动量守恒中的临界问题ppt
- 格式:ppt
- 大小:1.42 MB
- 文档页数:17
动量专题 动量守恒中的临界问题1. 常见类型(1)滑块与小车的临界问题:滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.(2)两物体不相碰的临界问题:两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v 甲大于乙物体的速度v 乙,即v 甲>v 乙,而甲物体与乙物体不相碰的临界条件是v 甲=v 乙.(3)涉及弹簧的临界问题:对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.学;科网(4)涉及最大高度的临界问题:在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.2.求解动量守恒定律中的临界问题的关键(1)寻找临界状态:看题设情景中有相互作用的两物体是否相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件:在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.【典例1】 如图所示,甲车质量m 1 = m ,在车上有质量为M =2m 的人,甲车(连同车上的人)从足够长的斜坡上高h 处由静止滑下,到水平面上后继续向前滑动,此时质量m 2=2m 的乙车正以v 0 的速度迎面滑来,已知h =2v 20g,为了使两车不可能发生碰撞,当两车相距适当距离时,人从甲车跳上乙车,试求人跳离甲车的水平速度(相对地面)应满足什么条件?不计地面和斜坡的摩擦,小车和人均可看作质点。
【答案】 135v 0≤v ≤113v 0 【解析】 设甲车(包括人)滑下斜坡后速度为v 1,由机械能守恒定律得12(m 1+M )v 21=(m 1+M )gh得:v 1=2gh =2v 0设人跳离甲车的水平速度(相对地面)为v ,在人跳离甲车和人跳上乙车过程中各自动量守恒,设人跳离甲车和跳上乙车后,两车的速度分别为v 1′和v 2′,则人跳离甲车时:(M +m 1)v 1=Mv +m 1v 1′即(2m +m )v 1=2mv +mv 1′①人跳上乙车时:Mv -m 2v 0=(M +m 2)v 2′故v 的取值范围为135v 0≤v ≤113v 0. 【典例2】如图所示,一质量M =2 kg 的带有弧形轨道的平台置于足够长的水平轨道上,弧形轨道与水平轨道平滑连接,水平轨道上静置一小球B .从弧形轨道上距离水平轨道高h =0.3 m 处由静止释放一质量m A =1 kg 的小球A ,小球A 沿轨道下滑后与小球B 发生弹性正碰,碰后小球A 被弹回,且恰好追不上平台.已知所有接触面均光滑,重力加速度为g .求小球B 的质量.(取重力加速度g =10 m/s 2)【答案】3 kg 【解析】:设小球A 下滑到水平轨道上时的速度大小为v 1,平台水平速度大小为v ,由动量守恒定律有 0=m A v 1-Mv由能量守恒定律有m A gh =12m A v 21+12Mv 2 联立解得v 1=2 m/s ,v =1 m/s小球A 、B 碰后运动方向相反,设小球A 、B 的速度大小分别为v ′1和v 2.由于碰后小球A 被弹回,且恰好追不上平台,则此时小球A 的速度等于平台的速度,有v ′1=1 m/s由动量守恒定律得m A v 1=-m A v ′1+m B v 2由能量守恒定律有12m A v 21=12m A v ′21+12m B v 22联立上式解得m B =3 kg.【典例3】如图所示,用长为R 的不可伸长的轻绳将质量为m 3的小球A 悬挂于O 点.在光滑的水平地面上,质量为m 的小物块B (可视为质点)置于长木板C 的左端静止.将小球A 拉起,使轻绳水平拉直,将A 球由静止释放,运动到最低点时与小物块B 发生弹性正碰.学科;网(1)求碰后轻绳与竖直方向的最大夹角θ的余弦值.(2)若长木板C 的质量为2m ,小物块B 与长木板C 之间的动摩擦因数为μ,长木板C 的长度至少为多大,小物块B 才不会从长木板C 的上表面滑出?【解析】:(1)设小球A 与小物块B 碰前瞬间的速度为v 0,则有m 3gR =12·m 3v 20设碰后小球A 和小物块B 的速度分别为v 1和v 2,有m 3v 0=m 3v 1+mv 2 12·m 3v 20=12·m 3v 21+12·mv 22设小物块B 与长木板C 相互作用达到的共同速度为v ,长木板C 的最小长度为L ,有mv 2=(m +2m )vμmgL =12mv 22-12(m +2m )v 2 由以上各式解得L =R 6μ. 法二:由(1)可求得碰后小物块B 的速度为v 2=122gR临界状态是指当某种物理现象变化为另一种现象,或物体从某种特性变化为另一种特性时,发生突变或质的飞跃的转折状态。
