物体分离的两个临界条件及应用
- 格式:doc
- 大小:180.00 KB
- 文档页数:5
动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。
(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。
(4)速度达到最值的临界条件:加速度为0。
2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。
弹簧连接物体的分离问题临界条件:①两物体仍然接触、但弹力为零;②速度和加速度相等。
情况1:弹簧与物体分离——弹簧原长时情况2:弹簧连接的B与固定的板C分离——B、C间弹力为零、弹簧拉力等于B重力向下分力1、如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一个固定挡板.系统处于静止状态.现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d.(重力加速度为g)情况3:物块P与弹簧连接的M分离——P、M间弹力为零、P、M加速度相等2、一弹簧秤的秤盘质量M=1.5 kg,盘内放一物体P,物体P的质量m=10.5 kg,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图1—10—10所示.现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速运动,已知在头0.2 s内F是变力,在0.2 s以后是恒力.求F的最小值和最大值各是多少?(g=10 m/s2)3、固定在水平面上的竖直轻弹簧,上端与质量为M的物块B相连,整个装置处于静止状态时,物块B位于P处,如图所示.另有一质量为m的物块C,从Q处自由下落,与B相碰撞后,立即具有相同的速度,然后B、C一起运动,将弹簧进一步压缩后,物块B、C被反弹.下列结论中正确的是()A.B、C反弹过程中,在P处物块C与B相分离B.B、C反弹过程中,在P处物C与B不分离C.C可能回到Q处D.C不可能回到Q处“弹簧与物块的分离”模型太原市第十二中学 姚维明模型建构:两个物体与弹簧组成的系统。
两个物体在运动到某一位置时就会分开,那么这个位置就是物体间的分离点。
【模型】弹簧与物块的分离【特点】①都要建立动力学方程;②分离条件是:相互作用的弹力F N =0 这个问题可以分成两类“模型”:【模型1】水平面上“弹簧与木块的分离”模型如图1,B 与弹簧相连,而A 、B 是紧靠在一起的两个物体,当弹簧原来处于压缩状态,如果地面是光滑的,则物体A 、B 在向左运动的过程中A 、B 何时分离。
物体分离的两个临界条件及其应用
体分离的两个临界条件是指在物理系统中,当温度和压力达到特定值时,物质由固体、液体或气体三相转换。
这两个临界条件分别是:
液-气临界点:当温度和压力达到特定值时,液体会直接转换为气体。
这个临界点被称为临界点。
固-液临界点:当温度和压力达到特定值时,固体会直接转换为液体。
这个临界点被称为熔点。
这两个临界条件有着重要的应用,如工业生产中的蒸馏、分离、冷冻等过程,以及在医学上的液氮冷冻等。
工业生产中的蒸馏: 临界点的应用可以在工业上实现蒸馏过程,在高温高压下将液体直接转换为气体,再通过冷却将气体转化为液体,从而实现分离。
制冷行业: 制冷行业中也广泛使用了体分离的原理,通过改变压力来改变物质的相态,在冷冻过程中使用临界点来将液体直接转化为气体。
医学上的液氮冷冻: 液氮冷冻是一种常用的生物样品保存方法,它利用了氮气在-196摄氏度时的临界点将气体直接转化为固体,从而达到快速冷冻的目的。
油气勘探: 体分离的原理在油气勘探中也有着重要的应用,通过对油气层的温度和压力的控制来使油气脱离岩石并释放出来。
牛顿运动定律的解题技巧常用的方法:一、整体法★★:整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉及研究系统而不涉及系统内部某些物体的受力和运动时,一般可采用整体法.二、隔离法★★:隔离法是将所确定的研究对象从周围物体(连接体)系统中隔离出来进行分析的方法,其目的是便于进一步对该物体进行受力分析,得出与之关联的力.为了研究系统(连接体)内某个物体的受力和运动情况时,通常可采用隔离法.一般情况下,整体法和隔离法是结合在一起使用的.注:整体与隔离具有共同的加速度,根据牛二定律,分别建立关系式,再联合求解。
三、等效法:在一些物理问题中,一个过程的发展,一个状态的确定,往往是由多个因素决定的,若某量的作用与另一些量的作用相同,则它们可以互相替换,经过替换使原来不明显的规律变得明显简单。
这种用一些量代替另一些量的方法叫等效法,如分力与合力可以互相代替。
运用等效法的前提是等效。
四、极限法极限法是把某个物理量推向极端,即极大或极小,极左或极右,并依此做出科学的推理分析,从而给出判断或一般结论。
极限法在进行某些物理过程的分析时,具有独特作用,恰当运用极限法能提高解题效率,使问题化难为易,化繁为简思路灵活,判断准确。
五、作图法作图法是根据题意把抽象的复杂的物理过程有针对性的表示成物理图示或示意图,将物理问题化成一个几何问题,通过几何知识求解。
