识,解决具体问题具有重要意义。
希望本文的内容能够给读者带来一些启发和帮助,使大家对二次函数的两个自变量之间的影响关系有更深入的认识。
很高兴看到您对文章内容的续写感兴趣,继续以下部分:【二次函数中两个自变量的相互影响】在数学中,我们常常会遇到各种各样的函数,其中二次函数是一种非常重要的函数类型。
二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为常数,a≠0。
变量间的相互关系是指两个或两个以上变量之间相联系的性质,主要有两种类型。
(1)因果关系:是指在两个有关系的变量中,因为一个变量的变化而引起另一个变量的变化。
应注意三点:第一,在两个变量中,只能一个是因,另一个是果,而不能互为因果。
第二,原因变量一定出现在结果变量之前。
第三,两者之间的变化关系是必然的,否则就不是因果关系。
社会现象的因果关系十分复杂,有一因一果、一果多因、一因多果以及多因多果等。
在社会调查研究中,调查者应注意区别事物之间因果关系的类型,对一果多因、一因多果以及多因多果等复杂的因果关系要仔细分析,逐一明确,这样才能清楚地认识社会现象和事物发展变化的规律。
(2)相关关系:是指变量的变化之间存在着非因果关系的一定联系和一定关系。
社会调查研究运用相关这一概念,其目的是了解社会现象和事物之间关系的密切程度,从中探寻其规律性。
变量之间的相关关系从变化的方向来看,可以分为正相关与负相关;从变化的表现形式来看,可以分为直线相关和曲线相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生同方向的变化,这种相关关系是正相关,也叫直接相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生反方向的变化,这种相关关系是负相关,也叫逆相关。
在社会调查研究中,掌握变量关系的正相关与负相关的概念,有利于了解社会现象和事物的发展方向和趋势。
当一个变量的数值发生变动(增加或减少),另一个变量的数值随着发生大致均等的变动时,这种关系称为直线相关;当一个变量的数值发生变动,另一个变量的数值随之发生不均等的变动时,这种关系称为曲线相关。
两个变量间的相关关系变量间的相互关系有两种:一类是确定性的函数关系,如正方形的边长和面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的.例如,学生的总成绩和他的单科成绩,一般说来“总成绩高者,单科成绩也高”,我们说总成绩和单科成绩具有相关关系.相关关系又分为两种:(1)正相关:两个变量具有相同的变化趋势.(2)负相关:两个变量具有相反的变化趋势.对相关关系的理解可以从下面三个角度把握:相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系.对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.相关关系与函数关系的异同点为:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系.函数关系是自变量与函数值之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.我们再来认识生活中的确定两个变量间的相关关系的两个例子:【例1】“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.那么,教师的水平与学生的水平成什么相关关系?你能举出更多的描述生活中的两个变量的相关关系的成语吗?解析:“名师出高徒”的意思是说有名的教师一定能教出高明的徒弟,通常情况下,高水平的教师有很大的趋势教出高水平的学生.所以,教师的水平与学生的水平成正相关关系.生活中这样的成语很多,如“龙生龙,凤生凤,老鼠的孩子会打洞”.【例2】历史上,有人认为人们的着装与经济好坏有关系,着装越鲜艳,经济越景气.你认为着装与经济真的有这种相关关系吗?解析:人们的着装只能反映个人的爱好以及个人心情状况,与经济的好坏没有任何关系,并不能反映经济的景气与否.所以,着装与经济并没有“着装越鲜艳,经济越景气”这种相关关系.。
第3讲 变量间的相互关系与独立性检验◆高考导航·顺风启程◆[知识梳理]1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是 相关关系 ;与函数关系不同, 相关关系 是一种非确定性关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为 正相关 ,点散布在左上角到右下角的区域内,两个变量的相关关系为 负相关 .2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有 线性相关关系 ,这条直线叫做 回归直线 .(2)回归方程为 y ^=b ^ x +a ^ ,其中b ^=ni =1x i y i -n x yn i =1x 2i -n x 2,a ^= y -b ^x .(3)通过求Q =ni =1(y i -bx i -a )2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r >0,表明两个变量 正相关 ; 当r <0,表明两个变量负相关 .r 的绝对值越接近于1,表明两个变量的线性相关性 越强 .r 的绝对值接近于0时,表明两个变量之间 越弱 .通常|r |大于 0.75 时,认为两个变量有很强的线性相关性.3.