沥青材料2性质
- 格式:ppt
- 大小:707.50 KB
- 文档页数:72
沥青知识点总结一、沥青的来源沥青是一种矿物质材料,通常来源于天然矿石或石油提炼,并在特定的工艺过程中得到。
一般情况下,沥青主要分为天然沥青和人工沥青两种类型。
1. 天然沥青天然沥青产生于地下石油、煤矿或沥青矿床中,采用挖掘、采矿等方式开采。
天然沥青的品质和成分受到地质条件的影响,不同地区的天然沥青具有不同的性质和特点,常见的有煤焦沥青、沥青石、湖沥青等。
2. 人工沥青人工沥青通常是从石油提炼过程中得到,因此也称为石油沥青。
通过不同的生产工艺和技术处理,可以得到不同性质和用途的人工沥青,如沥青混合料、改性沥青等。
二、沥青的性质沥青具有许多优秀的性质和特点,这些性质决定了沥青在道路建设和维护中的重要作用。
1. 粘结性沥青具有很强的粘结性,能够有效地将路面材料粘结在一起,形成紧密的路面结构。
这种粘结性可以减少路面破碎、抗水、抗冻融和抗车轮荷载的能力。
2. 柔性沥青是一种柔性的材料,能够很好地抵抗路面变形、挠曲和热胀冷缩的影响,保持路面形态的稳定性。
3. 耐久性沥青具有很高的耐久性,能够长期保持路面的平整和平整,减少对路面的维护和修理。
4. 抗水性沥青具有良好的抗水性,能够有效地防止水分的渗透和侵蚀,保护路面的材料不受水的影响。
5. 防腐蚀性沥青具有很好的防腐蚀性,能够有效地保护路面材料免受化学物质和盐渗透的侵害。
6. 可塑性沥青可以通过不同的加热和加工方法变得柔软或硬化,适应不同的施工和使用条件。
三、沥青的生产工艺沥青的生产工艺主要包括沥青的提炼、改性、混合和加工等过程,这些工艺可以根据不同原料和用途得到不同性质的沥青产品。
1. 提炼石油沥青的提炼主要通过蒸馏、裂化、萃取和沉淀等工艺得到。
通过这些工艺可以得到不同级别和粘度的沥青产品,为道路建设和其他工程提供合适的原料。
2. 改性沥青的改性是为了改善沥青的性能和适应不同的应用要求,常用的改性方法有添加剂、改性剂、改性沥青混合料、复合材料等。
3. 混合沥青混合料是指沥青和骨料等材料的混合物,是道路铺装中常用的材料。
沥青综合知识沥青是一种有机胶凝材料,它是由一些极其复杂的高分子碳氢化合物及其非金属(氧、氮、硫等)衍生物所组成的混合物。
在常温下,沥青呈褐色或黑褐色的固体、半固体或粘稠液体状态。
它具有把砂、石等矿物质材料胶结成为一个整体的能力,形成具有一定强度的沥青混凝土,因此,被广泛地应用于铺筑路面、防渗墙等道路和水利工程中。
沥青是憎水性材料,几乎不溶于水,而且本身构造致密,具有良好的防水性、耐腐蚀性;它能与混凝土、砂浆、砖、石料、木材、金属等材料牢固地粘结在一起,且具有一定的塑性,能适应基材的变形。
因此,沥青材料及其制品又被广泛地应用于地下防潮、防水和屋面防水等建筑工程中沥青材料。
沥青的种类较多,按产源可分为:在工程中,最常用的是石油沥青,其次是煤沥青。
石油沥青一、石油沥青的生产工艺概述(一)石油的基属分类石油是炼制石油沥青的原料,石油沥青的性质首先与石油的基属有关。
我国目前的原油分类是按照“关键馏分特性”和“含硫量”进行分类的。
1. 关键馏分特性分类。
石油在半精馏装置中,于常压下蒸得250~275℃的馏分称为“第一关键馏分”;于5.33kPa的压力下减压蒸馏,取得275~300℃的馏分称为“第二关键馏分”。
测定以上两个关键馏分的相对密度,并对照表9-1所列相对密度范围或特性因素,决定两个关键馏分的基属,如石蜡基、中间基或环烷基。
根据原油两个关键馏分的相对密度(或特性因数)由表9-1决定其所隶属的基属,原油可分为表9-2所列七类。
表9-1 关键馏分的基属分类指标关键馏分石蜡基(P)中间基(M)环烷基(N)第一关键馏分相对密度<0.8207(K①>11.9)相对密度=0.8207~0.8506(K=11.5~11.9)相对密度>0.8506(K<11.5)第二关键馏分<0.8207(K>12.2)=0.8721~0.9302(K=11.5~12.2)>0.9302(K<11.5)注:①K为特性因素,根据关键馏分的沸点和密度指数查有关诺模图而求得。
