三年级奥数和差的变化规律精选版
- 格式:doc
- 大小:21.00 KB
- 文档页数:3
和、差、积、商的变化规律(一)知识点拨和、差的规律见下表(m≠0)精讲精练【例题1】两个数相加,一个加数增加9,另一个加数减少9,和是否发生变化?【思路】一个加数增加9,假如另一个加数不变,和就增加9;假如一个加数不变,另一个加数减少9,和就减少9;和先增加9,接着又减少9,所以不发生变化。
【练习1】1.两个数相加,一个数减8,另一个数加8,和是否变化?2.两个数相加,一个数加3.另一个数也加3.和起什么变化?3.两个数相加,一个数减6,另一个数减2. 和起什么变化?【例题2】两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化?【思路】一个加数增加10,假如另一个加数不变,和就增加10。
现在要使和增加6,那么另一个加数应减少10-6=4。
【练习2】1.两个数相加,如果一个加数增加8,要使和增加15,另一个加数应有什么变化?2.两个数相加,如果一个加数增加8,要使和减少15,另一个加数应有什么变化?3.两个数相加,如果一个加数减少8,要使和减少8,另一个加数应有什么变化?【例题3】两数相减,如果被减数增加8,减数也增加8,差是否起变化?【思路】被减数增加8,假如减数不变,差就增加8;假如被减数不变,减数增加8,差就减少8。
两个数的差先增加8,接着又减少8,所以不起什么变化。
【练习3】1.两数相减,被减数减少6,减数也减少6,差是否起变化?2.两数相减,被减数增加12.减数减少12.差起什么变化?3.两数相减,被减数减少10,减数增加10,差起什么变化?【例题4】两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化?【思路】如果一个因数扩大8倍,另一个因数不变,积将扩大8倍;如果一个因数不变,另一个因数缩小2倍,积将缩小2倍。
积先扩大8倍又缩小2倍,因此,积扩大了8÷2=4倍。
【练习4】1.两数相乘,如果一个因数缩小4倍,另一个因数扩大4倍,和是否起变化?2.两数相乘,如果一个因数扩大3倍,另一个因数缩小12倍,积将有什么变化?3.两数相乘,如果一个因数扩大3倍,另一个因数扩大6倍,积将有什么变化?【例题5】两数相除,如果被除数扩大4倍,除数缩小2倍,商将怎样变化?【思路】如果被除数扩大4倍,除数不变,商就扩大4倍;如果被除数不变,除数缩小2倍,商就扩大2倍。
第5讲——和差的变化规律【精讲精练】例1、两个数相加,一个加数增加10,另一个加数减少10,它的和是怎样变化的?【答案】不变【解析】加数增加10,和就增加10,另一个加数减少10,和就减少10,最后和就会10-10=0,也就是不变。
练1、两个数的和是276,如果一个加数增加24,另一个加数减少40,现在的和是多少?【答案】260【解析】加数增加24,和就增加24,另一个加数减少40,和就减少40,变化后的和就是276+24-40=260。
例2、甲数减去乙数的差是45,如果甲数不变,要使它们的差为0,乙数怎样变化?【答案】乙数增加45【解析】差由45变为0,减少了45,被减数不变,差就要增加45。
练2、两个数的差是16,被减数增加16,减数不变,差是多少?【答案】32【解析】被减数增加16,差就增加16,变化后的差是16+16=32。
例3、三(1)班有50人,如果从三(1)班调给三(2)班4人,两个班人数就一样多,三(2)班原班有多少人?【答案】42人【解析】给4人就会相差2×4=8人,(2)班原来有50-8=42人。
练3、天天有30张美羊羊贴画,王晴有42张喜羊羊贴画,王晴送多少张贴画给天天,两人贴画一样多?【答案】6张【解析】王晴比天天多42-30=12张贴画,多出来的部分再平分,每人12÷2=6张,所以王晴要送给天天6张。
例4、小马虎在计算一道加法算式时,把第一个加数百位上的7错写成了1,将第2个加数十位上的6错看成了9,这样算得的和是845,正确的和是多少?【答案】1415【解析】百位上的7写成了1,和就减少600,十位上的6看成9,和就增加30,最后和会减少600-30=570,正确的和845+570=1415。
练4、小呆呆在计算一道加法题时,不小心把第一个加数十位上的7看成了1,把第二个加数百位上的9看成了6,算得的结果是640,正确的和是多少?【答案】1000【解析】十位上的7看成1,和就减少60,百位上的9看成6,和就减少300,最后和会减少60+300=360,正确的和640+360=1000。