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:K 2= n (ad -bc )(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d 为样本容量).[知识感悟]1.线性回归直线方程的求法求解回归方程关键是确定回归系数a ^,b ^,因求解b ^的公式计算量太大,一般题目中给出相关的量,如x ,y,∑i =1nx 2i ,n i =1y 2i 等,便可直接代入求解.充分利用回归直线过样本中心点(x ,y ),即有y =b ^ x +a ^,可确定a .2.独立性检验思想的理解独立性检验的思想类似于反证法,即要确定“两个变量X 与Y 有关系”这一结论成立的可信度,首先假设结论不成立,即它们之间没有关系,也就是它们是相互独立的,利用概率的乘法公式可推知,(ad -bc )接近于零,也就是随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )应该很小,如果计算出来的K 2的观测值k 不是很小,通过查表P (K 2≥k 0)的概率很小.又根据小概率事件不可能发生,由此判断假设不成立,从而可以肯定地断言X 与Y 之间有关系.[知识自测]1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( ) (2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( )(4)某同学研究卖出的热饮杯数y 与气温x (℃)之间的关系,得回归方程y ^=-2.352x +147.767,则气温为2 ℃时,一定可卖出143杯热饮.( )(5)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( ) (6)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.( )[答案] (1)× (2)√ (3)√ (4)× (5)√ (6)×2.某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则所得到的统计学结论是:有多少的把握认为“学生性别与支持该活动有关系”.( )附:A.0.1%C .99%D .99.9%[解析] 因为7.069与附表中的6.635最接近,所以得到的统计学结论是:有1-0.010=0.99=99%的把握认为“学生性别与支持该活动有关系”.[答案] C3.下面是一个2×2列联表则表中a 、b [解析] 因为a +21=73,所以a =52. 又因为a +2=b ,所以b =54. [答案] 52 54题型一 相关关系的判断(基础拿分题、自主练透)(1)已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关,下列结论中正确的是( )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关[解析] 因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.[答案] C(2)对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3[解析] 易知题中图(1)与图(3)是正相关,图(2)与图(4)是负相关,且图(1)与图(2)中的样本点集中分布在一条直线附近,则r 2<r 4<0<r 3<r 1.[答案] A方法感悟判定两个变量正、负相关性的方法1.画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.2.相关系数:r >0时,正相关;r <0时,负相关. 3.线性回归方程中:b ^>0时,正相关:b ^<0时,负相关. 【针对补偿】1.下列四个散点图中,变量x 与y 之间具有负的线性相关关系的是( )[解析] 观察散点图可知,只有D 选项的散点图表示的是变量x 与y 之间具有负的线性相关关系.[答案] D2.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得线性回归方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423;②y 与x 负相关且y ^=-3.476x +5.648;③y 与x 正相关且y ^=5.437x +8.493;④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④D .①④[解析] 由线性回归方程y ^=b ^x +a ^知当b ^>0时,y 与x 正相关,当b ^<0时,y 与x 负相关,∴①④一定错误.[答案] D题型二 回归分析(重点保分题、共同探讨)(2016·全国Ⅲ卷)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.参考数据:7i =1y i =9.32,7i =1t i y i =40.17,7i =1(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =n i =1(t i -t )(y i -y )n i =1(t i -t )27i =1(y i -y )2回归方程y ^=a ^+b ^ t 中斜率和截距最小二乘估计公式分别为b ^=ni =1(t i -t )(y i -y )ni =1(t i -t )2,a ^=y -b ^t .