初中生如何能做好几何证明题(含问题详解)
- 格式:doc
- 大小:453.50 KB
- 文档页数:12
初中数学:几何证明9大解题思路,数学想考高分,不能少了它!
数学这门课程,一直以来都是孩子们重点学习的科目。
在小学阶段,数学学习都是非常基础的知识,而到了初中阶段以后,不仅学习知识内容增加了,而且难度在不断上升,数学是非常明显的,尤其是几何证明题。
初中阶段的数学,是非常关键的。
因为在初一的时期,尤其是上半期几乎是过度小学知识到初中知识的,所以初一整体来讲,学习的知识都不会太难。
而到了初二开始,真正开始学习一些难度较大的知识,甚至有些学校会做延伸拓展,主要是为了给高中的学习奠定好扎实的基础,由此可见初中阶段的知识不单单是为了升学要学好,更要为了以后的学习而掌握到位。
几何知识,从初一下半期开始接触学习,难度会随着年级的上升而增加。
而几何知识有可以说是初中数学最关键的核心知识之一,因此几何知识只必须要掌握的,不管是平时考试还是升学考试,都将会占很大一部分的分值。
而且高中还会深入学习几何知识,如果初中时没有掌握透彻,那么高中很难跟得上老师的脚步。
所以,今天老师为各位分享一套初中几何证明9大解题思路,相信这份资料会对孩子们的学习有帮助的,各位家长可以替孩子收藏好,或者是直接打印出来都是可以的。
好了,今天老师为大家分享的资料,到此就结束了。
我每天都会坚持更新好的教育方法、学习资料,因为有您的关注,才会让我更加有动力;孩子的求学道路,任重道远,让我们携手共进。
14.若何做几何证实题【常识精读】1. 几何证实是平面几何中的一个主要问题,它对造就学生逻辑思维才能有着很大感化.几何证实有两种根本类型:一是平面图形的数目关系;二是有关平面图形的地位关系.这两类问题经常可以互相转化,如证实平行关系可转化为证实角等或角互补的问题.2. 控制剖析.证实几何问题的经常运用办法:(1)综正当(由因导果),从已知前提动身,经由过程有关界说.定理.正义的运用,慢慢向前推动,直到问题的解决;(2)剖析法(执果索因)从命题的结论斟酌,斟酌使其成立须要具备的前提,然后再把所需的前提算作要证的结论持续斟酌,如斯慢慢往上逆求,直到已知事实为止;(3)两端凑法:将剖析与综正当归并运用,比较起来,剖析法利于思虑,综正当易于表达,是以,在现实思虑问题时,可归并运用,灵巧处理,以利于缩短题设与结论的距离,最后达到证实目标.3. 控制结构根本图形的办法:庞杂的图形都是由根本图形构成的,是以要擅长将庞杂图形分化成根本图形.在更多时刻须要结构根本图形,在结构根本图形时往往须要添加帮助线,以达到分散前提.转化问题的目标.【分类解析】1.证实线段相等或角相等两条线段或两个角相等是平面几何证实中最根本也是最主要的一种相等关系.许多其它问题最后都可化归为此类问题来证.证实两条线段或两角相等最经常运用的办法是运用全等三角形的性质,其它如线段中垂线的性质.角等分线的性质.等腰三角形的剖断与性质等也经经常运用到.例1. 已知:如图1所示,∆ABC中,∠=︒===90,,,.C AC BC AD DB AE CF求证:DE=DF剖析:由∆ABC是等腰直角三角形可知,∠=∠=︒A B45,由D是AB中点,可斟酌贯穿连接CD,易得CD AD=,∠=︒DCF45.从而不难发明∆∆≅DCF DAE证实:贯穿连接CD解释:在直角三角形中,作斜边上的中线是经常运用的帮助线;在等腰三角形中,作顶角的等分线或底边上的中线或高是经常运用的帮助线.显然,在等腰直角三角形中,更应当贯穿连接CD,因为CD既是斜边上的中线,又是底边上的中线.本题亦可延伸ED到G,使DG=DE,贯穿连接BG,证∆EFG是等腰直角三角形.有兴致的同窗无妨一试.例2. 已知:如图2所示,AB=CD,AD=BC,AE=CF.求证:∠E=∠F证实:贯穿连接AC在∆ABC和∆CDA中,在∆BCE和∆DAF中,解释:运用三角形全等证实线段求角相等.常须添帮助线,制作全等三角形,这时应留意:(1)制作的全等三角形应分离包含求证中一量;(2)添帮助线可以或许直接得到的两个全等三角形.2.证实直线平行或垂直在两条直线的地位关系中,平行与垂直是两种特别的地位.证两直线平行,可用同位角.内错角或同旁内角的关系来证,也可经由过程边对应成比例.三角形中位线定理证实.证两条直线垂直,可转化为证一个角等于90°,或运用两个锐角互余,或等腰三角形“三线合一”来证.例3. 如图3所示,设BP.CQ是∆ABC的内角等分线,AH.AK分离为A到BP.CQ 的垂线.求证:KH∥BC剖析:由已知,BH等分∠ABC,又BH⊥AH,延伸AH交BC于N,则BA=BN,AH=HN.