(仅供参考)理论力学(周衍柏第二版)思考题习题答案第五章答案
- 格式:pdf
- 大小:444.50 KB
- 文档页数:64
第一章 质点力学矿山升降机作加速度运动时,其变加速度可用下式表示:⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。
已知升降机的初速度为零。
解 :由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 由加速度的微分形式我们可知dtdv a =代入得 dt T t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫⎝⎛-=002sin 1π 可得 :D T t c T ct v ++=2cos 2ππ(D 为常数)代入初始条件:0=t 时,0=v , 故c T D π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos 2T t T t c v ππ 又因为dtds v =所以 =ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos 2ππ 对等式两边同时积分,可得:⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ 直线FM 在一给定的椭圆平面内以匀角速ω绕其焦点F 转动。
求此直线与椭圆的焦点M 的速度。
已知以焦点为坐标原点的椭圆的极坐标方程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏心率,常数。
解:以焦点F 为坐标原点题1.8.1图则M 点坐标 ⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= ) 又因为()()221cos 111ea e e a r -+-=θ即 ()rer e a --=21cos θ所以()()2222222221211cos 1sin e r e ar r ea --+--=-=θθ故有 ()2222224222sin 1ωθωr e a r e v +-=()2224221e a r e -=ω()()]1211[2222222e r e ar r e a --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω即 ()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)质点作平面运动,其速率保持为常数。
理论力学课后答案第五章(周衍柏)第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q 是不是只相差一个乘数m ?为什么a p 比a q 更富有意义?5.4既然a q T ∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d 是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了aq T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=iii r F W δδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11 知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq 不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
习题精解5-1 1mol 理想气体,例如氧气,有状态A 11(,)p V 在图5.2上p V -沿一条直线变到状态22(,)B p V ,该气体的热力学能的增量为多少?解 理想气体的热力学能2M iE RT μ=氧气为双原子分子 5i = 氧气的摩尔数为1Mμ=()()212211522M i E E R T T p V p V μ∆==-=- 5-2 如图5.3所示,一定质量的理想气体,沿图中斜向下的直线由状态A 变化到状态B 初态时压强为54.010Pa ⨯,体积为321.010m -⨯,末态的压强为52.010Pa ⨯,体积为323.010m -⨯,求此过程中气体对外所做的功。