[解] (1)由折线图中数据和附注中参考数据得t =4,7i =1(t i -t )2=28,7i =1(y i -y )2=0.55,7i =1(t i -t )(y i -y )=7i =1t i y i -t7i =1y i =40.17-4×9.32=2.89,r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=7i =1 (t i-t )(y i -y )7i =1(t i -t )2=2.8928≈0.103. a ^=y -b ^t ≈1.331-0.103×4≈0.92. 所以,y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.方法感悟1.正确理解计算b ^,a ^的公式和准确的计算是求线性回归方程的关键. 2.回归直线方程y ^=b ^x +a ^必过样本点中心(x ,y ).3.在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.【针对补偿】3.某百货公司1~6月份的销售量x 与利润y 的统计数据如下表:(1)根据2~5月份的数据,画出散点图,求出y 关于x 的线性回归方程y =b ^x +a ^; (2)若由线性回归方程得到的估计1~6月份与检验数据的误差均不超过2万元,则认为得到的线性回归方程是理想的,试问所得线性回归方程是否理想?[解] (1)根据表中2~5月份的数据作出散点图,如图所示:计算得x =11,y =24,∑i =25x i y i =11×25+13×29+12×26+8×16=1 092,∑i =25x 2i =112+132+122+82=498,则b ^=∑i =25x i y i -4x y∑i =25x 2i -4x2=1 092-4×11×24498-4×112=187, a ^=y -b ^x =24-187×11=-307.故y 关于x 的线性回归方程为y ^=187x -307. (2)当x =10时,y ^=187×10-307=1507, 此时⎪⎪⎪⎪1507-22<2;当x =6时,y ^=187×6-307=787, 此时⎪⎪⎪⎪787-12<2.故所得的线性回归方程是理想的.题型三 独立性检测(重点保分题、共同探讨)(2017·课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg)某频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50 kg, 新养殖法的箱产量不低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)(精确到0.01) 附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )[解] (1)记B 表示事件“旧养殖法的箱产量低于50 kg ”,C 表示事件“新养殖法的箱产量不低于50 kg ”由题意知P (A )=P (BC )=P (B )P (C )旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62新养殖法的箱产量不低于50 kg 的频率为(0.068+0.046+0.010+0.008)×5=0.66,故P (C )的估计值为0.66因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得列联表K 2=200×(62×66-34×38)100×100×96×104≈15.705由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法箱产量的中位数的估计值为50+0.5-0.340.068≈52.35(kg).方法感悟 独立性检验的一般步骤(1)根据样本数据制成2×2列联表;(2)根据公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算K 2的值;(3)查表比较K 2与临界值的大小关系,作出统计判断. 【针对补偿】4.(2018·九江第一次统考)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.数学成绩与性别是否有关;(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.附表及公式K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )[解] (1)x 男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5, x 女=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5, 从男、女生各自的平均分来看,并不能判断数学成绩与性别有关.(2)由频数分布表可知:在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得2×2列联表如下:可得K 2=100×(15×25-15×45)60×40×30×70≈1.79,因为1.79<2.706,所以没有90%以上的把握认为“数学成绩与性别有关”.◆牛刀小试·成功靠岸◆课堂达标(五十一)[A 基础巩固练]1.