10.2 沥青路面材料的力学特性与温度稳定性——这三个你仔细看一下吧10.2.1 沥青混合料的强度特性表征沥青混合料力学强度的参数是:抗压强度、抗剪强度和抗拉(包括抗弯拉)强度。
一般沥青混合料均具有较高的抗压强度,而抗剪和抗拉强度则较低。
因此,沥青路面的损坏,往往是由拉裂或滑移开始而逐渐扩展。
1、抗剪强度(shearing strength)沥青混合料的剪切破坏可按摩尔一库仑原理进行分析。
材料在外力作用下如不产生剪切破坏,则应具备下列条件:τmax< σ tg φ+c (2-4)式中:τmax — 在外荷载作用下,某一点所产生最大的剪应力;σ — 在外荷载作用下,在同一剪切面上的正应力;c — 材料的粘结力;φ — 材料的内摩阻角;在沥青路面的最不利位置取一单元体,设其三个方向的主应力为σ1、σ2和σ3,且σ1>σ2>σ3。
由于单元体中最不利的剪切条件取决于σ1和σ3,故仅根据σ1和σ3分析单元体的应力状况。
图2-17为单元体应力状况的摩尔圆。
图2-17 应力状况摩尔圆图 图2-18 三轴剪切实验装置 1-压力环;2-活塞;3-出水口;4-保温罩;5-进水口;6-接压力盒;7-试件;8-接水银压力计从图2-17可得: ()φσστcos 2131-=(2-5)()φφφσσσ2231sin cos 21tg c -+= (2-6)将式(2-5)、(2-6)代人式(2-4)得: ()()[]c≤+--φσσσσφsin cos 213131 (2-7a ) ()ctg ≤--φτσφτmax max cos (2-7b)式(2-7a)或(2-7b)为沥青路面材料强度的判别式。
式左端称为活动剪应力,当活动剪应力等于粘结力c 时,材料处于极限平衡,若大于粘结力c ,材料出现塑性变形。
根据式(2-7a)或(2-7b)可求得沥青路面材料应具有的c 和Φ值。
c 和Φ值可通过三轴剪切试验取得。
沥青材料的高温性能—软化点及当量软化点摘要车辙变形是当前沥青路面最主要的损坏形式。
沥青高温稳定不足的路面,反映在夏季高温季节中出现车辙、推拥的永久性变形,不仅影响行车舒适性,而且对交通安全造成威胁。
因此在沥青标准中无一例外的都列入了反映沥青高温使用条件的性能指标:软化点。
而当量软化点是为了排除蜡的影响提出的评价沥青混合料的高温性能的重要指标。
本文主要介绍了软化点及当量软化点的工程意义、工程应用及其影响因素、测试方法及设备。
关键词:软化点;当量软化点;沥青;高温性能1.绪论在我国大部分地区,夏季的最高气温能达到35-40ºC以上,沥青路面的最高温度达到60-65 ºC以上,再加上高温持续的时间长,致使沥青路面的重交通作用下迅速变形破坏。
沥青作为粘弹性材料,在如此持续高温的条件下,沥青性能由弹性体向塑性体转化,劲度模量大幅度降低,抗变形能力急剧下降,因此高温稳定性始终是沥青路面最基本的路用性能,车辙变形仍然是沥青路面最主要的损坏形式。
沥青高温稳定性不足的路面,反映在夏季高温季节出现车辙、推拥等永久性变形,不仅影响行车舒适性,而且对交通安全造成威胁。
据工业发达国家的资料,在许多国家,高速公路路面的维护、罩面的原因中,车辙的比率高达80%以上,可见问题的严重性。
沥青路面的车辙变形、拥包等实际上是一种混合料各种成分位置的变化过程,这时沥青的粘度较低,粘结集料抵抗变形的能力有限。
而沥青混合料的高温稳定性能,实际上是抵抗车辙反复压缩变形及侧向流动的能力,它首先取决于矿料骨架,尤其是粗集料的相互嵌挤作用,同时沥青结合料则起到阻碍混合料发生剪切变形的牵制作用,因而两者都是十分重要的。
在通常情况下,矿料级配的贡献率占到60%,沥青结合料则提供40%的抗车辙能力。
