圆柱形平面式磁控溅射靶的特点与设计原理
- 格式:docx
- 大小:20.03 KB
- 文档页数:5
圆柱靶磁控溅射技术嘿,朋友们!今天咱来聊聊圆柱靶磁控溅射技术。
这玩意儿可厉害啦!就好像是一位神奇的魔法师,能在各种材料上施展奇妙的魔法。
你想想看,圆柱靶就像是一个充满魔力的圆柱体,里面蕴含着无尽的可能。
而磁控溅射呢,就像是给这个圆柱体注入了神奇的力量,让它能够把各种材料的精华提取出来,然后均匀地洒在我们需要的地方。
它就像是一个超级精准的油漆工,能把那一层薄薄的“颜料”涂得恰到好处,不厚也不薄。
而且呀,它的工作效率还特别高,比那些普通的方法可强多了。
在很多高科技领域,圆柱靶磁控溅射技术都发挥着至关重要的作用呢!比如说在电子行业,它能让那些小小的电子元件变得更加出色;在光学领域,它能让镜片更加清晰明亮。
这不就像是给这些东西注入了灵魂一样吗?它能让原本普通的材料一下子变得高大上起来,这可真是让人惊叹不已啊!你说这是不是很神奇?那薄薄的一层溅射出来的物质,就像是给材料披上了一件神奇的外衣,让它们拥有了全新的性能和特点。
你再想想,如果没有圆柱靶磁控溅射技术,那我们的生活得失去多少精彩呀!那些高科技产品可能就不会有现在这么出色的表现了。
这技术就像是一个默默无闻的幕后英雄,虽然我们平时可能不太注意到它,但它却一直在为我们的生活贡献着力量。
而且哦,这技术还在不断地发展和进步呢!就像我们人一样,要不断学习和成长。
说不定哪天,它又会给我们带来更大的惊喜呢!到时候,我们的生活又会发生翻天覆地的变化。
它的应用范围也越来越广泛,从小小的手机零件到大大的工业设备,都有它的身影。
这不就像是一个无处不在的小精灵吗?它在各个角落施展着自己的魔法,让一切都变得更加美好。
你说,这么厉害的圆柱靶磁控溅射技术,我们能不重视它吗?我们得好好感谢那些研究和开发这项技术的科学家们呀,是他们让我们的生活变得如此丰富多彩。
总之呢,圆柱靶磁控溅射技术可真是一项了不起的技术!它就像是一道闪耀的光芒,照亮了我们科技进步的道路。
让我们一起期待它未来能给我们带来更多的惊喜吧!。
磁控溅射靶靶型分类发布时间:2010-11-11磁控溅射靶靶型分类靶型开发的历程大致如下:首先开发的是轴状靶→圆盘形平面靶→S-枪→矩形平面靶→各种异形靶→对靶或孪生靶→靶面旋转的圆柱靶→靶-弧复合靶→……,目前应用最广泛的是矩形平面靶,未来最受关注的是旋转圆柱靶和靶-弧复合靶。
同轴圆柱形磁控溅射在溅射装置中该靶接500-600V的负电位,基片接地、悬浮或偏压,一般构成以溅射靶为阴极、基片为阳极的对数电场和以靶中永磁体提供的曲线形磁场。
圆柱形磁控溅射靶的结构1—水咀座;2—螺母;3—垫片;4—密封圈;5—法兰;6—密封圈;7—绝缘套;8—螺母;9—密封圈;10—屏蔽罩;11—密封圈;12—阴极靶;13—永磁体;14—垫片;15—管;16—支撑;17—螺母;18—密封圈;19—螺帽圆柱形磁控溅射靶的磁力线在每个永磁体单元的对称面上,磁力线平行于靶表面并与电场正交。
磁力线与靶表面封闭的空间就是束缚电子运动的等离子区域。
在异常辉光放电中,离子不断地轰击靶表面并使之溅射,而电子如下图那样绕靶表面作圆周运动。
在圆柱形阴极与同轴阳极之间发生冷阴极放电时的电子迁移简图平面磁控溅射圆形平面磁控溅射圆形平面靶采用螺钉或钎焊方式紧紧固定在由永磁体(包括环形磁铁和中心磁柱)、水冷套和靶外壳等组成的阴极体上。
如下图所以结构:圆形平面磁控溅射靶的结构1—冷却水管;2—轭铁;3—真空室;4—环形磁铁;5—水管;6—磁柱;7—靶子;8—螺钉;9—压环;10—密封圈;11—靶外壳;12—屏蔽罩;13—螺钉;14—绝缘垫;15—绝缘套;16—螺钉通常,溅射靶接500-600V负电压;真空室接地;基片放置在溅射靶的对面,其电位接地、悬浮或偏压。
因此,构成基本上是均匀的静电场。
永磁体或电磁线圈在靶材表面建立如下图的曲线形静磁场:圆形平面磁控靶的磁力线1—阴极;2—极靴;3—永久磁铁;4—磁力线该磁场是以圆形平面磁控靶轴线为对称轴的环状场。