(2018·湖北七市联考)为研究语文成绩和英语成绩之间是否具有线性相关关系,统计某班学生的两科成绩得到如图所示的散点图(x 轴、y 轴的单位长度相同),用回归直线方程y ^=bx +a 近似地刻画其相关关系,根据图形,以下结论最有可能成立的是( )A .线性相关关系较强,b 的值为1.25B .线性相关关系较强,b 的值为0.83C .线性相关关系较强,b 的值为-0.87D .线性相关关系较弱,无研究价值[解析] 由散点图可以看出两个变量所构成的点在一条直线附近,所以线性相关关系较强,且应为正相关,所以回归直线方程的斜率应为正数,且从散点图观察,回归直线方程的斜率应该比y =x 的斜率要小一些,综上可知应选B.[答案] B2.(2018·山东省青岛市数学一模试卷)已知变量x ,y 具有线性相关关系,它们之间的一组数据如下表所示,若y 关于x 的线性回归方程为y ^=1.3x -1,则m =______________.[解] 由题意,x =2.5,代入线性回归方程为y ^=1.3x -1,可得y =2.25, ∴0.1+1.8+m +4=4×2.25,∴m =3.1. 故答案为3.1. [答案] 3.13.(2018·兰州、张掖联考)对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( )A.116B.18C.14D.12[解析] 依题意可知样本中心点为⎝⎛⎭⎫34,38,则38=13×34+a ^,解得a ^=18. [答案] B4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),算得K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”[解析] 根据独立性检验的定义,由K 2≈7.8>6.635,可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关”,故选C.[答案] C5.(2017·山东)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x +a ^.已知∑i =110x i =225,∑i =110y i =1 600,b ^=4.该班某学生的脚长为24,据此估计其身高为( )A .160B .163C .166D .170[解析] 由已知x =22.5,y =160,∴a ^=160-4×22.5=70,y =4×24+70=166,选C.[答案] C6.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:附:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按97.5%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按97.5%的可靠性要求,不能认为“成绩与班级有关系” [解析] 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c =20,b =45,选项A 、B 错误.根据列联表中的数据,得到K 2=105×(10×30-20×45)255×50×30×75≈6.109>5.024,因此有97.5%的把握认为“成绩与班级有关系”. [答案] C7.(2018·济宁二模)已知下表所示数据的回归直线方程为y ^=4x +242,则实数a =______.[解析] 回归直线y ^=4x +242必过样本点的中心(x ,y ),而x =2+3+4+5+65=4,y =251+254+257+a +2665=1 028+a5,∴1 028+a5=4×4+242, 解得a =262. [答案] 2628.(2018·山东省济宁市二模试卷)为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查,得到如下2×2列联表:性别有关(临界值参考表如下).>7.879,∴有99.5%的把握认为喜爱打篮球与性别有关. [答案] 99.59.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为______cm.[解析] 儿子和父亲的身高可列表如下:设回归直线方程y ^=a ^+b x ,由表中的三组数据可求得b =1,故a ^=y -b ^x =176-173=3,故回归直线方程为y ^=3+x ,将x =182代入得孙子的身高为185 cm.[答案] 18510.(2018·唐山一模)为了研究某种细菌在特定环境下随时间变化的繁殖情况,得如下实验数据:(1)求y 关于(2)利用(1)中的回归方程,预测t =8时,细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=ni =1 (t i -t )(y i -y )ni =1(t i -t )2,a ^=y -b ^t . [解] (1)由表中数据计算得,t =5,y =4,ni =1(t i -t )(y i -y )=8.5,ni =1(t i -t )2=10,b ^=ni =1(t i -t )(y i -y )ni =1(t i -t )2=0.85, a ^=y -b ^t =4-0.85×5=-0.25. 所以回归方程为y ^=0.85t -0.25. (2)将t =8代入(1)的回归方程中得 y ^=0.85×8-0.25=6.55.