同理,延伸AK交BC于M,则CA=CM,AK=KM.从而由三角形的中位线定理,知KH∥BC.证实:延伸AH交BC于N,延伸AK交BC于M∵BH等分∠ABC又BH⊥AHBH=BH同理,CA=CM,AK=KM∴KH是∆AMN的中位线即KH//BC解释:当一个三角形中消失角等分线.中线或高线重应时,则此三角形必为等腰三角形.我们也可以懂得成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形.例4. 已知:如图4所示,AB=AC,∠,,90.A AE BF BD DC=︒==求证:FD⊥ED证实一:贯穿连接AD在∆ADE和∆BDF中,解释:有等腰三角形前提时,作底边上的高,或作底边上中线,或作顶角等分线是经常运用帮助线.证实二:如图5所示,延伸ED到M,使DM=ED,贯穿连接FE,FM,BM解释:证实两直线垂直的办法如下:(1)起首剖析前提,不雅察可否用供给垂直的定理得到,包含添经常运用帮助线,见本题证二.(2)找到待证三直线所构成的三角形,证实个中两个锐角互余.(3)证实二直线的夹角等于90°.3.证实一线段和的问题(一)在较长线段上截取一线段等一较短线段,证实其余部分等于另一较短线段.(截长法)例5. 已知:如图6所示在∆ABC中,∠=︒B60,∠BAC.∠BCA的角等分线AD.CE 订交于O.求证:AC=AE+CD剖析:在AC上截取AF=AE.易知∆∆B60,知≅,∴∠=∠AEO AFO12.由∠=︒,,.∴∠=∠=∠=∠=︒∠+∠=︒∠=︒∠+∠=︒566016023120123460,得:≅∴=,∆∆FOC DOC FC DC证实:在AC上截取AF=AE又∠=︒B60即AC AE CD=+(二)延伸一较短线段,使延伸部分等于另一较短线段,则两较短线段成为一条线段,证实该线段等于较长线段.(补短法)例6. 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,∠=︒EAF45.求证:EF=BE+DF剖析:此题若模仿例1,将会碰到艰苦,不轻易运用正方形这一前提.无妨延伸CB至G,使BG=DF.证实:延伸CB至G,使BG=DF在正方形ABCD中,∠=∠=︒=90,ABG D AB AD又∠=︒EAF45即∠GAE=∠FAE4.中考题:如图8所示,已知∆ABC为等边三角形,延伸BC到D,延伸BA到E,并且使AE=BD,贯穿连接CE.DE.求证:EC=ED证实:作DF//AC交BE于F∆ABC是正三角形∴∆BFD是正三角形又AE=BD即EF=AC题型展现:证实几何不等式:例题:已知:如图9所示,∠=∠>12,AB AC.求证:BD DC>证实一:延伸AC到E,使AE=AB,贯穿连接DE在∆ADE和∆ADB中,证实二:如图10所示,在AB上截取AF=AC,贯穿连接DF则易证∆∆≅ADF ADC解释:在有角等分线前提时,常以角等分线为轴翻折结构全等三角形,这是经常运用帮助线.【实战模仿】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE⊥CD 于D,交BC 于E,且有AC AD CE ==.求证:DE CD =122. 已知:如图12所示,在∆ABC 中,∠=∠A B 2,CD 是∠C 的等分线. 求证:BC =AC +AD3. 已知:如图13所示,过∆ABC 的极点A,在∠A 内任引一射线,过B.C 作此射线的垂线BP 和CQ.设M 为BC 的中点.求证:MP =MQ4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D,求证:()AD AB AC BC <++14【试题答案】1. 证实:取CD 的中点F,贯穿连接AF又∠+∠=︒∠+∠=︒14901390,2. 剖析:本题从已知和图形上看仿佛比较简略,但一时又不知若何下手,那么在证实一条线段等于两条线段之和时,我们经常采取“截长补短”的手段.“截长”即将长的线段截成两部分,证实这两部分分离和两条短线段相等;“补短”即将一条短线段延伸出另一条短线段之长,证实其和等于长的线段.证实:延伸CA 至E,使CE =CB,贯穿连接ED在∆CBD 和∆CED 中,又∠=∠+∠BAC ADE E3. 证实:延伸PM 交CQ 于R又BM CM BMP CMR,=∠=∠∆斜边上的中线∴QM是Rt QPR4. 取BC中点E,贯穿连接AE。
中考数学几何证明题答题技巧及解题思路1500字中考数学几何证明题是中考数学中的重点和难点部分,要想在考试中得到高分,需要具备一定的解题思路和答题技巧。