磁控溅射法原理
磁控溅射法是一种常用的薄膜制备技术,它通过利用磁场控制离子在真空中运动来实现材料离子化和沉积。
磁控溅射法的基本原理如下:首先,通过加热材料将其转化为蒸气或离子状态。
随后,通过在真空室中施加磁场,使得磁场力线和离子运动方向垂直,从而形成所谓的“磁镜效应”。
这种磁镜效应可以阻止离子撞击到溅射靶材表面,从而使溅射源中的原子以准平行的方式射出。
在磁控溅射过程中,靶材的离子化和溅射是基于靶材与离子的相互作用力。
当离子击中靶材表面时,一部分离子将被散射回真空室中,形成所谓的“背景气体”。
而另一部分离子则进一步穿透靶材表面,将表面的原子或分子击出,并沉积在底板上形成薄膜。
这种沉积过程可以得到均匀、致密、具有良好结晶性的薄膜。
磁控溅射法有许多优点,例如可以控制薄膜的成分、结构和性能;可以在各种材料上制备薄膜;具有较高的沉积速率和较好的沉积效率等。
因此,磁控溅射法被广泛应用于各种领域,如光学、电子、材料科学等。
磁控溅射工作原理磁控溅射一条摆线。
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar来轰击靶材,从而实现了高的沉积速率。
随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。
由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。
磁控溅射是入射粒子和靶的碰撞过程。
入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。
在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。
种类磁控溅射包括很多种类。
各有不同工作原理和应用对象。
但有一共同点:利用磁场与电子交互作用,使电子在靶表面附近成螺旋状运行,从而增大电子撞击氩气产生离子的概率。
所产生的离子在电场作用下撞向靶面从而溅射出靶材。
靶源分平衡和非平衡式,平衡式靶源镀膜均匀,非平衡式靶源镀膜膜层和基体结合力强。
平衡靶源多用于半导体光学膜,非平衡多用于磨损装饰膜。
磁控阴极按照磁场位形分布不同,大致可分为平衡态和非平衡磁控阴极。
平衡态磁控阴极内外磁钢的磁通量大致相等,两极磁力线闭合于靶面,很好地将电子/等离子体约束在靶面附近,增加碰撞几率,提高了离化效率,因而在较低的工作气压和电压下就能起辉并维持辉光放电,靶材利用率相对较高,但由于电子沿磁力线运动主要闭合于靶面,基片区域所受离子轰击较小.非平衡磁控溅射技术概念,即让磁控阴极外磁极磁通大于内磁极,两极磁力线在靶面不完全闭合,部分磁力线可沿靶的边缘延伸到基片区域,从而部分电子可以沿着磁力线扩展到基片,增加基片磁控溅射区域的等离子体密度和气体电离率.不管平衡非平衡,若磁铁静止,其磁场特性决定一般靶材利用率小于30%。
为增大靶材利用率,可采用旋转磁场。
但旋转磁场需要旋转机构,同时溅射速率要减小。
平面靶原理磁控溅射技术是目前最重要的工业化大面积真空镀膜技术之一。
溅射技术的历史发展如图3-1所示,从中可以看出发展的驱动力主要来自:降低工艺成本、解决工艺难题和满足进一步提高薄膜性能的工艺参数优化。
前者关注于靶材利用率、沉积速率、薄膜均匀性以及溅射过程稳定性等方面的问题;后者由于低能离子轰击在薄膜沉积过程中的重要作用,主要要求增加溅射原子离化率和能独立控制/调节微观等离子体工艺参数等,以更好地满足实际镀膜工艺中的多种需求。
其中,HIPIMS:高功率脉冲磁控溅射high power impulse magnetron sputtering,MFMS:中频磁控溅射middle frequency magnetron sputtering,CFUBMS:闭合场非平衡磁控溅射closed field unbalanced magnetron sputtering,UBMS:非平衡磁控溅射unbalanced magnetron sputtering,IBAMS:离子束辅助磁控溅射ion beam aiding magnetron sputtering,HCM:空心阴极磁控溅射hollow cathode sputtering,ICPMS:感应耦合等离子磁控溅射inductively coupled plasma magnetron sputtering。