动量守恒中的临界问题1. 常见类型(1)滑块与小车的临界问题:滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.(2)两物体不相碰的临界问题:两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v 甲大于乙物体的速度v 乙,即v 甲>v 乙,而甲物体与乙物体不相碰的临界条件是v 甲=v 乙.(3)涉及弹簧的临界问题:对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.(4)涉及最大高度的临界问题:在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.2.求解动量守恒定律中的临界问题的关键(1)寻找临界状态:看题设情景中有相互作用的两物体是否相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件:在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.【典例1】 如图所示,甲车质量m 1 = m ,在车上有质量为M =2m 的人,甲车(连同车上的人)从足够长的斜坡上高h 处由静止滑下,到水平面上后继续向前滑动,此时质量m 2=2m 的乙车正以v 0 的速度迎面滑来,已知h =2v 20g ,为了使两车不可能发生碰撞,当两车相距适当距离时,人从甲车跳上乙车,试求人跳离甲车的水平速度(相对地面)应满足什么条件?不计地面和斜坡的摩擦,小车和人均可看作质点。
【答案】 135v 0≤v ≤113v 0 【解析】 设甲车(包括人)滑下斜坡后速度为v 1,由机械能守恒定律得12(m 1+M )v 21=(m 1+M )gh得:v 1=2gh =2v 0设人跳离甲车的水平速度(相对地面)为v ,在人跳离甲车和人跳上乙车过程中各自动量守恒,设人跳离甲车和跳上乙车后,两车的速度分别为v 1′和v 2′,则人跳离甲车时:(M +m 1)v 1=Mv +m 1v 1′即(2m +m )v 1=2mv +mv 1′①人跳上乙车时:Mv -m 2v 0=(M +m 2)v 2′故v 的取值范围为135v 0≤v ≤113v 0. 【典例2】如图所示,一质量M =2 kg 的带有弧形轨道的平台置于足够长的水平轨道上,弧形轨道与水平轨道平滑连接,水平轨道上静置一小球B .从弧形轨道上距离水平轨道高h =0.3 m 处由静止释放一质量m A =1 kg 的小球A ,小球A 沿轨道下滑后与小球B 发生弹性正碰,碰后小球A 被弹回,且恰好追不上平台.已知所有接触面均光滑,重力加速度为g .求小球B 的质量.(取重力加速度g =10 m/s 2)【答案】3 kg 【解析】:设小球A 下滑到水平轨道上时的速度大小为v 1,平台水平速度大小为v ,由动量守恒定律有 0=m A v 1-Mv由能量守恒定律有m A gh =12m A v 21+12Mv 2 联立解得v 1=2 m/s ,v =1 m/s小球A 、B 碰后运动方向相反,设小球A 、B 的速度大小分别为v ′1和v 2.由于碰后小球A 被弹回,且恰好追不上平台,则此时小球A 的速度等于平台的速度,有v ′1=1 m/s由动量守恒定律得m A v 1=-m A v ′1+m B v 2由能量守恒定律有12m A v 21=12m A v ′21+12m B v 22联立上式解得m B =3 kg.【典例3】如图所示,用长为R 的不可伸长的轻绳将质量为m 3的小球A 悬挂于O 点.在光滑的水平地面上,质量为m 的小物块B (可视为质点)置于长木板C 的左端静止.