下面将介绍几种常见的数学几何证明题的解题思路和答题技巧。
1. 利用已知条件进行推理对于数学几何证明题,往往会给出一些已知条件,这些条件可以用来进行推理和证明。
在解题时,需要先理清题意,理解已知条件,然后运用相关的定理和性质进行推导。
2. 运用余角性质和对称性质在几何证明题中,角的余角和角的对称性质经常被使用。
如果已知两个角互为余角,可以根据余角定理进行推理;如果已知两个角互为对称角,可以根据对称性质进行推导。
3. 利用平行线性质几何证明题中经常会涉及到平行线的性质。
如果已知两条直线平行,可以根据平行线的性质来进行推理和证明。
比如,如果已知两个角的对边分别平行,可以推出这两个角相等。
4. 运用等腰三角形和相似三角形的性质在几何证明题中,等腰三角形和相似三角形的性质也经常会被使用。
如果已知两边等长,可以推导出两个角相等;如果已知两个角相等,可以推导出两边等长。
如果已知两个三角形相似,可以运用相似三角形的性质来进行推理。
5. 利用三角形的角平分线和垂直平分线的性质在几何证明题中,三角形的角平分线和垂直平分线的性质也经常会被使用。
如果已知一个角的平分线和垂直平分线重合,可以推导出这个角是直角。
6. 运用勾股定理和正弦定理勾股定理和正弦定理是解决几何证明题中常用的工具。
如果已知一个三角形是直角三角形,可以利用勾股定理进行推导;如果已知三角形的边长和角度,可以利用正弦定理进行推导。
总结起来,解决几何证明题的关键在于理清题意,抓住已知条件,灵活运用相关的定理和性质,进行推理和证明。
熟练掌握几何证明题的解题思路和答题技巧,对于提高解题效率和得到高分非常有帮助。
初中数学几何证明题思路方法和技巧
1.利用定义和性质:几何证明题通常需要用到几何图形的定义和性质,因此在做题前需要熟悉相关概念。
2. 运用相似三角形:相似三角形有着相同的角度和比例关系,
因此可以通过相似三角形来证明几何关系。
3. 利用角度和:三角形内角和为180度,四边形内角和为360度,因此可以通过计算角度和来证明几何关系。
4. 利用垂直和平行关系:垂直和平行线有着明显的几何特征,
因此可以通过垂直和平行关系来证明几何关系。
5. 利用勾股定理和正弦定理等定理:勾股定理和正弦定理等定
理是几何证明中常用的工具,可以通过运用这些定理来证明几何关系。
6. 利用反证法:反证法是数学证明中常见的方法,可以通过排
除其他可能性来证明几何关系。
7. 利用矛盾法:矛盾法也是数学证明中常见的方法,可以通过
假设相反的情况来证明几何关系。
在做几何证明题时,还需要注意以下一些技巧:
1. 画图:画图可以帮助我们更好地理解几何关系,同时也可以
在证明中提供一些线索。
2. 标记线段和角度:标记线段和角度可以使证明过程更加清晰,方便读者理解。
3. 步骤清晰:证明过程需要步骤清晰、逻辑性强,不能出现漏
洞或矛盾。
4. 注意细节:几何证明中有时需要注意一些细节问题,例如判
断角度是否是锐角或钝角,判断线段是否相等等。
综上所述,初中数学几何证明题需要掌握一定的思路方法和技巧,并且需要认真、仔细地推导证明。
初中数学几何证明题解题思路分析在初中数学中,几何证明题是一种常见的题型,对学生的几何思维和证明能力有一定的要求。
解决几何证明题目的关键在于理解题目所要求的证明目标,并在此基础上运用合适的几何知识和推理方法进行解答。
本文将对初中数学几何证明题的解题思路进行分析和讨论,并介绍几个常见的解题方法。
一、理解题目要求在解决几何证明题之前,首先要仔细阅读题目,理解题目所要求的证明目标。
通常,几何证明题目要求证明一个几何性质或者关系,例如证明两条线段相等、两个角相等、两个三角形全等等。
理解题目目标的关键在于明确要证明的内容,并在脑海中形成一个清晰的图像。
二、运用几何知识在理解题目要求之后,就需要运用所学的几何知识进行解答。
根据不同的题目要求,可以运用的几何知识包括角的性质、相交线的性质、全等三角形的条件等等。
熟练掌握这些几何知识,并能够灵活运用是解决几何证明题的基础。
三、运用几何推理几何证明题的解答过程中,需要进行一系列的推理和推导。
常见的推理方法包括利用等式关系、三角形的相似性质、垂直定理、相反定理等等。
通过合理的推理和推导,可以从已知条件中推出所要证明的结论。
在推理过程中,要注意合理地运用几何定理和性质,严密地推导每一步。
四、列举反例有时候,我们在解决几何证明题时可能会思路受限,找不到有效的解题思路。
这个时候,可以尝试通过列举反例的方法来寻找突破口。
列举几个特殊情况或者反例,观察其中的规律和性质,有时能够为解题提供一些启示。