三年级奥数和倍差倍和差问题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】和倍问题【例题1】学校有科技书和故事书共480本,科技书的本数是故事书的3倍。
两种书各有多少本?【思路导航】为了便于理解题意,我们画图来分析:由图可知,如果把故事书的本数看作一份,那么科技书的本数就是这样的3份,两种书的总本数就是这样的1+3=4份。
把480本书平均分成4份,1份是故事书的本数,3份是科技书的本数。
480÷(1+3)=120(本) 120×3=360(本).练习1:1.用锡和铝制成的合金是720千克,其中铝的重量是锡的5倍。
铝和锡各用了多少千克?2.甲、乙两数的和是112.甲数除以乙数的商是6,甲、乙两数各是多少?3.一块长方形黑板的周长是96分米,长是宽的3倍。
这块长方形黑板的长和宽各是多少分米?【例题2】果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。
求梨树、桃树和苹果树各有多少棵?【思路导航】如果把苹果树的棵数看作1份,三种树的总棵数是这样的1+3+4=8份。
所以,苹果树有1200÷8=150(棵),梨树有150×3=450(棵),桃树有150×4=600(棵).练习2:1.李大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。
鸡、鸭、鹅各养了多少只?2.甲、乙、丙三数之和是360,已知甲是乙的3倍,丙是乙的2倍。
求甲、乙、丙各是多少。
3.商店有铅笔、钢笔、圆珠笔共560支,圆珠笔的支数是钢笔的3倍,铅笔的支数与圆珠笔的支数同样多。
铅笔、钢笔和圆珠笔各有多少支?【例题3】有三个书橱共放了330本书,第二个书橱里的书是第一个的2倍,第三个书橱里的书是第二个的4倍。
每个书橱里各放了多少本书?【思路导航】把第一个书橱里的本数看作1份,那么第二个书橱里的本数是这样的2份,第三个就是这样的2×4=8份,三个书橱里的总本数就是这样的1+2+8=11份。
第二十四讲和差问题和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
例:“把姐姐的铅笔拿出3支后,姐姐、弟弟的铅笔支数就同样多.”这说明姐姐的铅笔比弟弟多3支,也说明姐姐和弟弟铅笔相差3支。
再例:“把姐姐的铅笔给弟弟3支后,两人铅笔支数就同样多.”如果认为姐姐的铅笔比弟弟多3支(差是3),那就错了.实际上姐姐比弟弟多2个3支.姐姐给弟弟3支后,自己留下3支,再加上他们原有的铅笔数,他们的铅笔支数才可能一样多.这里3×2=6支,就是暗差。
“把姐姐的铅笔给弟弟3支后还比弟弟多1支”,这就说明姐姐的铅笔支数比弟弟多3×2+1=7(支)。
例1两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?分析这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克).解法1:①第二筐重多少千克?(150-8)÷2=71(千克)②第一筐重多少千克?71+8=79(千克)或 150-71=79(千克)解法2:①第一筐重多少千克?(150+8)÷2=79(千克)②第二筐重多少千克?79-8=71(千克)或150-79=71(千克)答:第一筐重79千克,第二筐重71千克。
例2今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?分析题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。
解:①爸爸的年龄:[58+(35-7)]÷2=[58+28]÷2=86÷2=43(岁)②小强的年龄:58-43=15(岁)答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。
和差问题知识结构(1)和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
(2)为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
(3)知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:(两数的和-两数的差)÷2=较小的数较小的数+两数的差=较大的数(两数的和+两数的差)÷2=较大的数较大的数-两数的差=较小的数例题精讲【例 1】在月球表面,白天阳光垂直照射的地方的温度高达127℃,夜晚的温度下降到零下183℃,则月球表面昼夜温差(最高与最低温度的差)是℃。