(一)磁控溅射工艺原理相对于其它的制备工艺(如CVD、PLD、Spray pyrolysis等),磁控溅射是目前制备薄膜最为常用的方法之一。
概括起来磁控溅射主要具有如下优点[20]:较低的制备温度(可室温沉积);较高的成膜质量,与衬底附着力好;可控性好,具有较高的沉积速率;可溅射沉积具有不同蒸汽压的合金与化合物;成本较低,重复性好,可实现规模化大面积生产。
本贴对一般性溅射过程原理部分从略,其详细介绍可参考文献[147-150],而主要结合制备AZO薄膜的情况,重点对磁控靶构造、磁路设计和部分表观工艺参数(external parameters)与微观/等离子体参数(plasma parameters)的关系做一简要评述。
圆柱形平面式磁控溅射靶的特点与设计原理作者:admin来源:本站发表时间:2010-2-2 9:49:13点击:2557磁控溅射膜常见故障的排除膜层灰暗及发黑(1)真空度低于0.67Pa。
应将真空度提高到0.13-0.4Pa。
(2)氩气纯度低于99.9%。
应换用纯度为99.99%的氩气。
(3)充气系统漏气。
应检查充气系统,排除漏气现象。
(4)底漆未充分固化。
应适当延长底漆的固化时间。
(5)镀件放气量太大。
应进行干燥和封孔处理膜层表面光泽暗淡(1)底漆固化不良或变质。
应适当延长底漆的固化时间或更换底漆。
(2)溅射时间太长。
应适当缩短。
(3)溅射成膜速度太快。
应适当降低溅射电流或电压膜层色泽不均(1)底漆喷涂得不均匀。
应改进底漆的施涂方法。
(2)膜层太薄。
应适当提高溅射速度或延长溅射时间。
(3)夹具设计不合理。
应改进夹具设计。
(4)镀件的几何形状太复杂。
应适当提高镀件的旋转速度膜层发皱、龟裂(1)底漆喷涂得太厚。
应控制在7—lOtan厚度范围内。
(2)涂料的粘度太高。
应适当降低。
(3)蒸发速度太快。
应适当减慢。
(4)膜层太厚。
应适当缩短溅射时间。
(5)镀件温度太高。
应适当缩短对镀件的加温时间膜层表面有水迹、指纹及灰粒(1)镀件清洗后未充分干燥。
应加强镀前处理。
(2)镀件表面溅上水珠或唾液。
应加强文明生产,操作者应带口罩。
(3)涂底漆后手接触过镀件,表面留下指纹。
应严禁用手接触镀件表面。
(4)涂料中有颗粒物。
应过滤涂料或更换涂料。
(5)静电除尘失效或喷涂和固化环境中有颗粒灰尘。
应更换除尘器,并保持工作环境的清洁膜层附着力不良(1)镀件除油脱脂不彻底。
应加强镀前处理。
(2)真空室内不清洁。
应清洗真空室。
值得注意的是,在装靶和拆靶的过程中,严禁用手或不干净的物体与磁控源接触,以保证磁控源具有较高的清洁度,这是提高膜层结合力的重要措施之一。
(3)夹具不清洁。
应清洗夹具。
(4)底涂料选用不当。
应更换涂料。
(5)溅射工艺条件控制不当。
圆柱形平面式磁控溅射靶的特点与设计原理
作者:admin来源:本站发表时间:2010-2-2 9:49:13点击:2557
磁控溅射膜常见故障的排除
膜层灰暗及发黑
(1)真空度低于0.67Pa。
应将真空度提高到0.13-0.4Pa。
(2)氩气纯度低于99.9%。
应换用纯度为99.99%的氩气。
(3)充气系统漏气。
应检查充气系统,排除漏气现象。
(4)底漆未充分固化。
应适当延长底漆的固化时间。
(5)镀件放气量太大。
应进行干燥和封孔处理
膜层表面光泽暗淡
(1)底漆固化不良或变质。
应适当延长底漆的固化时间或更换底漆。
(2)溅射时间太长。
应适当缩短。
(3)溅射成膜速度太快。
应适当降低溅射电流或电压
膜层色泽不均
(1)底漆喷涂得不均匀。
应改进底漆的施涂方法。