故预测t =8时,细菌繁殖个数为6.55千个.[B 能力提升练]1.为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方程,求得回归直线分别为l 1和l 2,已知两个人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( )A .l 1和l 2必定平行B .l 1与l 2必定重合C .l 1和l 2一定有公共点(s ,t )D .l 1与l 2相交,但交点不一定是(s ,t ) [解析] 注意到回归直线必经过样本中心点. [答案] C2.(2018·郑州预测)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y =-4x +a .若在这些样本点中任取一点,则它在回归直线左下方的概率为( )A.16B.13C.12D.23[解析] 依题意得x =16×(4+5+6+7+8+9)=132,y =16×(90+84+83+80+75+68)=80,又回归直线必经过样本中心点(x ,y ),于是有a =80+4×132=106,不等式4x+y -106<0表示的是回归直线的左下方区域.注意到在6个样本数据中,共有2个样本数据位于回归直线的左下方区域,因此所求的概率等于13.[答案] B3.以下四个命题,其中正确的序号是______.①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y ^平均增加0.2个单位;④对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.[解析] ①是系统抽样;对于④,随机变量K 2的观测值k 越小,说明两个相关变量有关系的把握程度越小.[答案] ②③4.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得x 2≈3.918,已知P (x 2≥3.841)≈0.05.对此,四名同学作出了以下的判断:p :有95%的把握认为“这种血清能起到预防感冒的作用”; q :若某人未使用该血清,那么他在一年中有95%的可能性得感冒; r :这种血清预防感冒的有效率为95%; s :这种血清预防感冒的有效率为5%. 则下列结论中,正确结论的序号是______. ①p ∧綈q ;②綈p ∧q ;③(綈p ∧綈q )∧(r ∨s ); ④(p ∨綈r )∧(綈q ∨s ).[解析] 本题考查了独立性检验的基本思想及常用逻辑用语.由题意,得x 2≈3.918,P (x 2≥3.841)≈0.05,所以,只有第一位同学的判断正确,即有95%的把握认为“这种血清能起到预防感冒的作用”.由真值表知①④为真命题.[答案] ①④5.(2018·广西玉林、贵港联考)某市地铁即将于2016年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:与“认为价格偏高者”的月平均收入的差距是多少?(结果保留2位小数);(2)由以上统计数据填下面2×2列联表,分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )[解] (1)“x 1=20×1+30×2+40×3+50×5+60×3+70×41+2+3+5+3+4≈50.56.“认为价格偏高者”的月平均收入为x 2=20×4+30×8+40×12+50×5+60×2+70×14+8+12+5+2+1=38.75,∴“赞成定价者”与“认为价格偏高者”的月平均收入的差距是x 1-x 2=50.56-38.75=11.81(百元)(2)根据条件可得2×2列联表如下:K 2=50×(3×11-7×29)10×40×18×32≈6.27<6.635,∴没有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.[C 尖子生专练](2018·保定调研)某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:(1)(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生做进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.下面的临界值表供参考:(参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d )[解] (1)由公式K 2=55×(20×20-10×5)230×25×25×30≈11.978>7.879,所以有99.5%的把握认为喜欢“应用统计”课程与性别有关.(2)设所抽样本中有m 个男生,则630=m20,得m =4,所以样本中有4个男生,2个女生,分别记作B 1,B 2,B 3,B 4,G 1,G 2.从中任选2人的基本事件有(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 1,G 1),(B 1,G 2),(B 2,B 3),(B 2,B 4),(B 2,G 1),(B 2,G 2),(B 3,B 4),(B 3,G 1),(B 3,G 2),(B 4,G 1),(B 4,G 2),(G 1,G 2),共15个,其中恰有1个男生和1个女生的事件有(B 1,G 1),(B 1,G 2),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2),(B 4,G 1),(B 4,G 2),共8个.所以恰有1个男生和1个女生的概率为815.。
