北师大版高中数学2-2第二章变化率与导数-导数的概念与导数的几何意义习题课课件73324
- 格式:ppt
- 大小:704.00 KB
- 文档页数:13
2016-2017学年高中数学第二章变化率与导数2.2.1 导数的概念2.2.2 导数的几何意义学案(含解析)北师大版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章变化率与导数2.2.1 导数的概念2.2.2 导数的几何意义学案(含解析)北师大版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章变化率与导数2.2.1 导数的概念2.2.2 导数的几何意义学案(含解析)北师大版选修2-2的全部内容。
2.2。
1 导数的概念2.2。
2 导数的几何意义1.理解导数的概念及导数的几何意义。
(重点、难点)2.会求导函数及理解导数的实际意义。
(重点)3.掌握利用导数求切线方程的方法.(难点)[基础·初探]教材整理1 函数f(x)在x=x0处的导数阅读教材P32“例1”以上部分,完成下列问题。
函数y=f(x)在x0点的瞬时变化率称为函数y=f(x)在x0点的导数,通常用符号f′(x0)表示,记作f′(x0)=错误!错误!=错误!_错误!.设函数y=f(x)可导,则错误!错误!等于()A.f′(1) B。
3f′(1)C.错误!f′(1)D.以上都不对【解析】由f(x)在x=1处的导数的定义知,应选A。
【答案】A教材整理2 导数的几何意义阅读教材P34~P36,完成下列问题.函数y=f(x)在x0处的导数,是曲线y=f(x)在点(x0,f(x0))处的切线的斜率。
函数y =f(x)在x0处切线的斜率反映了导数的几何意义.抛物线y=x2+4在点(-2,8)处的切线方程为________________.【解析】因为y′=错误!错误!=错误! (2x+Δx)=2x,所以k=-4,故所求切线方程为4x+y=0。