解 理想气体做功的表达式为W pdV =⎰,其数值等于p V -图中过程曲线下所对应的面积()()()()()532112.0 4.0103.0 1.010 6.01022A B B A W p p V V J -=+-=⨯+⨯⨯-⨯=⨯ 5-3 如图5.4所示,系统从状态A 沿ACB 变化到状态B ,有334J 的热量传递给系统,而系统对外做功为126J.(1)若系统从状态A 沿ADB 变化到状态B 是,系统做的功42J ,问由多少热量传递给系统。
(2)当系统从状态B 沿曲线BEA 返回到状态A 时,外界对系统做功为84J,问系统是吸热还是放热?传递热量多少? (3)若167D A E E J -=,求系统沿AD 及DB 变化时,各吸收多少热量? 解 (1)对于过程ACB()334126208B A ACB ACB E E Q W J -=-=-= 对于过程ADB 过程()()20842250ADB B A ADB Q E E W J =-+=+= (2)对于过程BEA()()20884292A B CEAB Q E E W J =-+=--=- 负号表示放热。
(3)对于过程AD()16742209AD D A ADB Q E E W J =-+=+= 对于过程DB 过程()()()20816741DB B A D A Q E E E E J =---=-=5-4 将压强为51.01310Pa ⨯,体积为33110m -⨯的氧气,自0C ︒加热到160C ︒,问:(1)当压强不变时,需要多少热量?(2) 当体积不变时,需要多少热量?(3)在等压和等体过程中各做多少功?解 氧气的摩尔数为()532111 1.01310110 4.46108.31273pV mn mol RT μ--⨯⨯⨯====⨯⨯氧气为双原子分子,5i = ()1158.3120.822V i C R J mol K --==⨯=•• ()11718.3129.122p i C R J mol K --⎛⎫=+=⨯=••⎪⎝⎭(1) 当压强不变时,系统所吸热为()()()2221 4.461029.1433273 2.0810p p Q pdV E nC T T J -=+∆=-=⨯⨯⨯-=⨯⎰(2) 体积不变时,系统所吸热为()()()2221 4.461020.8433273 1.4810V V Q E nC T T J -=∆=-=⨯⨯⨯-=⨯(3) 在等压过程中所做功为 ()()2121 4.46108.3143327359.3T p T W pdV nRdT J -===⨯⨯⨯-=⎰⎰在等体积过程中,气体体积不变,故所做的功为零。
第二章质点组力学第二章思考题2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心?2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故?2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动?2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何?2.5水面上浮着一只小船。
船上一人如何向船尾走去,则船将向前移动。
这是不是与质心运动定理相矛盾?试解释之。
2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒?2.7选用质心坐标系,在动量定理中是否需要计入惯性力?2.8轮船以速度V 行驶。
一人在船上将一质量为m 的铁球以速度v 向船首抛去。
有人认为:这时人作的功为()mvV mv mV v V m +=−+222212121你觉得这种看法对吗?如不正确,错在什么地方?2.9秋千何以能越荡越高?这时能量的增长是从哪里来的?2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么?2.11多级火箭和单级火箭比起来,有哪些优越的地方?第二章思考题解答2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。
对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。
2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。
2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,难以解算。