【考点】基本的和差问题【难度】1星【题型】填空【关键词】2004年,第2届,希望杯,4年级,1试【解析】127+183=310【答案】310【巩固】最新的科学探测表明:火星表面的最高温度约为5℃,最低温度约为零下15℃,则火星表面的温差(最高与最低温度的差)约为℃。
【考点】基本的和差问题【难度】1星【题型】填空【关键词】2004年,希望杯,第二届,四年级,二试,第2题【解析】5+15=20【答案】20【例 2】小明的家离学校2公里,小光的家离学校3公里,小明和小光的家相距______ 公里。
【考点】基本的和差问题【难度】1星【题型】填空【关键词】2003年,第1届,希望杯,4年级,1试【解析】3-2=1千米或3+2=5千米【答案】5公里【巩固】小明的家在学校东400米处,小红的家在小明家的西200米处,那么小红的家距离学校_____米。
【考点】基本的和差问题【难度】1星【题型】填空【关键词】2005年,第3届,希望杯,4年级,1试【解析】400-200=200米【答案】200米【例 3】两筐水果共重150千克,第一筐比第二筐少10千克,两筐水果各多少千克?【考点】基本的和差问题【难度】1星【题型】解答【解析】本题也是和差问题的基本题型,借助线段图来分析如下:方法一:把第二筐多的10千克减掉,看成两个第一筐的重量来计算.列式:第一筐:15010270+=(千克).-÷=(千克),第二筐:701080()方法二:把第一筐少的10千克补上,看成两个第二筐的重量来计算.列式:第二筐:15010280-=(千克)()+÷=(千克),第一筐:801070【答案】第一筐70千克,第二筐80千克【巩固】果园共260棵桃树和梨树,其中桃树的棵数比梨树多20棵.桃树和梨树各有多少棵?【考点】基本的和差问题【难度】1星【题型】解答【解析】方法一:桃树:260202140+÷=(棵)梨树:14020120-=(棵)()方法二:梨树:260202120-÷=(棵)桃树:12020140+=(棵)()答:桃树有140棵,梨树有120棵.【答案】桃树有140棵,梨树有120棵【例 4】有一根钢管长12米,要锯成两段,使第一段比第二段短2米.每段各长多少米?【考点】基本的和差问题【难度】1星【题型】解答【解析】第一段:12225-=(米)()-÷=(米) 第二段:1257答:第一段长5米,第二段长7米.【答案】第一段长5米,第二段长7米【巩固】二年级一班和二班共有85人,一班比二班多3人.问一班、二班各有多少人?【考点】基本的和差问题【难度】1星【题型】解答【解析】本题是和差问题的基本题型,已知两个数的和与两个数的差,然后求大小两个数各是多少.和差问题一般可以借助线段图来进行分析.方法一:一班人数:853244+÷=(人) ,二班人数:44341-=(人)()方法二:二班人数:853241+=(人)()-÷=(人) ,一班人数:41344【答案】一班人数44人,二班人数41人【例 5】小勇家养的白兔和黑兔一共有22只,如果再买4只白兔,白兔和黑兔的只数一样多.小勇家养的白兔和黑兔各多少只?【考点】基本的和差问题【难度】1星【题型】解答【解析】解决这道题的关键就是理解“如果再买4只白兔,白兔和黑兔的只数一样多”,这句话的意思也就是白兔的只数比黑兔的只数少4只,或黑兔的只数比白兔多4只.只要理解了这个已知条件,我们就可以把这个题转换成典型和差问题来解决了.方法一:把黑兔多的4只减掉,看成两个白兔的数量来计算.列式:白兔:22429+=(只)-=(只) 或9413()-÷=(只),黑兔:22913方法二:把白兔少的4只加上,看成两个黑兔的数量来计算.列式:黑兔:224213-=(只)-=(只) 或1349()+÷=(只) ,白兔:22139【答案】黑兔13只,白兔9只【巩固】两个连续奇数的和是36,这两个数分别是多少?【考点】基本的和差问题【难度】1星【题型】解答【解析】两个连续奇数的差是2,利用和差公式解答如下.较小数:36-2217-=()÷=较大数:361719【答案】较小数17,较大数19【例 6】一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
《和、差、积、商》的变化规律例题与练习
例题1、两个数相加,一个加数增加8,另一个加数较少8,和有什么变化?