变量之间的相互关系一、引言在研究数据科学、统计学、经济学以及其他众多领域时,变量间的相互关系是不可或缺的议题。
这种关系描述了不同变量如何互相影响,从而帮助我们理解和预测现象。
本文将深入探讨变量间相互关系的概念、类型和测量方法。
二、变量间的关系类型1.因果关系:如果一个变量(原因)的变化导致了另一个变量(结果)的变化,则存在因果关系。
这种关系是有方向的,原因必定在前,结果只能在后。
2.相关关系:当两个或多个变量同时发生变化,但不表示因果方向时,我们称之为相关关系。
相关关系可以是正相关(一个变量增加时,另一个也增加)或负相关(一个变量增加时,另一个减少)。
3.函数关系:当一个变量(自变量)完全确定另一个变量(因变量)的值时,我们称之为函数关系。
这种情况下,因变量的变化完全依赖于自变量的变化。
三、测量变量间关系强度的方法1.皮尔逊相关系数:衡量两个连续变量的线性相关程度,取值范围在-1到1之间。
接近1表示强正相关,接近-1表示强负相关,接近0表示无相关。
2.斯皮尔曼秩相关系数:与皮尔逊相关系数类似,但适用于非参数数据。
它衡量的是两个连续变量之间的秩次相关性。
3.偏相关系数:当存在多个变量影响因变量时,偏相关系数可以用来衡量特定自变量与因变量之间的线性关系。
四、应用场景理解并测量变量间的相互关系在众多实际场景中都有应用价值。
例如,在市场营销中,通过分析消费者行为、购买历史等变量与购买决策之间的相互关系,可以更有效地制定营销策略。
在医学研究中,了解疾病症状、患者生理指标等变量之间的关系,有助于疾病的诊断和治疗。
五、结论理解并测量变量间的相互关系是数据科学和统计学中的重要概念。
通过明确关系的类型和测量方法,我们可以更好地理解和预测现象,从而在各个领域中做出更有效的决策。
随着技术的发展和数据的丰富,变量间相互关系的研究将继续深化和拓展,为我们提供更多的洞见和可能。
两个变量间相关关系的举例相关关系是指两个变量之间的变化是否存在某种联系或者依赖。
在统计学中,我们可以通过计算相关系数来度量两个变量之间的相关程度。
下面,我将为你举例说明两个变量间的相关关系。
举例一:首先,我们来看身高和体重之间的相关关系。
身高和体重是人体的两个重要指标,一般来说,身高越高,体重也会相应增加。
我们可以通过一个调查统计来验证这种关系。
在调查中,我们随机选择了1000名男性被试,记录了他们的身高和体重。
通过运用统计学方法,我们计算得到了身高和体重之间的相关系数为0.8,这说明身高和体重之间存在着强正相关关系。
也就是说,身高增加会促使体重的增加。
举例二:其次,让我们来考察学习时间和考试成绩之间的相关关系。
有一种常见的观点是,学习时间越多,考试成绩也会越好。
我们可以通过一个实验证明这种关系。
我们在一所学校中随机选取了500名学生,将他们分为两组:一组进行了加强学习时间的训练,每天学习4个小时;另一组保持正常学习时间,每天学习2个小时。
在经过一段时间的训练后,我们进行了一次考试,记录了两组学生的考试成绩。
通过对比两组学生的考试成绩,我们发现加强学习时间组的平均分高于正常学习时间组,这说明学习时间和考试成绩之间存在着正相关关系。
举例三:再次,让我们来研究睡眠时间和工作效率之间的相关关系。
一般来说,充足的睡眠对于提高工作效率很重要。
为了验证这个假设,我们进行了一项睡眠实验。
我们让20名被试者进行七天的实验,在前三天,他们每晚只睡4个小时;在后四天,他们每晚睡眠时间恢复到正常的8个小时。
在每天的工作结束后,我们记录了被试者当天的工作成绩。
通过实验数据的分析,我们发现在睡眠时间缺乏的前三天,被试者的工作效率明显降低;而在恢复充足睡眠的后四天,工作效率也得到了明显的提高。
这表明睡眠时间和工作效率之间存在着正相关关系。
以上三个例子表明,两个变量之间的相关关系可以通过实验证明或者调查统计来证实。
将变量之间的相关关系研究清楚,对我们了解事物的本质以及提高效率具有重要意义。
一切客观事物都存在相互关系。
人们通过长期实践发现变量之间的关系有一下两类型。
1.函数关系:在同一个自然现象或技术过程中的两个变量,他们相互联系并遵循一定规
律在变化。
当其中一个变量在其变化范围内取定某一数值时,另一个变量按照一定法则总有确定的数值和它对应。
这种关系称为函数关系,亦称为确定性关系。
2.相关关系在同一自然现象或技术过程的两个变量,它们相互联系并遵循一定规律变化。
当其中的自变量在其变化范围内取定某一数值时,因变量虽然没有一个确定的数值与之对应,却有一个因变量特定的条件概率分布与之对应,也就是在一次抽样中,因变量出现的数值具有偶然性,在多次抽样中,因变量出现的数值边具有一定的规律,即服从一定的概率分布,这种关系称为相关关系。
函数关系和相关关系是可以相互转化的。
由于误差不可避免的存在,函数关系在实际实际工作中往往通过相关关系变现出来。
当对事物的关系了解非常深刻的时候,相关关系又可转化为函数关系。
在科学史上很多反映自然规律的公式就是这样逐步形成的。
回归分析方法:回归分析就是处理相关关系中变量与变量间数量关系的一种数学方法。
在相关关系中,自变量X与因变量y的关系虽具有不确定性,即当X为一确定的数值时,与之对应的y不是一个完全确定的值,而是多个乃至无穷多个y值,但这些y值确是一个具有一定概率分布的总体,这个总体的平均数是一个确定的值,称为y的条件平均数,用Uxy表示。
这就是说x与y的条件平均数呈现函数关系,这种函数关系y依x而回归,不称y是x的函数,以示区别。