理论力学第2版(唐国兴王永廉主编)课后答案理论力学第2版内容简介第2版前言第1版前言第一章静力学基础知识要点解题方法难题解析习题解答第二章平面汇交力系知识要点解题方法难题解析习题解答第三章力矩、力偶与平面力偶系知识要点解题方法习题解答第四章平面任意力系知识要点解题方法难题解析习题解答第五章空间力系知识要点解题方法习题解答第六章静力学专题知识要点解题方法习题解答第七章点的运动学知识要点解题方法难题解析习题解答第八章刚体的基本运动知识要点解题方法习题解答第九章点的合成运动知识要点解题方法难题解析习题解答第十章刚体的平面运动知识要点解题方法难题解析习题解答第十一章质点动力学基本方程知识要点解题方法难题解析第十二章动量定理知识要点解题方法难题解析习题解答第十三章动量矩定理知识要点解题方法难题解析习题解答第十四章动能定理知识要点解题方法难题解析习题解答第十五章动静法知识要点解题方法习题解答参考文献理论力学第2版目录机械工业出版社本书是与唐国兴、王永廉主编的《理论力学》(第2版)配套的教学与学习指导书。
本书按主教材的章节顺序编写,每章分为知识要点、解题方法、难题解析与习题解答四个部分。
其中,“知识要点”部分提纲挈领地对该章的基本概念、基本理论和基本公式进行归纳总结,以方便读者复习、记忆和查询;“解题方法”部分深入细致地介绍解题思路、解题方法和解题技巧,以提高读者分析问题和解决问题的能力;“难题解析”部分精选若干在主教材的例题与习题中没有涉及的典型难题进行深入分析,以拓展读者视野,满足读者深入学习的需要;“习题解答”部分对主教材中该章的全部习题均给出求解思路和答案,但不提供详细解题过程,以期在帮助读者自主学习和练习的同时为他们留出适量的思考空间。
本书继承了主教材的风格特点,结构严谨、层次分明、语言精练、通俗易懂。
本书虽与主教材配套,但其结构体系完整,亦可单独使用。
本书可作为应用型本科院校与民办二级学院工科各专业学生的.学习和应试指导书,同样适合高职高专、自学自考和成人教育的学生使用,对考研者、教师和工程技术人员也是一本很好的参考书。
第五章基本知识小结⒈力矩力对点的力矩 F r o⨯=τ力对轴的力矩 ⊥⊥⨯=F r k z ˆτ⒉角动量质点对点的角动量 p r L o⨯= 质点对轴的角动量 ⊥⊥⨯=p r k L zˆ⒊角动量定理适用于惯性系、质点、质点系⑴质点或质点系对某点的角动量对时间的变化率等于作用于质点或质点系的外力对该点的力矩之和∑=dt L d 0 外τ⑵质点或质点系对某轴的角动量对时间的变化率等于作用于质点或质点系的外力对该轴的力矩之和∑=dt dL zz τ⒋角动量守恒定律适用于惯性系、质点、质点系⑴若作用于质点或质点系的外力对某点的力矩之和始终为零,则质点或质点系对该点的角动量保持不变⑵若作用于质点或质点系的外力对某轴的力矩之和始终为零,则质点或质点系对该轴的角动量保持不变⒌对质心参考系可直接应用角动量定理及其守恒定律,而不必考虑惯性力矩。
5.1.1 我国发射的第一颗人造地球卫星近地点高度d 近=439km,远地点高度d 远=2384km,地球半径R 地=6370km,求卫星在近地点和远地点的速度之比。
解:卫星在绕地球转动过程中,只受地球引力(有心力)的作用,力心即为地心,引力对地心的力矩为零,所以卫星对地心的角动量守恒m 月v 近(d 近+R 地)=m 月v 远(d 远+R 地) v 近/v 远=(d 远+R 地)/(d 近+R 地)=(2384+6370)/(439+6370)≈1.295.1.2 一个质量为m 的质点沿着j t b i t a r ˆsin ˆcos ωω+=的空间曲线运动,其中a 、b 及ω皆为常数。
求此质点所受的对原点的力矩。
解:)ˆsin ˆcos (ˆsin ˆcos /ˆcos ˆsin /222222=⨯-=⨯=-==-=+-=--==+-==r r m F r r m a m F r j t b i t a jt b i t a dt v d a j t b i t a dt r d v ωτωωωωωωωωωωωωω5.1.3 一个具有单位质量的质点在力场j t i t t F ˆ)612(ˆ)43(2-+-=中运动,其中t 是时间。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载理论力学课后答案第五章(周衍柏)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量和广义速度是不是只相差一个乘数?为什么比更富有意义?5.4既然是广义动量,那么根据动量定理,是否应等于广义力?为什么在拉格朗日方程式中多出了项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式得出式?5.6平衡位置附近的小振动的性质,由什么来决定?