练习:两个数相加,一个加数增加26,另一个加数较少26,和有什么变化?
例题2、两个数相加,如果一个加数增加18,要使和增加6,那么另一个加数应有什么变化?
练习:两个数相加,如果一个加数减少16,要使和减少9,那么另一个加数怎样变化?
例题3、两数相减,被减数减少15,如果要使差减少20,减数应怎样变化?
练习:.两数相减,被减数增加12,如果要使差增加5,减数应怎样变化?
例题4、两数相乘,如果一个因数扩大6倍,另一个因数缩小2倍,积怎样变化?
练习:两数相乘,如果一个因数扩大12倍,另一个因数缩小4倍,积怎样变化?
例题5、两数相除,如果被除数扩大6倍,除数缩小3倍,商怎样变化?
练习:两数相除,如果被除数扩大5倍,除数缩小5倍,商怎样变化?
例题6、两个因数的积是72,如果一个因数扩大2倍,另一个因数缩小 3倍,这时两数的积是多少?
练习:两个数的积是42,其中一个因数扩大2倍,另一个因数缩小6倍,这时积应是多少?。
(1) 和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
(2) 为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
(3) 知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:(两数的和-两数的差)÷2=较小的数 较小的数+两数的差=较大的数(两数的和+两数的差)÷2=较大的数 较大的数-两数的差=较小的数【例 1】 学学和思思共有87颗糖果,学学给了思思5颗后,思思比学学还多3颗,原来学学有颗糖果,思思有颗糖果.【巩固】 有大、小两个油桶,一共装油24千克,两个油桶都倒出同样多的油后分别还剩9千克和5千克.问:原来大、小两个油桶各装油多少千克?例题精讲知识结构和差问题【例2】甲、乙两个笼子里共有小鸡20只,甲笼里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,求甲、乙两笼原来各有鸡多少只?【巩固】周明和王刚两人数学成绩的和是182分.周明如果多考5分,就比王刚多3分.周明和王刚的数学各考了多少分?【例3】兔妈妈拔了29个萝卜分给了小白兔和小黑兔,因为分的萝卜不一样多,兔妈妈让小白兔给了小黑兔5个,这时再来数发现小黑兔比小白兔多出1个萝卜,你知道原来小白兔和小黑兔各分到了多少个萝卜吗?【巩固】豆豆和苗苗各有一盒玻璃球,共有108粒,豆豆给了苗苗10粒,豆豆剩下的玻璃球比苗苗还多8粒,原来苗苗有()粒玻璃球。
【例4】两箱图书共有66本,甲箱如果借出10本,就比乙箱少4本.甲、乙两箱原有图书各多少本?【巩固】方方和圆圆共有图书70本,如果方方给圆圆5本,那么圆圆就比方方多4本.问:方方和圆圆原来各有图书多少本?【例5】第七届“小机灵杯”数学竞赛复赛)甲校原来比乙校多48人,为方便就近入学,甲校有若干人转入乙校,这时甲校反而比乙校少12人.甲校有多少人转入乙校?【巩固】甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?【例6】哥哥今年14岁,妹妹今年8岁,当兄妹俩岁数的和是42岁时,俩人各应该是多少岁?【巩固】兄弟俩现在年龄和是28岁,3年前哥哥比弟弟大2岁,兄弟俩现在各多少岁?【例7】有三块布料一共190米,第二块比第一块长20米,第三块比第二块长30米.每块布料各长多少米?【巩固】甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数.【例 8】老师桌上有一大叠作业本,其中有162本不是一班的,143本不是二班的,一班和二班的共有87本.那么二班的作业本共有本.【例9】大象、老虎、猴子三只动物的年龄中,大象和老虎共90岁,大象和猴子共70岁,老虎和猴子共40岁,请你算一算,三只动物各多少岁?【例10】四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共多少人?。