接下来,我们将通过几个具体的例子来进一步说明初中数学几何证明题的解题思路。
例子1:证明等腰三角形的底角相等。
解题思路:1. 题目要求证明等腰三角形的底角相等。
2. 已知条件是等腰三角形,即两条底边相等。
3. 运用几何推理:由等腰三角形的性质可知,两个底角相等。
4. 结论:等腰三角形的底角相等。
例子2:证明直角三角形的斜边长等于两腰长的平方和的平方根。
解题思路:1. 题目要求证明直角三角形的斜边长等于两腰长的平方和的平方根。
初中几何证明题之解题技巧总结及解析今天小编为大家整理了一篇有关初中几何证明题之解题技巧总结及解析的相关内容,以供大家阅读!上课听讲很重要几何不像其他的用很多公式关键要看懂图没有图的自己要会画图我做几何一般都是事先想到答案是什么(除了计算的)然后再想办法用定理证明其实我觉的几何是数学里面最简单的看上去复杂但是一旦你会做了一题一般都能解出来因为思考方向还有用到的定理都差不多所以熟记定理真的好重要的啊!!要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。
下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。
一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
*12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两个角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
初中二年级几何学习技巧如何解决几何证明题几何学是初中数学中的重要部分之一,其中几何证明题对学生来说常常是一个挑战。
解决几何证明题需要一定的技巧和思维方式。
本文将介绍一些初中二年级学生解决几何证明题的技巧。
一、理解几何证明的本质几何证明是基于已知条件,通过推理和逻辑推断来证明要证明的结论是否成立。
几何证明的本质是通过推理和逻辑推断来建立从已知条件到所要证明结论之间的联系。
因此,初中二年级的学生在解决几何证明题时要明确理解这一点。
二、熟悉几何基本概念和性质在解决几何证明题之前,学生首先要对几何学的基本概念和性质有充分的了解。
比如,学生应该熟悉各种图形的定义、性质以及它们之间的关系。
只有对基本概念和性质有深入的理解,才能更好地进行推理和证明。
三、分析已知条件和所要证明的结论在解决几何证明题时,学生需要先仔细分析已知条件和所要证明的结论。
理解已知条件的含义,并通过已知条件展开思考和推理。
同时,明确所要证明的结论的具体要求,这样可以有针对性地进行推理和证明过程。
四、灵活运用几何证明的方法初中二年级的学生在解决几何证明题时可以灵活运用一些常用的证明方法。
比如,直接证明法、间接证明法、反证法以及等边三角形法等。
根据具体的题目要求,选择合适的证明方法进行推理和证明。
五、注重图形的画法和标注在解决几何证明题时,学生需要注意图形的画法和标注。
准确绘制图形是进行几何证明的基础,所以要尽量准确地画出图形,并标注清晰明了。
合理的标注可以帮助理清思路,有助于进行推理和证明过程。
六、合理运用推理和逻辑推断几何证明题的解答离不开推理和逻辑推断,初中二年级的学生在解决几何证明题时要注意合理运用推理和逻辑推断。
在进行推理时可以运用一些常见的推理定理和性质,如垂直线和平行线之间的关系,线段与角的关系等。
七、多做几何证明的练习题提高解决几何证明题的能力需要通过多做练习题来巩固和提高。
通过不断地练习,学生可以逐渐熟悉几何证明的思路和方法,提高解决问题的能力。
八年级数学几何证明题技巧对于八年级的学生来说,几何证明题是一个全新的挑战。
如何更好地理解和解决这些题目,掌握相应的技巧至关重要。
以下,是我为八年级学生整理的一些几何证明题技巧。
一、理解基本概念首先,你需要理解并掌握几何的基本概念,如线段、角、三角形、四边形等。
这些基本元素及其之间的关系是证明题的基础。
理解这些概念,可以帮助你更好地理解题目的要求,从而找到正确的解题方向。
二、熟悉常用证明方法在几何证明中,有许多常用的证明方法,如直证法、间接证法、辅助线法等。
辅助线法尤其重要,它是解决许多复杂问题的关键。
通过添加辅助线,可以将复杂的图形分解成更易于处理的子图形,从而找到解题的突破口。
三、培养观察力和想象力几何证明需要你具备出色的观察力,能够看到题目中的关键信息,以及想象出题目未直接给出的信息。
通过观察和分析,你可以找到解决问题所需的各种条件,并将其转化为证明语句。
四、学会找规律几何证明题有时会有一定的规律可循。