(2)膜层太薄。
应适当提高溅射速度或延长溅射时间。
(3)夹具设计不合理。
应改进夹具设计。
(4)镀件的几何形状太复杂。
应适当提高镀件的旋转速度
膜层发皱、龟裂
(1)底漆喷涂得太厚。
应控制在7—lOtan厚度范围内。
(2)涂料的粘度太高。
应适当降低。
(3)蒸发速度太快。
应适当减慢。
(4)膜层太厚。
应适当缩短溅射时间。
(5)镀件温度太高。
应适当缩短对镀件的加温时间
膜层表面有水迹、指纹及灰粒
(1)镀件清洗后未充分干燥。
应加强镀前处理。
(2)镀件表面溅上水珠或唾液。
应加强文明生产,操作者应带口罩。
(3)涂底漆后手接触过镀件,表面留下指纹。
应严禁用手接触镀件表面。
(4)涂料中有颗粒物。
应过滤涂料或更换涂料。
(5)静电除尘失效或喷涂和固化环境中有颗粒灰尘。
应更换除尘器,并保持工作环境的清洁膜层附着力不良
(1)镀件除油脱脂不彻底。
应加强镀前处理。
(2)真空室内不清洁。
应清洗真空室。
值得注意的是,在装靶和拆靶的过程中,严禁用手或不干净的物体与磁控源接触,以保证磁控源具有较高的清洁度,这是提高膜层结合力的重要措施之一。
(3)夹具不清洁。
应清洗夹具。
(4)底涂料选用不当。
应更换涂料。
(5)溅射工艺条件控制不当。
应改进溅射工艺条件
圆柱形平面式磁控溅射靶的特点与设计原理
摘要:介绍了一种根据矩形平面靶的结构原理设计圆柱形、平面式磁控溅射靶的方法.并对如何发挥圆柱形、平面式磁控溅射靶的优点进行了分析.
关键词:磁控溅射;靶;真空镀膜
1磁控溅射技术
磁控溅射技术是70年代发展起来的一种新型溅射技术,目前已在科研和生产中实际应用.磁控溅射镀膜主要用于电子工业、磁性材料及记录介质、光学及光导通讯等,具有高速、低温、低损伤等优点.高速是指沉积速率快;低温和低损伤是指基片的温升低,损伤小.
2磁控溅射镀膜原理与磁控溅射靶
2.1磁控溅射镀膜原理
磁控溅射镀膜原理是将磁控溅射靶放在真空室内,在阳极(真空室)和阴极靶(被沉积的材料)之间加上足够的直流电压,形成一定强度的静电场E.然后再在真空室内充入氩气,在静电场E的作用下,氩气电离并产生高能的氩离子A+r和二次电子e1.高能的A+r在电场E 的作用下加速飞向溅射靶,并以高能量轰击靶表面,使靶材表面发生溅射.在溅射粒子中,中性的靶原子(或分子)沉积在基片上形成薄膜(如图1所示)[1].
图1磁控溅射镀膜原理
由于磁场B的作用,一方面在阴极靶的周围,形成一个高密度的辉光等离子区,在该区域电离出大量的A+r来轰击靶的表面,溅射出大量的金属粒子向工件表面沉积;另一方面,二次电子e1在加速飞向靶表面的同时,受到磁场B的洛伦兹力作用,以摆线和螺旋线的复合形式在靶表面作圆周运动.随着碰撞次数的增加,电子e1的能量逐渐降低,传给基片的能量很小,故基片的温升较低.当溅射量达到一定程度后,靶表面的材料也就被消耗掉,形成拓宽的腐蚀环形凹状区[1].
2.2磁控溅射靶在镀膜过程中的重要作用
磁控溅射靶是真空磁控溅射镀膜的核心部件,它的重要作用主要表现在以下两个方面(1)对于大面积表面的镀膜,磁控溅射靶影响着膜层的均匀性与重复性;(2)当膜层材料为贵重金属时,靶的结构决定着靶材(形成薄膜的材料),即该贵重金属的利用率.
3常用的磁控溅射靶及其优缺点
3.1矩形平面靶
矩形平面靶的结构简图如图2所示[1],磁场方向与靶面阴极平行,形成环形磁场,该磁场与电场E正交.当真空室内充入氩气后,便被电离放电,放电产生的A+r离子轰击阴极(靶)的表面.二次电子e1受磁场B的洛仑兹力作用,沿垂直于磁力线方向运动(如图3所示).这些电子运动路径长,增加了气体分子磁撞的机会,使气体的电离几率增加,进而增大了溅射速率.
图2矩形平面靶的结构
图3靶表面由磁场构成的封闭环形跑道
矩形平面靶的特点是结构简单,通用性强,膜层均匀性与重复性好.但缺点是靶材的利用率低,一般约为20%[2]左右.当辉光区,即磁力线分布区域的靶材消耗到一定程度时,将形成条形凹坑,靶材体变薄,凹坑深度达到一定程度时,靶材就不能继续使用.