尤其是对许多密实型的密级配沥青混凝土来说,粗集料是呈悬浮型结构状态,相互嵌挤作用相当有限,沥青结合料具有较高的高温劲度就起到更为重要的作用。
项目四沥青材料习题一、单项选择题1、建筑石油沥青的牌号越高,则()。
A 粘性越大B 塑性越小C 耐热性越差D 硬度越大2、粘稠沥青的粘性用针入度值表示,当针入度值越大时,()。
A 粘性越小,塑性越大,牌号增大。
B 粘性越大,塑性越差,牌号减小。
C 粘性不变,塑性不变,牌号不变。
3、石油沥青的温度稳定性可用软化点表示,当沥青的软化点越高时,()。
A温度稳定性越好 B 温度稳定性越差C 温度稳定性不变4、石油沥青的塑性用延度来表示,当沥青的延度值越小时,()。
A 塑性越好B 塑性越差C塑性不变5、石油沥青的三大组分长期在空气中是()。
A 固定不变B 慢慢挥发C 逐渐递变D 与日俱增二、填空题1.三组分法把沥青分为、、。
2.石油沥青的基本性质有、、、、、、。
3.沥青的粘滞性对于粘稠沥青用表示,液体沥青用表示。
4.道路粘稠石油沥青三大指标是、、。
他们分别表示沥青的、、。
5.乳化沥青的组成材料有、与组成。
6.石油沥青的温度稳定性以与表示。
7.按胶体学说,认为石油沥青中是分散相,是分散介质助于结构稳定性。
C中,t表8.我国液体石油沥青的等级是按划分的,其表示方式td示,d表示,测试仪器的名称是。
9.我国粘稠沥青的牌号是按划分的,以为单位,测试仪器的名称是,测试条件为、、。
10煤沥青的化学组分有、、、。
三、判断题1、粘稠石油沥青针人度越大,软化点越高,延度越大。
( )2、当沥青质含量多,树脂油质含量少时,沥青的胶体结构为凝胶结构。
( )3、在250C时,当石油沥青的针人度大于2000(0.1mm)时,称为液体沥青。
( )4、煤沥青的表面活性比石油沥青大()5、石油沥青中树脂含量增加,沥青的粘结力和塑性也增加。
()6、在石油沥青胶体结构中,以溶凝胶型沥青的高温稳定性为最好。
()7、石油沥青中树脂含量增加,沥青的粘结力和塑性也增加。
( )8、在石油沥青胶体结构中,以溶凝胶型沥青的高温稳定性为最好。
( )9、加热稳定性是表征沥青材料随温度的升高或降低而产生软化或脆裂的性能。
沥青材料的知识点总结1. 沥青的来源沥青是一种天然产物,主要来自石油炼制过程中的残渣。
石油中的沥青通常在炼制过程中被分离出来,形成胶状物质,后来被用于道路铺装。
此外,沥青还可以从天然沥青矿中开采,这些矿藏通常位于地下,需要进行采矿和提炼。
2. 沥青的制备沥青的制备过程包括炼制、改性和添加剂,其中炼制是最基本的过程。
在炼制过程中,石油中的沥青被加热,随后通过蒸馏、溶剂萃取或其他方法分离出来。
接着,沥青通常需要经过改性处理,以改善其性能和耐久性。
添加剂的使用也可以改善沥青的特性,使其更适合特定的应用。
3. 沥青的性质沥青具有多种有趣的性质,包括粘度、黏度和弹性。
粘度用来描述沥青的流动性和黏附性,而黏度则描述了沥青的内聚力和凝固特性。
弹性表示沥青在受力后能够恢复原状的能力。
这些性质使得沥青成为一种理想的道路材料。
4. 沥青的应用沥青主要用于道路铺装,这包括新建道路和现有道路的维护。
沥青混凝土是一种常见的道路铺装材料,它由沥青、矿料和粘合剂组成。
此外,沥青也用于屋顶防水、防水涂料和其他建筑领域。
它在修补裂缝和封闭混凝土表面方面也有广泛的应用。
5. 沥青的环境影响沥青在生产、应用和废弃阶段都会对环境产生影响。
在生产阶段,炼制和改性过程会产生大量废水和尾气,对周围环境造成污染。
此外,造成用沥青铺装覆盖的道路会导致水文循环的变化和城市热岛效应。
废弃的沥青混凝土也会对土壤和地下水产生负面影响。
总的来说,沥青是一种重要的建筑材料,它在公路建设和维护中发挥着关键作用。
然而,要注意沥青生产和应用过程中可能产生的环境问题,并采取适当的措施减少其负面影响。