三年级奥数及倍、差倍、及差问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三年级奥数及倍、差倍、及差问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三年级奥数及倍、差倍、及差问题(word版可编辑修改)的全部内容。
和倍问题【例题1】学校有科技书和故事书共480本,科技书的本数是故事书的3倍。
两种书各有多少本?【思路导航】为了便于理解题意,我们画图来分析:由图可知,如果把故事书的本数看作一份,那么科技书的本数就是这样的3份,两种书的总本数就是这样的1+3=4份。
把480本书平均分成4份,1份是故事书的本数,3份是科技书的本数。
480÷(1+3)=120(本) 120×3=360(本)。
练习1:1.用锡和铝制成的合金是720千克,其中铝的重量是锡的5倍.铝和锡各用了多少千克?2.甲、乙两数的和是112.甲数除以乙数的商是6,甲、乙两数各是多少?3.一块长方形黑板的周长是96分米,长是宽的3倍.这块长方形黑板的长和宽各是多少分米?【例题2】果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。
求梨树、桃树和苹果树各有多少棵?【思路导航】如果把苹果树的棵数看作1份,三种树的总棵数是这样的1+3+4=8份.所以,苹果树有1200÷8=150(棵),梨树有150×3=450(棵),桃树有150×4=600(棵).练习2:1.李大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍.鸡、鸭、鹅各养了多少只?2.甲、乙、丙三数之和是360,已知甲是乙的3倍,丙是乙的2倍。
《数学小学三年级奥数专题》第28讲 和差问题一、知识要点:已知大小两个数的和及它们的差,求这两个数各是多少,这类问题我们称为和差问题。
掌握了和差问题的特征和规律,我们解答起来就很方便了。
解答和差问题通常用假设法,同时结合线段图进行分析。
可以假设小数增加到与大数同样多,先求大数,再求小数;也可以假设大数减少到与小数同样多,先求小数,再求大数。
多,先求小数,再求大数。
用数量关系表示:用数量关系表示: (和+差)÷2=大数大数 (和-差)÷2=小数小数 二、精讲精练例1 期中考试王平和李杨语文成绩的总和是188分,李杨比王平少4分。
两人各考了多少分?各考了多少分?练习一练习一1、两筐水果共重124千克,第一筐比第二筐多8千克。
两筐水果各重多少千克?两筐水果各重多少千克?2、小宁与小慧的身高总和是264厘米,又已知小宁比小慧矮8厘米。
两人分别高多少厘米?高多少厘米?例2 某机床厂第一、二两个车间共有车床96部,如果第一车间拨给第二车间8部,那么两个车间车床数相等。
两个车间各有车床多少部?部,那么两个车间车床数相等。
两个车间各有车床多少部?练习二练习二1、红星小学一年级新108人,分成甲、乙两个班。
如果从甲班转3个学生到乙班去,两班学生就一样多。
甲、乙两班各有学生多少人?班去,两班学生就一样多。
甲、乙两班各有学生多少人?2、甲、乙两筐共有水果80千克,若从甲箱取出6千克放到乙箱中,这时两箱水果同样多。
两箱原来各有水果多少千克?水果同样多。
两箱原来各有水果多少千克?例3 哥弟俩共有邮票哥弟俩共有邮票70张,如果哥哥给弟弟4张邮票,这时哥哥还比弟弟多2张。
哥哥和弟弟原来各有邮票多少张?张。
哥哥和弟弟原来各有邮票多少张?练习三练习三1、一只两层书架共放书72本,若从上层中拿出9本给下层,上层比下层多4本。
上、下层各放书多少本?本。
上、下层各放书多少本?2、姐姐和妹妹共有糖果39块,如果姐姐给妹妹7块,就比妹妹少3块。