作图法的优点是直观形象,便于定性分析,也可定量计算。
六、图象法图象法是根据题意把抽象复杂的物理过程有针对性地表示成物理图象,将物理量间关系变为几何关系求解。
对某些问题有独特的优势。
动力学的常见问题:TB TA B A 2解之得g m M m M a A 42sin +-=α,g m M m M a B 42sin 2+-=α 讨论:(1)当m M 2sin >α时,0>A a ,其方向与假设的正方向相同;(2)当m M 2sin =α时,0==B A a a ,两物体处于平衡状态;(3)当m M 2sin <α时,0<A a ,0<B a ,其方向与假设的正方向相反,即A 物体的加速度方向沿斜面向上,B 物体的加速度方向竖直向下。
高中物理临界值问题一、物理中不同的临界情况对应着不同的临界条件,现列表如下:临界情况临界条件速度达到最大值物体所受合力为零刚好不相撞两物体最终速度相等或者接触时速度相等刚好分离两物体仍然接触、弹力为零,原来一起运动的两物体分离时,不只弹力为零且速度和加速度相等粒子刚好飞出(飞不出)两个极板的匀强电场粒子运动轨迹与极板相切粒子刚好飞出(飞不出)磁场粒子运动轨迹与磁场边界相切物体刚好滑出(滑不出)小车物体滑到小车一端时与车的速度刚好相等刚好运动到某一点到达该点时的速度为零绳端物体刚好通过最高点物体运动到最高点时重力等于向心力,速度大小为杆端物体刚好通过最高点物体运动到最高点时速度为零圆形磁场区的半径最小磁场区是以公共弦为直径的圆使通电导线倾斜导轨上静止的最小磁感强度安培力平行于斜面两个物体的距离最近(远)速度相等绳系小球摆动,绳碰到(离开)钉子圆运动半径变化,拉力骤变刚好发生(不发生)全反射入射角等于临界角总之,解决物理临界问题要仔细题目,搞清已知条件,判断出临界状态的条件,才能解决问题。
二、例题分析1.中国女排享誉世界排坛,曾经取得辉煌的成就。
在某次比赛中,我国女排名将冯坤将排球从底线A点的正上方以某一速度水平发出,排球正好擦着球网落在对方底线的B点上,且AB平行于边界CD。
已知网高为h,球场的长度为s,不计空气阻力且排球可看成质点,则排球被发出时,击球点的高度H和水平初速度v分别为( )A.H=43h B.H=32h C.v=s3h3gh D.v=s4h6gh解析:选AD 由平抛知识可知12gt2=H,H-h=12g(t2)2得H=43h,A正确,B错误。
由vt=s,得v=s4h6gh,D正确,C错误。
2.如图所示,小车内有一质量为m的物块,一根弹簧与小车和物块相连,处于压缩状态且在弹性限度内。
弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ。
设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止。
在动力学中临界极值问题的处理解决临界问题,关键是找出临界条件。
一般有两种基本方法:①以定理、定律为依据,首先求出所研究问题的一般规律和一般解,然后分析、讨论其特殊规律和特殊解②直接分析、讨论临界状态和相应的临界值,求解出研究问题的规律和解。
物理量处于临界值时:①物理现象的变化面临突变性。
②对于连续变化问题,物理量的变化出现拐点,呈现出两性,即能同时反映出两种过程和两种现象的特点。
物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。
在高考命题中经常以压轴题的形式出现,一、解决动力学中临界极值问题的基本思路所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。
至于是“出现”还是“不出现”,需视具体问题而定。
极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。
临界问题往往是和极值问题联系在一起的。
解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。
动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。
在解决临办极值问题注意以下几点:错误!未指定书签。
临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。
错误!未指定书签。
临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。
错误!未指定书签。
许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。