为什么2个常数只有2个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 和有何区别?和有何区别?5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号可置于积分号内也可移到积分号外?又全变分符号能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程与及之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.答因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由知,有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若是长度,则一定是力,若是力矩,则一定是角度,若是体积,则一定是压强等.答与不一定只相差一个常数,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
第一章习题1.1沿水平方向前进的枪弹,通过某一距离s 的时间为t 1,而通过下一等距离s 的时间为2t .试证明枪弹的减速度(假定是常数)为()()2121122t t t t t t s +- 1.2 某船向东航行,速率为每小时15km,在正午某一灯塔。
另一船以同样速度向北航行,在下午1时30分经过此灯塔。
问在什么时候,两船的距离最近?最近的距离是多少? 1.3 曲柄,r A O =以匀角速ω绕定点O 转动。
此曲柄借连杆AB 使滑块B 沿直线Ox 运动。
求连杆上C 点的轨道方程及速度。
设a CB AC ==,ψϕ=∠=∠ABO AOB ,。
x第1.3题图1.4 细杆OL 绕O 点以角速ω转动,并推动小环C 在固定的钢丝AB 上滑动。
图中的d 为已知常数,试求小球的速度及加速度的量值。
A BOCLxθd 第1.4题图1.5 矿山升降机作加速度运动时,其变加速度可用下式表示:⎪⎭⎫ ⎝⎛-=T t c a 2sin 1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。
已知升降机的初速度为零。
1.6 一质点沿位失及垂直于位失的速度分别为r λ及μθ,式中λ及μ是常数。
试证其沿位矢及垂直于位失的加速度为⎪⎭⎫ ⎝⎛+-r r r μλμθθμλ,2221.7 试自θθsin ,cos r y r x ==出发,计算x 及y。
并由此推出径向加速度ra 及横向加速度θa 。
1.8 直线FM 在一给定的椭圆平面内以匀角速ω绕其焦点F 转动。
求此直线与椭圆的焦点M 的速度。
已知以焦点为坐标原点的椭圆的极坐标方程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏心率,都是常数。
1.9 质点作平面运动,其速率保持为常数。
试证其速度矢量v 与加速度矢量a 正交。
1.10 一质点沿着抛物线px y 22=运动其切向加速度的量值为法向加速度量值的k 2-倍。
如此质点从正焦弦⎪⎭⎫⎝⎛p p ,2的一端以速度u 出发,试求其达到正焦弦另一端时的速率。
第五章习题解答5.1解如题5.1.1图杆受理想约束,在满足题意的约束条件下杆的位置可由杆与水平方向夹角所唯一确定。
杆的自由度为1,由平衡条件:即mg y =0①变换方程y=2rcos sin-= rsin2②故③代回①式即因在约束下是任意的,要使上式成立必须有:rcos2-=0④又由于cos=故cos2=代回④式得5.2解如题5.2.1图三球受理想约束,球的位置可以由确定,自由度数为1,故。
得由虚功原理故①因在约束条件下是任意的,要使上式成立,必须故②又由得:③由②③可得5.3解如题5.3.1图,在相距2a的两钉处约束反力垂直于虚位移,为理想约束。
去掉绳代之以力T,且视为主动力后采用虚功原理,一确定便可确定ABCD的位置。
因此自由度数为1。
选为广义坐。
由虚功原理:w①又取变分得代入①式得:化简得②设因在约束条件下任意,欲使上式成立,须有:由此得5.4解自由度,质点位置为。
由①由已知得故②约束方程③联立②③可求得或又由于故或5.5解如题5.5.1图按题意仅重力作用,为保守系。