通过观察和分析不同类型的题目,你可以发现一些常见的模式和技巧。
掌握了这些规律,可以大大提高解题速度和准确性。
五、练习是关键几何证明需要大量的练习来提高你的解题能力。
只有通过不断的练习,你才能更好地掌握各种方法和技巧,提高你的解题速度和自信心。
六、学会自我反思和总结在解题过程中,要学会自我反思和总结。
哪些地方做得好?哪些地方需要改进?如何改进?只有不断地反思和总结,才能不断提高你的解题能力。
七、使用几何工具和软件现代科技为几何证明提供了许多便利。
你可以使用几何工具如直尺、圆规等,也可以使用一些数学软件来帮助你绘制图形和进行计算。
这些工具可以帮助你更好地理解题目和图形,提高解题效率。
八、培养逻辑思维能力在几何证明中,逻辑思维能力至关重要。
你需要按照一定的逻辑顺序来思考和证明问题,从已知条件出发,逐步推导出结论。
通过不断地练习和思考,你可以培养出更加严密的逻辑思维能力。
九、注意细节和规范书写在几何证明中,细节决定成败。
初中数学高分秘籍几何证明的解步骤初中数学高分秘籍几何证明的解题步骤在初中数学的学习中,几何证明题常常让同学们感到头疼。
但其实,只要掌握了正确的解题步骤和方法,就能轻松应对,取得高分。
下面,我将为大家详细介绍初中数学几何证明题的解题步骤。
一、认真审题这是解决几何证明题的第一步,也是最为关键的一步。
在审题时,要仔细阅读题目,弄清楚已知条件和求证结论。
同时,要注意图形中的各种元素,如线段、角、三角形、四边形等,以及它们之间的关系。
例如,题目中给出了一个三角形,已知其中两个角的度数和一条边的长度,要求证明这个三角形是等腰三角形。
那么我们在审题时,就要明确已知的角和边的具体信息,以及等腰三角形的判定条件。
在审题过程中,还可以将已知条件和求证结论标注在图形上,这样可以更直观地帮助我们分析问题。
二、分析思路在认真审题的基础上,接下来要分析解题思路。
这需要我们熟练掌握几何的基本定理、公理和性质,并能够灵活运用。
对于刚才提到的等腰三角形的证明题,我们可以根据等腰三角形的定义和性质,思考如何通过已知条件推导出两条边相等。
比如,已知两个角相等,根据等角对等边,就可以得出相应的结论。
在分析思路时,可以从结论出发,逆向推导需要的条件;也可以从已知条件出发,顺向推导能够得到的结论,逐步向求证结论靠近。
三、选择合适的证明方法初中几何证明题常见的证明方法有综合法、分析法和反证法等。
综合法是从已知条件出发,通过一系列的推理和论证,最终得出求证结论。
这种方法比较直接,但需要对定理和性质有很好的掌握。
分析法是从求证结论出发,逐步分析要得到这个结论需要满足的条件,然后再看已知条件是否能够满足这些条件。
反证法是先假设求证结论不成立,然后通过推理得出矛盾,从而证明原结论成立。
在实际解题中,要根据题目的特点和自己的掌握情况,选择合适的证明方法。
四、书写证明过程在确定了证明思路和方法后,就可以开始书写证明过程了。
证明过程要做到条理清晰、逻辑严谨、语言准确。
初中生如何做好几何证明题(含答案)14、如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。
求证:DE =DF分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。
从而不难发现∆∆DCF DAE ≅ 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
14、如何做几何证明题
【知识精读】
1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:
(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;
(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;
(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【分类解析】
1、证明线段相等或角相等
两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1所示,中,。
求证:DE=DF
分析:由是等腰直角三角形可知,,由D是AB中点,可考虑连结CD,易得,。
从而不难发现
证明:连结CD
说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
显然,在等腰直角三角形中,更应该连结CD,因为CD既是斜边上的中线,又是底边上的中线。