(完整版)和差积商的变化规律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN和、差、积、商的变化规律(一)知识点拨和、差的规律见下表(m≠0)精讲精练【例题1】两个数相加,一个加数增加9,另一个加数减少9,和是否发生变化?【思路】一个加数增加9,假如另一个加数不变,和就增加9;假如一个加数不变,另一个加数减少9,和就减少9;和先增加9,接着又减少9,所以不发生变化。
【练习1】1.两个数相加,一个数减8,另一个数加8,和是否变化?2.两个数相加,一个数加3.另一个数也加3.和起什么变化?3.两个数相加,一个数减6,另一个数减2. 和起什么变化?【例题2】两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化?【思路】一个加数增加10,假如另一个加数不变,和就增加10。
现在要使和增加6,那么另一个加数应减少10-6=4。
【练习2】1.两个数相加,如果一个加数增加8,要使和增加15,另一个加数应有什么变化?2.两个数相加,如果一个加数增加8,要使和减少15,另一个加数应有什么变化?3.两个数相加,如果一个加数减少8,要使和减少8,另一个加数应有什么变化?【例题3】两数相减,如果被减数增加8,减数也增加8,差是否起变化?【思路】被减数增加8,假如减数不变,差就增加8;假如被减数不变,减数增加8,差就减少8。
两个数的差先增加8,接着又减少8,所以不起什么变化。
【练习3】1.两数相减,被减数减少6,减数也减少6,差是否起变化?2.两数相减,被减数增加12.减数减少12.差起什么变化?3.两数相减,被减数减少10,减数增加10,差起什么变化?【例题4】两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化?【思路】如果一个因数扩大8倍,另一个因数不变,积将扩大8倍;如果一个因数不变,另一个因数缩小2倍,积将缩小2倍。
积先扩大8倍又缩小2倍,因此,积扩大了8÷2=4倍。
和与差的变化规律及运用一、和的变化规律(一)和不变的性质:一个加数增加几,另一个加数减少几,和不变举例:4+5=9 如果(4+3)+(5-3)则和等于9,不变(二)和的变化规律:(1)一个加数增加几,另一个加数也增加几,和增加它们的和举例:4+5=9 如果(4+3)+(5+4)则和增加3+4=7,即和9+7=16(2)一个加数减少几,另一个加数也减少几,和减少它们的和举例:4+5=9 如果(4-3)+(5-4)则和减少3+4=7,即和9-2=2(3)一个加数增加几,另一个加数减少几,如果增加的多,则和增加,如果减少的多,则和减少举例:4+5=9 如果(4+3)+(5-2)则和增加3-2=1,即和9+1=10举例:4+5=9 如果(4+3)+(5-4)则和减少4-3=1,即和9-1=8例题1两个数相加,一个加数增加5,另一个加数也增加5,和有什么变化?练习1两个数相加,一个加数减少29,另一个加数不变,和将有什么变化?两个数相加,一个加数增加21,另一个加数增加19,和有什么变化?两个数相加,一个加数减少20,另一个加数增加20,和怎么样?例题2两个数相加,如果一个加数増加80,要使和增加18,那么另一个加数应有什么变化?分析:一个加数增加80,和发生了什么变化?要使总和增加18,说明什么?(另一个加数减少了。
)从总体上把握和的增减,再确定加数的增减,是一种种逆向思维方式。
两个数相加,一个加数增加34,要使和增加45,另一个加数应该如何变化?两个数相加,一个加数减少39,要使和减少18,那么另一个加数将怎么样变化?例题3两个数相加,和是100,一个加数减少48,另一个加数不变,现在和是多少?练习3两个数相加,和是134,一个加数减少30,另一个加数增加26,现在和是多少?两个数相加,和是254,一个加数减少11,另一个加数减少37,现在和是多少?例题4小丽在做一道加法题,一个加数十位上的4看作了7,个位上的5看作了2,算得的和是87。