将小球A 拉起,使轻绳水平拉直,将A 球由静止释放,运动到最低点时与小物块B 发生弹性正碰.(1)求碰后轻绳与竖直方向的最大夹角θ的余弦值.(2)若长木板C 的质量为2m ,小物块B 与长木板C 之间的动摩擦因数为μ,长木板C 的长度至少为多大,小物块B 才不会从长木板C 的上表面滑出?【解析】:(1)设小球A 与小物块B 碰前瞬间的速度为v 0,则有m 3gR =12·m 3v 20设碰后小球A 和小物块B 的速度分别为v 1和v 2,有m 3v 0=m 3v 1+mv 2 12·m 3v 20=12·m 3v 21+12·mv 22设小物块B 与长木板C 相互作用达到的共同速度为v ,长木板C 的最小长度为L ,有mv 2=(m +2m )vμmgL =12mv 22-12(m +2m )v 2 由以上各式解得L =R 6μ. 法二:由(1)可求得碰后小物块B 的速度为v 2=122gR。
动量守恒中的临界问题临界条件常表现为两物体的相对速度与相对位移关系。
1.滑块与小车的临界问题(滑块--滑板模型)滑块冲上小车后,滑块减速,小车加速。
滑块刚好不滑出小车的临界条件是:滑块到达小车末端时,滑块与小车的速度相同。
例1.质量为m B=2kg的平板车B上表面水平,开始时静止在光滑水平面上,在平板车左端静止着一块质量为m A=2kg的物体A,一颗质量为m0=0.01kg的子弹v0=600m/s的水平初速度瞬间射穿A后,速度变为v=100m/s,已知A,B之间的动摩擦因数不为零,且A 与B最终达到相对静止.求:①物体A的最大速度v A;( v A=2.5m/s)②平板车B的最大速度v B.( v B=1.25m/s)③要达到AB最终相对静止B至少多长L?(动摩擦因数0.1。
)(L=25/16 m)2.涉及弹簧的临界问题。
有弹簧的系统,当物体A与弹簧作用后, 物体A 减速B加速,两者间距离逐渐减小,弹簧的压缩量逐渐增大,在两者间发生相互作用过程中,当弹簧被压缩到最短,两物体间的速度必然相等,弹簧的弹性势能最大。
当弹簧恢复原长时A,B再次分离,此刻B的速度最大。
例2.如图所示,A、B两个木块用轻弹簧相连接,它们静止在光滑水平面上,A和B的质量分别是3m和4m,一颗质量为m的子弹以速度v0瞬间水平射入木块A内,并没有穿出.试求:(1)弹簧第一次最短时,弹性势能为多大?(2)B的最大速度为多大?3.涉及弧(斜)面车的临界问题。
在小球滑上斜面车的过程中由于弹力的作用,斜面车在水平方向做加速运动,小球减速,小球滑到斜面车最高点的临界条件是:小球与斜面车沿水平方向具有相同的速度,小球在竖直方向分速度为零。
(即:小球与斜面车相对静止)例3.光滑水平面上有一质量为M的滑块,滑块的左侧是一光滑的1/4圆弧,圆弧半径为R=1m.一质量为m的小球以速度v0向右运动冲上滑块.已知M=4m,g取10 m/s2,若小球刚好没跃出圆弧的上端,求:(1)小球的初速度v0是多少?(2)滑块获得的最大速度是多少?答案解析:(1)当小球上升到滑块上端时,小球与滑块水平方向速度相同,设为v1,根据水平方向动量守恒有:mv0=(m+M)v1 ①(2分)因系统机械能守恒,所以根据机械能守恒定律有:(m+M)v21+mgR ②(2分)联立①②式解得v0=5 m/s? ③(1分)(2)小球到达最高点以后又滑回,滑块又做加速运动,当小球离开滑块后滑块速度最大.研究小球开始冲上滑块一直到离开滑块的过程,根据动量守恒和能量守恒有:mv0=mv2+Mv3 ④(2分)? ⑤? (2分)联立③④⑤式解得v3=2 m/s.例4两质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h.物块从静止滑下,然后双滑上劈B.求物块在B上能够达到的最大高度.解:研究m、M1系统:m下滑至M1最低点过程,水平动量守恒(总动量不守恒): 0=mv1-M1v2(取向右为正方向)机械能守恒:(取水平面为零势能面) mgh=0.5mv1^2+0.5mv2^2 解得v1=√[2M1gh/(M+m)](2)研究m、M2系统:m滑至最高点(m、M2两者共速)过程,设最大高度为H水平动量守恒:mv1=(M2+m)v3机械能守恒:0.5mv1^2=mgH+0.5(m+M2)v3^2联立解得H=M1M2h/[(M1+m)(M2+m)]4.相向运动的两物体,不相撞的临界问题。