本题亦可延长ED到G,使DG=DE,连结BG,证是等腰直角三角形。
有兴趣的同学不妨一试。
例2. 已知:如图2所示,AB=CD,AD=BC,AE=CF。
求证:∠E=∠F
证明:连结AC
在和中,
在和中,
说明:利用三角形全等证明线段求角相等。
常须添辅助线,制造全等三角形,这时应注意:
(1)制造的全等三角形应分别包括求证中一量;
(2)添辅助线能够直接得到的两个全等三角形。
2、证明直线平行或垂直
在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。
例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。
求证:KH∥BC
分析:由已知,BH平分∠ABC,又BH⊥AH,延长AH交BC于N,则BA=BN,AH=HN。
同理,延长AK 交BC于M,则CA=CM,AK=KM。
从而由三角形的中位线定理,知KH∥BC。
证明:延长AH交BC于N,延长AK交BC于M
∵BH平分∠ABC
又BH⊥AH
BH=BH
同理,CA=CM,AK=KM
是的中位线
即KH//BC
说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。
我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。
例4. 已知:如图4所示,AB=AC,。
求证:FD⊥ED
证明一:连结AD
在和中,
说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。
证明二:如图5所示,延长ED到M,使DM=ED,连结FE,FM,BM
说明:证明两直线垂直的方法如下:
(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。
(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。
(3)证明二直线的夹角等于90°。
3、证明一线段和的问题
(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。
(截长法)例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、CE相交于O。
求证:AC=AE+CD
分析:在AC上截取AF=AE。
易知,。
由,知。
,得:证明:在AC上截取AF=AE
又
即
(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。
(补短法)
例6. 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,。
求证:EF=BE+DF
分析:此题若仿照例1,将会遇到困难,不易利用正方形这一条件。
不妨延长CB至G,使BG=DF。
证明:延长CB至G,使BG=DF
在正方形ABCD中,
又
即∠GAE=∠FAE
4、中考题:
如图8所示,已知为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连结CE、DE。
求证:EC=ED
证明:作DF//AC交BE于F
是正三角形
是正三角形
又AE=BD
即EF=AC
题型展示:
证明几何不等式:
例题:已知:如图9所示,。
求证:
证明一:延长AC到E,使AE=AB,连结DE
在和中,
证明二:如图10所示,在AB上截取AF=AC,连结DF
则易证
说明:在有角平分线条件时,常以角平分线为轴翻折构造全等三角形,这是常用辅助线。
【实战模拟】
1. 已知:如图11所示,中,,D是AB上一点,DE⊥CD于D,交BC于E,且有。
求证:
2. 已知:如图12所示,在中,,CD是∠C的平分线。
求证:BC=AC+AD
3. 已知:如图13所示,过的顶点A,在∠A内任引一射线,过B、C作此射线的垂线BP和CQ。
设M为BC的中点。
求证:MP=MQ
4. 中,于D,求证:
【试题答案】
1. 证明:取CD的中点F,连结AF
又
2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。
“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。
证明:延长CA至E,使CE=CB,连结ED
在和中,
又
3. 证明:延长PM交CQ于R
又
是斜边上的中线 4. 取BC中点E,连结AE。