学习资料收集于网络,仅供参考第九讲 和差的变化规律姓名1、两个数相加,一个加数减少29,另一个加数不变,和将有什么变 化?1、 两个数相加,一个加数增加21,另一个加数增加19,和有什么 变化?2、 两个数相加,一个加数减少20,另一个加数增加20,和怎么样?3、 两个数相加,一个加数增加34,另一个加数减少26,和有什么 变化?学习资料收集于网络,仅供参考4、 两个数相减,被减数不变,减数120,差将有怎样的变化?两牛馥伯耳:们)削黑被咸颠iSJjl (或砖少)一牛数•诽裁不变*那医, 它们的差也咼fcH 盞SUM 目一吓Sr忖》如果耳敌理加(義漳少}一个救"械甘热不賈"坯么它 们的差匪而克少(瞻鳌加)冋一牛披。
知疝两个啟相加:1. 如果一介脚戳不变*另一个Ml 数启加戒芒少n .和也会申 加巫戴少n ; 2、 如果 Y 加数堵抑孔另一介加数减少・.那去和不变*丸ai 卑f 加歆增加比另一平!rasa 少h (b/a )r 那筑和 会堵加晚目加他们购建(J )如果被威趣和只黏捧瞎H (却丈少》冋一伞盜,9 妇它们的差不夷*5、两个数相减,被减数增加38,减数增加38,差将有怎样的变化?6、两个数相减,被减数增加42,减数减少24,差将有怎样的变化?7、两个数相减,被减数增加42,减数增加15,差将有怎样的变化?9、两个数相加,一个加数减少39,要使和减少18,那么另一个加数将怎么样变化?10、11、两个数相加,和是100, —个加数减少48,另一个加数不变,现在和是多少?12、13、两个数相减,如果减数增加72,要使差不变,那么被减数将怎么样变化?14、两个数相减,如果被减数增加32,要使差减少52,减数将怎么样变化?学习资料收集于网络,仅供参考15、16、两个数相减,如果被减数减少11,要使差增加20,减数将怎么样变化?17、两个数相减,如果被减数增加17,减少增加32,差将有怎么样变化?1819、小丽在做一道加法题,一个加数十位上的4看作了7,个位上的5看作了2,算得的和是87。
第28讲:和差问题专题简析:已知一大、一小两个数的和及它们的差,求这两个数各是多少?这类问题我们称为和差问题,掌握了和差问题的特征和规律,我们解答这类问题就很方便了。
解答和差问题通常用假设法,同时结合线段图进行分析,可以假设较小的数增加到较大的数同样大,先求较大的数,再求较小的数;也可以假设较大的数减小到较小的数同样小,先求较小的数,再求较大的数,用数量关系式表示:(和+差)÷2=较大的数,(和—差)÷2=较小的数【例题1】期中考试王平和李杨的语文成绩的总和是188分,已知李杨的语文成绩比王平的语文成绩少4分,王平和李杨的语文成绩分别是多少分?【习题一】1、两筐水果共重124千克,第一筐水果的质量比第二筐水果的质量多8千克。
两筐水果的质量各是多少千克?2、小宁与小慧身高的总和是264厘米,已知小宁比小慧矮8厘米。
两人身高分别是多少厘米?3、三(1)班和三(2)班共有学生124人,如果从三(2)班调2名学生到三(1)班,两班学生就同样多。
三(1)、三(2)班原来各有学生多少人?【例题2】期末考试聪聪的语文和数学的平均成绩是98分,已知他数学比语文多得了2分。
聪聪的语文和数学各得多少分?【习题二】1、三、四年级平均每个年级有学生218人,三年级学生人数比四年级学生人数少10人。
三、四年级各有学生多少人?2、三(1)班男、女生的平均人数是20人,其中女生人数比男生人数少4人。
男、女生各有多少人?3、小红和小芳4分钟共跳绳688下,已知小红平均每分钟比小芳少跳4下。
小红和小芳平均每分钟各跳多少下?【例题3】哥哥和弟弟共有邮票70张。
如果哥哥给弟弟4张邮票,则哥弟俩的邮票数同样多。
哥哥和弟弟原来各有邮票多少张?【习题3】1、一个两层书架共放书72本,若从上层书架拿出9本书给下层书架,则两层书架上的书同样多。