因为已知,故可认为自由度为1.选广义坐标,在球面坐标系中,质点的动能:由于所以又由于故取Ox为零势,体系势能为:故力学体系的拉氏函数为:5.6解如题5.6.1图.平面运动,一个自由度.选广义坐标为,广义速度因未定体系受力类型,由一般形式的拉格朗日方程①在广义力代入①得:②在极坐标系下:③故将以上各式代入②式得5.7解如题5.7.1图又由于所以①取坐标原点为零势面②拉氏函数③代入保守系拉格朗日方程得代入保守系拉格朗日方程得5.8解:如图5.8.1图.(1)由于细管以匀角速转动,因此=可以认为质点的自由度为1.(2)取广义坐标.(3)根据极坐标系中的动能取初始水平面为零势能面,势能:拉氏函数①(4),代入拉氏方程得:(5)先求齐次方程的解.②特解为故①式的通解为③在时:④⑤联立④⑤得将代回式③可得方程的解为:5.9解如题5.9.1图.(1)按题意为保守力系,质点被约束在圆锥面内运动,故自有度数为2. (2)选广义坐标,.(3)在柱坐标系中:以面为零势能面,则:拉氏函数-①(4)因为不显含,所以为循环坐标,即常数②对另一广义坐标代入保守系拉氏方程③有得④所以此质点的运动微分方程为(为常数)所以5.10解如题5.10.1图.(1)体系自由度数为2.(2)选广义坐标(3)质点的速度劈的速度故体系动能以面为零势面,体系势能:其中为劈势能.拉氏函数①(4)代入拉格郎日方程得:②代入拉格郎日方程得③联立②,③得5.11 解如题5.11.1图(1)本系统内虽有摩擦力,但不做功,故仍是保守系中有约束的平面平行运动,自由度(2)选取广义坐标(3)根据刚体力学其中绕质心转动惯量选为零势面,体系势能:其中C为常数.拉氏函数(4)代入保守系拉氏方程得:对于物体,有5.12解如题5.12.1图.(1)棒作平面运动,一个约束,故自由度. (2)选广义坐标(3)力学体系的动能根据运动合成又故设为绕质心的回转半径,代入①得动能②(4)由③(其中)则④因为、在约束条件下任意且独立,要使上式成立,必须:⑤(5)代入一般形式的拉氏方程得:⑥又代入一般形式的拉氏方程得:⑦⑥、⑦两式为运动微分方程(6)若摆动角很小,则,代入式得:,代入⑥⑦式得:⑧又故代入⑧式得:(因为角很小,故可略去项)5.13解如题5.13.1图(1)由于曲柄长度固定,自由度.(2)选广义坐标,受一力矩,重力忽略,故可利用基本形式拉格朗日方程:①(3)系统动能②(4)由定义式③(5)代入①得:得5.14.解如题5.14.1图.(1)因体系作平面平行运动,一个约束方程:(2)体系自由度,选广义坐标.虽有摩擦,但不做功,为保守体系(3)体系动能:轮平动动能轮质心转动动能轮质心动能轮绕质心转动动能.①以地面为零势面,体系势能则保守系的拉氏函数②(1)因为不显含,得知为循环坐标.故=常数③开始时:则代入得又时,所以5.15解如题5.15.1图(1)本系统作平面平行运动,干限制在球壳内运动,自由度;选广义坐标,体系摩擦力不做功,为保守力系,故可用保守系拉氏方程证明①(2)体系动能=球壳质心动能+球壳转动动能+杆质心动能+杆绕中心转动动能②其中代入②得以地面为零势面,则势能:(其中为常数)(3)因为是循环坐标,故常熟③而代入①式得④联立③、④可得(先由③式两边求导,再与④式联立)⑤⑤试乘并积分得:又由于当5.16解如题图5.16.1.(1)由已知条件可得系统自由度.(2)取广义坐标.(3)根据刚体力学,体系动能:①又将以上各式代入①式得:设原点为零势能点,所以体系势能体系的拉氏函数②(1)因为体系只有重力势能做工,因而为保守系,故可采用③代入③式得即(5)解方程得5.17解如题5.17.1图(1)由题设知系统动能①取轴为势能零点,系统势能拉氏函数②(2)体系只有重力做功,为保守系,故可采用保守系拉氏方程.代入拉氏方程得:又代入上式得即③同理又代入上式得④令代入③④式得:欲使有非零解,则须有解得周期5.18解如题5.18.1图(1)系统自由度(2)取广义坐标广义速度(3)因为是微震动,体系动能:以为势能零点,体系势能拉氏函数(4)即①同理②同理③设代入①②③式得欲使有非零解,必须解之又故可得周期5.19解如题5.19.1图(1)体系自由度(2)取广义坐标广义速度(3)体系动能体系势能体系的拉氏函数(4)体系中只有弹力做功,体系为保守系,可用①将以上各式代入①式得:②先求齐次方程③设代入③式得要使有非零,必须即又故通解为:其中又存在特解有②③式可得式中及为积分常数。
理论力学第二版习题答案理论力学第二版习题答案理论力学是力学的基础学科,它研究物体在力的作用下的运动规律。
对于学习理论力学的学生来说,做习题是非常重要的一部分,通过做习题可以巩固理论知识,提高解题能力。
本文将为大家提供理论力学第二版习题的答案,希望对广大学生有所帮助。
第一章:牛顿力学的基本概念和基本定律1. 问题:一个质点从速度为v0的位置自由下落,求它下落的时间。