1 弹簧作用下物体之间相互分离的条件轻质弹簧作用下相互接触的两个物体(其中一个物体与弹簧的一端相连)分离的临界条件是:两个物体仍保持接触、且加速度相同,但没有弹力作用.据此易知弹簧可能处于原长、伸长或压缩状态.现逐一介绍.1. 物体分离时,弹簧恢复原长【例1】 如图1所示,一根原长为L 的轻质弹簧,下端固定在水平桌面上,上端固定一个质量为m 的物体A ,A 静止时弹簧的压缩量为ΔL 1,在A 上再放一个质量也是m 的物体B ,待A 、B 静止后,在B 上施加一个竖直向下的力F ,使弹簧再缩短ΔL 2(ΔL 2>2ΔL 1).这时弹簧的弹性势能为E P .突然撤去力F ,则B 脱离A 向上飞出的瞬间,弹簧的长度应为____________,这时B 的速度为___________.分析:确定A 、B 分离时弹簧的状态是解题关键.因为A 、B 即将分离时有:AB N =0,且A B a a =, ①B a g =,向下 ②A A Am g k x a m ±⋅∆=,向下 ③ 弹簧伸长时取“+”,压缩时取“-” 图1解①-③得:0x ∆=,即A 、B 分离时,弹簧恢复原长. (特殊地:当0A a =时,弹簧处于压缩状态,A 、B 尚未分离.)解答:由上述分析知A 、B 分离时,弹簧恢复原长,弹簧的长度为L.设A 、B 分离时的共同速度为v ,从撤去F 到A 、B 将要分离的过程中,由机械能守恒定律得:21212(2)2P E v mg l l =+∆+∆(2m )解得v =2. 物体分离时,弹簧处于压缩状态【例2】如图2所示,物体A 静止在台秤的秤盘B 上,A 的质量为10.5,A m kg =B 的质量为 1.5B m kg =,弹簧质量不计,劲度系数800k =N/m.现给A 施加一个竖直向上的力F ,使它向上做匀加速直线运动,已知力F 在开始的t =0.2s 内是变力,此后是恒力,求F 的最小值和最大值各是多少?分析:确定A 、B 分离时弹簧的状态是解题关键.因为A 、B 即将分离时有:AB N =0,且A B a a =, ① 图2。
物体分离的两个临界条件及应用
在解答两个相互接触的物体分离的问题时,不少同学利用“物体速度相同”的条件进行分析得出错误的结论。
此类问题应根据具体情况,利用“相互作用力为零”或“物体加速度相同”的临界条件进行分析。
下面结合例题讲解,希望大家能认识其中的错误,掌握方法。
一. 利用“相互作用力为零”的临界条件
例1. 如图1所示,木块A、B的质量分别为m1、m2,紧挨着并排放在光滑的水平面上,A与
B的接触面垂直于图中纸面且与水平面成角,A与B间的接触面光滑。
现施加一个水平力F于A,使A、B一起向右运动,且A、B不发生相对运动,求F的最大值。
图1
解析:A、B一起向右做匀加速运动,F越大,加速度a越大,水平面对A的弹力越小。
A、B不发生相对运动的临界条件是:,此时木块A受到重力、B对A的弹力
和水平力F三个力的作用。
根据牛顿第二定律有
由以上三式可得,F的最大值为
例2. 如图2所示,质量m=2kg的小球用细绳拴在倾角的斜面上,,求:
(1)当斜面以的加速度向右运动时,绳子拉力的大小;
(2)当斜面以的加速度向右运动时,绳子拉力的大小。
图2
解析:当斜面对小球的弹力恰好为零时,小球向右运动的加速度为。
(1),小球仍在斜面上,根据牛顿第二定律,有
代入数据解之得
(2),小球离开斜面,设绳子与水平方向的夹角为,则
代入数据,解之得
例3. 如图3所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一物体P处于静止状态。
P的质量m=12kg,弹簧的劲度系数。
现在给P施加一个竖直向上的拉力F,使P从静止开始向上做匀加速直线运动。
已知在开始内F是变力,在后F是恒力,
,则F的最小值是____________N,最大值是_________N。
图3
解析:P向上做匀加速直线运动,受到的合力为恒力。
之前,秤盘对物体的支持力F N逐渐减小;之后,物体离开秤盘。
设P处于静止状态时,弹簧被压缩的长度为x,则
代入数据,解之得
根据牛顿第二定律,有
所以
开始时,F有最小值
脱离时,,F有最大值
例4. 如图4所示,两细绳与水平的车顶面的夹角为和,物体的质量为m。
当小车以大小为2g的加速度向右匀加速运动时,绳1和绳2的张力大小分别为多少?
图4
解析:本题的关键在于绳1的张力不是总存在的,它的有无和大小与车运动的加速度大小有关。
当车的加速度大到一定值时,物体会“飘”起来而导致绳1松驰,没有张力,假设绳1的张力刚好为零时,有
所以
因为车的加速度,所以物块已“飘”起来,则绳1和绳2的张力大小分别为:
二. 利用“加速度相同”的临界条件
例5. 如图5所示,在劲度系数为k的弹簧下端挂有质量为m的物体,开始用托盘托住物体,使弹簧保持原长,然后托盘以加速度a匀加速下降(a<g),求经过多长时间托盘与物体分离。
图5
解析:当托盘以a匀加速下降时,托盘与物体具有相同的加速度,在下降过程中,物体所受的弹力逐渐增大,支持力逐渐减小,在托盘与物体分离时,支持力为零。
设弹簧的伸长量为x,以物体为研究对象,根据牛顿第二定律,有
所以
再由运动学公式,有
即
故托盘与物体分离所经历的时间为:
例6. 如图6所示,光滑水平面上放置紧靠一起的A、B两个物体,,,推力F A作用于A上,拉力作用于B上,、大小均随时间而变化,其规律分别为
,,问从t=0开始,到A、B相互脱离为止,A、B的共同位移是多少?
图6
解析:先假设A、B间无弹力,则A受到的合外力为,B受到的合外力为。
在t=0时,,,此时A、B加速度分别为:
则有
,说明A、B间有挤压,A、B间实际上存在弹力。
随着t的增大,减小,增大,但只要,两者总有挤压。
当F A对A独自产生的加速度与F B对B独自产生的加速度相等时,这种挤压消失,A、B开始脱离,有
即
解之得
A、B共同运动时,加速度大小为:
A、B的共同位移为:。