上、下层书架各放书多少本?2、姐姐和妹妹共有糖果40块,如果姐姐给妹妹7块糖果,则姐妹俩的糖果数一样多。
小学生和差的变化规律、相遇问题奥数练习题【导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
小学生和差的变化规律奥数练习题1、两个数相加,一个加数减少29,另一个加数不变,和将有什么变化?2、两个数相加,一个加数增加21,另一个加数增加19,和有什么变化?3、两个数相加,一个加数减少20,另一个加数增加20,和怎么样?4、两个数相加,一个加数增加34,另一个加数减少26,和有什么变化?5、两个数相减,被减数不变,减数120,差将有怎样的变化?6、两个数相减,被减数增加38,减数增加38,差将有怎样的变化?7、两个数相减,被减数增加42,减数减少24,差将有怎样的变化?8、两个数相减,被减数增加42,减数增加15,差将有怎样的变化?9、两个数相加,一个加数减少39,要使和减少18,那么另一个加数将怎么样变化?10、两个数相加,和是100,一个加数减少48,另一个加数不变,现在和是多少?小学生相遇问题奥数练习题1、师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时后还有70个没有加工完?2、甲乙两队和挖一条水渠,甲队从东往西挖,每天挖75米,乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖完,这条水渠一共长多少米?3、甲乙两艘轮船从相距654千米的两地相对开出相向而行,8小时两船还相距22千米,已知乙船每小时行42千米,甲船每小时行多少千米?4、一辆汽车和一辆自行车从相距1725千米的甲乙两地同时出发,相向而行,3小时后两车相遇,已知汽车每小时比自行车多行31。
5千米,求汽车、自行车的速度各是多少?5、两地相距270千米,甲乙两列火车同时从两地相对开出,经过4小时相遇,已知甲车的速度是乙车的1。
5倍,求甲乙两列火车每小时各行多少千米?6、甲乙两城相距680千米,从甲城开往乙城的普通客车每小时行60千米,2小时候,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?7、甲乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了一小时,5小时候两车相遇。
三年级奥数和差的变化规律精选版
姓名
1、两个数相加,一个加数减少29,另一个加数不变,和将有什么
变化?
2、两个数相加,一个加数增加21,另一个加数增加19,和有什么
变化?
3、两个数相加,一个加数减少20,另一个加数增加20,和怎么样?
4、两个数相加,一个加数增加34,另一个加数减少26,和有什么
变化?
5、两个数相减,被减数不变,减数120,差将有怎样的变化?
6、两个数相减,被减数增加38,减数增加38,差将有怎样的变化?
7、两个数相减,被减数增加42,减数减少24,差将有怎样的变化?
8、两个数相减,被减数增加42,减数增加15,差将有怎样的变化?
9、两个数相加,一个加数减少39,要使和减少18,那么另一个加数将怎么样变化?
10、两个数相加,和是100,一个加数减少48,另一个加数不变,
现在和是多少?
11、两个数相减,如果减数增加72,要使差不变,那么被减数将怎
么样变化?
12、两个数相减,如果被减数增加32,要使差减少52,减数将怎么
样变化?
13、两个数相减,如果被减数减少11,要使差增加20,减数将怎么
样变化?
14、两个数相减,如果被减数增加17,减少增加32,差将有怎么样
变化?
15、小丽在做一道加法题,一个加数十位上的4看作了7,个位上
的5看作了2,算得的和是87.正确的和是多少?
16、小丽在做一道减法题,把被减数十位上的7看作了9,个位上
的3看作了8,算得的差是76.正确的差是多少?
17、。