3.2同轴圆柱形磁控溅射靶
同轴圆柱形磁控溅射靶如图4所示[2],磁力线平行于靶表面,并与电场E正交.磁力线与靶表面封闭的空间就是约束电子运动的等离子区域.该区域为一环形空间,由图可以看出,同轴圆柱形磁控溅射靶有多个环形空间.
同轴圆柱形磁控测射靶的优点是结构紧凑,靶材利用率较平面矩形靶高.但缺点是在溅射时,整个靶表面上为多个辉光环,不能形成连续的条形辉光,故在镀制大面积的膜层时,膜层表面的均匀性差,很难满足要求.
4圆柱形、平面式磁控溅射靶的设计思路
4.1原理
把矩形平面磁控靶的结构原理应用到圆柱形磁控溅射靶中,设计的磁控溅射靶称为圆柱形、平面式磁控溅射靶.它兼有平面矩形靶和同轴圆柱靶两者的优点.即镀膜的均匀性好,和靶材利用率较高.
将两个矩形平面靶绕X轴(见图2)卷曲成半圆形,并将其合扰,如图5所示,即初步完成了平面矩形靶向圆柱形、平面式磁控溅射靶的演变.X轴变成了轴心线,磁力线在圆柱体的表面上形成了4条封闭的空间,即约束二次电子e1运动的等离子区域.
4.2要解决的技术问题
在把矩形平面靶演变成圆柱形、平面式靶的过程中,矩形平面靶中沿X轴方向布置的磁铁变成了圆柱形、平面式靶中沿轴线方向分布的磁铁.而平面矩形靶中垂直于X轴的端头磁铁A端从理论上讲,应变成圆环形磁铁A环,而且其充磁方向应该是圆环内表面和外表面,即内外表面应分别为S极和N极,如图6所示.然而,这种充磁方法几乎是办不到的.因此,设计圆柱形、平面式磁控溅射靶,解决两端的磁场问题是成功的关键.
图4同轴圆柱形磁控靶的磁铁布置
图5圆柱形、平面式磁控溅射靶的磁铁布置
图6理想环形磁铁的充磁方向
图7轴向充磁的磁铁与极靴
如图7所示,采用同轴圆柱形磁控溅射靶中磁铁与极靴的原理,即用轴向充磁的环形磁铁(两端面分别为S极和N极),在端面加一导磁材料制做的环形“极靴”,根据磁力线沿表面分布这一特点可知:这时磁力线是沿“极靴”的外圆表面发射的,即“极靴”代替了磁铁的一个磁极.而“极靴”的外圆表面发射的磁力线,正好与所希望的理想环形磁铁的磁力线方向相同.由此可知,用同轴圆柱形磁控溅射靶中磁铁与极靴的原理,可解决圆柱形、平面式磁控溅射靶端部磁场与中间段磁场的连接问题.
图8平面矩形靶的环状腐蚀凹坑
图9圆柱形、平面式磁控靶的环状腐蚀凹坑
5圆柱形、平面式磁控溅射靶与矩形靶工作状况对比
平面矩形靶在靶面上形成一条封闭的环形辉光带,随着靶材的消耗,在靶材表面上形成与辉光区对应的环状腐蚀凹坑(如图8所示).
圆柱形、平面式磁控溅射靶在靶面上形成两组(四条)对称的封闭的环形辉光带,随着靶材的消耗,将在靶材表面上形成与辉光区对应的环状腐蚀凹坑(如图9所示).
6圆柱形、平面式磁控溅射靶的优势
与其它形式的磁控溅射靶相比,圆柱形、平面式磁控溅射靶在保留了矩形平面靶镀膜均匀性好的优点的同时,可通过以下两条途径最大限度地提高靶材的利用率,(1)当靶材表面的2组(四条)环状凹坑达到一定深度时,可将靶芯(磁体部分)相对靶管旋转45°,这样就可以对靶管上另外没有腐蚀过的区域进行利用;(2)当圆柱形、平面式磁控溅射靶的靶芯设计成转靶芯时,(溅射时靶芯在旋转),可将靶材表面一层一层均匀地溅射掉,而不会产生凹坑,此时,靶材将得到最有效的利用,靶材的利用率可达50%~60%.当靶材为贵重金属材料时,这无疑是具有重大意义的[2].
7结论
通过采用同轴圆柱形磁控溅射靶中磁铁与靴的原理来解决端部磁场问题,可以将矩形平面靶演变成圆柱形、平面式磁控溅射靶.该靶在保留矩形平面靶镀膜均匀性好的情况下,可最大限度地提高靶材的利用率.从而提高经济效益.。