答案:根据自由下落的运动学公式,下落的时间t可以通过以下公式计算:t =√(2h/g),其中h为下落的高度,g为重力加速度。
由于自由下落是垂直向下的,所以h可以表示为h = (1/2)gt^2。
将h代入上述公式,可得t = √(2h/g) =√(2(1/2)gt^2/g) = √t^2 = t。
2. 问题:一个质点在水平方向上以初速度v0做匀速直线运动,求它在时间t内所走的距离。
答案:由于匀速直线运动的速度保持不变,所以在时间t内,质点所走的距离s 可以通过以下公式计算:s = v0t。
第二章:质点的运动方程1. 问题:一个质点在x轴上做直线运动,其运动方程为x = 2t^2 + 3t + 1,求其速度和加速度。
答案:质点的速度可以通过对运动方程求导得到:v = dx/dt = 4t + 3。
质点的加速度可以通过对速度求导得到:a = dv/dt = 4。
2. 问题:一个质点在y轴上做直线运动,其运动方程为y = 3t^3 + 2t^2 + t,求其速度和加速度。
答案:质点的速度可以通过对运动方程求导得到:v = dy/dt = 9t^2 + 4t + 1。
质点的加速度可以通过对速度求导得到:a = dv/dt = 18t + 4。
第三章:质点系和刚体的运动1. 问题:一个质点系由两个质点组成,质点1质量为m1,质点2质量为m2,它们之间通过一根质量可忽略不计的绳子连接,求质点系的重心位置。
答案:质点系的重心位置可以通过以下公式计算:x = (m1x1 + m2x2)/(m1 + m2),其中x1和x2分别为质点1和质点2的位置坐标。
理论力学第二版习题答案理论力学是物理学中研究物体运动规律的基础学科,它包括经典力学、相对论力学和量子力学等。
在经典力学中,牛顿运动定律是核心内容,而理论力学则进一步发展了这些定律,提供了更深入的分析和理解。
第二版的理论力学教材通常会包含更丰富的习题和更详尽的解答,以帮助学生更好地掌握力学的基本概念和方法。
习题1:牛顿运动定律的应用题目:一个质量为m的物体在水平面上受到一个恒定的力F作用,求物体的加速度。
解答:根据牛顿第二定律,力F等于物体质量m与加速度a的乘积,即F=ma。
因此,物体的加速度a等于力F除以质量m,即a=F/m。
习题2:动能和势能的计算题目:一个质量为m的物体从高度h自由落体,求落地时的动能。
解答:物体在自由落体过程中,重力势能转化为动能。
落地时的动能E_k等于重力势能的减少量,即E_k=mgh。
习题3:圆周运动的动力学分析题目:一个质量为m的物体以角速度ω在半径为R的圆周上做匀速圆周运动,求物体所受的向心力。
解答:匀速圆周运动的向心力F_c由公式F_c=mω^2R给出,其中m是物体的质量,ω是角速度,R是圆周的半径。
习题4:简谐振动的周期计算题目:一个质量为m的弹簧振子,弹簧的劲度系数为k,求其振动周期。
解答:简谐振动的周期T可以通过公式T=2π√(m/k)计算,其中m是振子的质量,k是弹簧的劲度系数。
习题5:刚体转动的动力学分析题目:一个均匀分布质量的刚体,其转动惯量为I,角速度为ω,求其转动动能。
解答:刚体的转动动能E_r可以通过公式E_r=0.5Iω^2计算,其中I是转动惯量,ω是角速度。
习题6:相对论效应的讨论题目:一个质量为m的物体以接近光速的速度v运动,求其相对论质量。
解答:在相对论中,物体的相对论质量m_r可以通过洛伦兹变换公式m_r=m/√(1-v^2/c^2)计算,其中m是静止质量,v是物体速度,c是光速。
习题7:量子力学的初步介绍题目:简述量子力学与经典力学的主要区别。
图s5.4 第五章 非惯性系中的质点力学思5.1答:这种说法不正确。
于某时将质点与S'系就地固连(就地固连是指若在另一时刻,质点相对S'系的位置将发生变化,质点就需固连于S'系中另一位置),由于S'系的运动而引起的质点相对于S 系的运动称为牵连运动。
思5.2答:'υ对S '系确有一定的依赖关系,因为若没有S'系,就不存在质点相对于S'系的速度。
但这种依赖关系并不意味着,对于除S'系以为的其它参考系(如S 系)'υ就不存在。
在选定两个参考系(S 和S'系)后,'υ这个客观存在的矢量既可以向S'系(O'x'y'z')投影,也可以向S 系(Oxyz )投影;随着时间的推移,'υ相对于S'系会发生改变,相对于S 系也会发生改变;因此当然可以求相对速度'υ的绝对变率。
思5.3答:这种说法不对。
应注意t υ和t a 的存在,并不说明质点真的被S'系带着以这个速度和加速度运动,它是假设质点与S'系就地固连后产生的对S 系的速度和加速度。
思5.4答: ω为P 点相对S'绕O 点作圆周运动的角速度,而不是S'系的角速度,ω是相对变率,当然对于ω,其相对变率与绝对变率总是相等的。
0a 为牵连加速度,()''⨯+⨯⨯ωr ωωr 为相对加速度 Oxyz 为平动坐标系 0∴=ω P 点相对S'系的速度''=⨯υωr ω是P 点相对S'绕O 点作圆周运动的角速度 t c '∴=++a a a a ()*0d 2d ''t=++⨯⨯υa ωωr 0''=⨯+⨯+ωr ωr a()0''=⨯+⨯⨯+ωr ωωr a思5.5答:若选择与圆盘固连的O'x'y'z'为S'系,则P 点相对S'的相对速率为0'=υ,S 系的角速度为ω()0''∴=+⨯+⨯⨯a a ωr ωωr其中ω为S'系的角速度的相对变率,ω为S'系的角速度。
第零章 数学准备一 泰勒展开式1 二项式的展开()()()()()m 23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++!!2 一般函数的展开()()()()()()()()230000000f x f x f xf x f x x-x x-x x-x 123!''''''=++++!!特别:00x =时,()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++!!3 二元函数的展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭!评注:以上方法多用于近似处理与平衡态处的非线性问题向线性问题的转化。
在理论力问题的简单处理中,一般只需近似到三阶以内。
二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰注:()()(),P x dx P x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。
2 一个特殊二阶微分方程2y A y B =-+ 通解:()02B y=K cos Ax+Aθ+注:0,K θ为由初始条件决定的常量 3 二阶非齐次常微分方程 ()x y ay by f ++=通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。
非齐次方程的一个特解 (1) 对应齐次方程0y ay by ++=设x y e λ=得特征方程2a b 0λλ++=。
解出特解为1λ,2λ。
*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则x 1y e cos x αβ=,x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。
《理论力学》第五章作业参考答案习题5-5解: 设当线段AB 水平时套管A 所处的位置为原点,则根据几何关系,222l x AB +=套管A 的运动方程可以写为:22l AB x -=因此,套管A 的速度dtdABx l x dt dABl AB ABdtdx v 2222+=-==由于绳索以等速拉下时,线段AB 缩短,故0v dtdAB=-,所以 022v xl x v +-=(即方向向上)相应地,套管A 的加速度32202220x l v x dt dx l x dt dAB x v dt dv a -=⎪⎪⎪⎪⎭⎫ ⎝⎛+--== (即方向向上)答:套管A 的速度和加速度与距离x 的关系分别为:022v xl x v +-=和3220xlv a -=。
习题5-10解:由于动点M 的切向加速度与速度均沿切线方向τ,根据题意: ()βτcos ,cos ==aaa t22n t a a a +=所以动点M 的切向加速度和法向加速度分别为 66.82310cos =⨯==βa a t (m/s 2)566.8102222=-=-=t n a a a (m/s 2)又动点M 的速度为j i v34+=,所以53422=+=v (m/s)根据关系式ρ2v a n =我们有:55522===n a v ρ(m)答:轨迹在动点密切面内的曲率半径为5m 、切向加速度为8.66m/s 2。
习题5-11解:根据题意,小环M 的运动方程可以写做:22x vty pvt⎧=⎨=⎩ 所以小环M 的速度:22x yv x v pv p v y v x pvt ⎧==⎪⎪⎨⎪===⎪⎩2212M x y pv v v v x=+=+小环M 的加速度:202x x y y a v v p a v x x⎧==⎪⎪⎨⎪==-⎪⎩22M y v p a a xx==-答:小环M 的速度和加速度分别为12p v x +和22v p xx-。