02.(简)振动波动第二章波动(2003)
- 格式:doc
- 大小:1.32 MB
- 文档页数:92
第2章波动(Wave)前言:1.振动在空间的传播过程叫做波动。
波动是一种重要的运动形式。
2.常见的波有两大类:(1)机械波:机械振动在媒质中的传播。
(2)电磁波:变化电场和变化磁场在空间中的传播。
·此外,在微观中波动的概念也很重要。
3.各种波的本质不同,传播机理不同,但其基本传播规律相同。
本章讨论:机械波(Mechanical wave)的特征和有关规律,具体为,(1)波动的基本概念;(2)与波的传播特性有关的原理、现象和规律;(3)与波的叠加特性有关的原理、现象和规律。
§1 机械波的产生和传播一、机械波的产生1.产生条件:(1)波源;(2)介质(媒质)2.弹性波:机械振动在弹性介质中的传播(如弹性绳上的波)。
弹性介质的质元之间以弹性力(elastic force) 相联系。
3.简谐波:若媒质中的所有质元均按一定的相位传播规律做简谐振动,此种波称为简谐波(simple harmonic wave)。
以下我们主要讨论简谐波。
二、波的传播1.波是振动状态的传播以弹性绳上的横波为例,由图可见:由图可见:t = T/4t = T/2t = 3T/4t = T弹性绳上的横波(1)媒质中各质元都只在自己的平衡位置附近振动,并未“随波逐流”。
波的传播不是媒质质元的传播。
(2)“上游”的质元依次带动“下游”的质元振动(依靠质元间的弹性力)。
(3)某时刻某质元的振动状态将在较晚时刻于“下游”某处出现,这就是“波是振动状态的传播”的含义。
(4)有些质元的振动状态相同,它们称作同相点。
相邻的同相点间的距离叫做波长(wave- length)λ,它们的相位差是2π。
2.波是相位的传播·由于振动状态是由相位决定的,“振动状态的传播”也可说成是“相位的传播”,即某时刻某点的相位将在较晚时刻重现于“下游”某处。
·于是沿波的传播方向,各质元的相位依次落 后。
图中b 点比a 点的相位落后即a 点在t 时刻的相位(或振动状态)经∆t 的时间传给了与它相距为∆x 的b 点,或b 点 在t +∆t 时刻的相位(或振动状态)与a 点在t时刻的情况相同( 即波的传播速度)。
振动和波动的基本知识振动和波动是物理学中非常重要的两个概念,它们在自然界和日常生活中处处可见。
本文将为您介绍振动和波动的基本知识,包括定义、特征以及其应用领域等内容。
一、振动的基本概念和特征振动是物体在围绕平衡位置周围作往复运动的现象。
当物体受到外界扰动时,它会围绕平衡位置做周期性的往复运动。
振动的基本特征包括振幅、周期、频率和相位。
1. 振幅:振幅是指振动过程中物体偏离平衡位置的最大距离。
振幅越大,说明物体的振动幅度越大。
2. 周期:周期是指振动中,物体完成一次往复运动所需的时间。
用T表示,单位为秒。
周期与振动的频率有关,两者满足T=1/f。
3. 频率:频率是指单位时间内振动的次数。
用f表示,单位为赫兹(Hz)。
频率与周期相反,频率越高,则周期越短。
4. 相位:相位是指在一定时间内物体相对于某个参考点的位置。
可以用角度或时间表示。
相位差可以用来描述两个或多个振动之间的关系。
振动现象广泛存在于自然界和科学技术领域。
例如,机械振动的研究可以帮助我们设计更加稳定和高效的机械结构;电子设备中的振荡器可以产生稳定的电信号等。
二、波动的基本概念和分类波动是指能量在空间中传播的过程。
波动的主要特征包括振幅、波长、频率和波速等。
1. 振幅:波动中振幅表示波峰和波谷之间的最大偏移距离。
2. 波长:波长是指波动传播一个完整波周期所需要的距离。
用λ表示,单位为米。
波动的波长与频率成反比,满足λ=速度/频率。
3. 频率:波动的频率是指波动中单位时间内通过某个点的波的个数。
频率用f表示,单位为赫兹(Hz)。
4. 波速:波速是指波动在介质中传播的速度。
波速与波长和频率有关,满足v=λf。
根据波动的性质和传播介质的不同,波动可以分为机械波和电磁波两大类。
机械波需要介质来传播,例如水波、地震波等;而电磁波可以在真空中传播,包括光波、无线电波等。
三、振动和波动的应用领域振动和波动在科学技术的各个领域都有着重要的应用。
以下是一些具体的应用领域:1. 声波的应用:声波是一种机械波,在通信、音乐、医学等领域中有着广泛的应用。
大学物理中的波动与振动波动和振动是大学物理中重要的概念,涉及到许多实际应用和现象。
在本文中,将以波动和振动为主题,深入探讨其相关理论和应用。
1. 波动的概念和特征波动是指一种在介质中传播的物理量的周期性变化。
它具有以下几个特征:1.1 频率和周期波动的频率是指在单位时间内波动重复出现的次数,用赫兹(Hz)来表示。
而周期则是指波动完成一次完整振动所需要的时间。
频率和周期之间存在着倒数的关系,即频率 = 1/周期。
1.2 波长和振幅波长是指波动中相邻两个相位相同的点之间的距离,通常用λ表示。
振幅则是波动中物理量变化的最大值。
1.3 传播速度波动在介质中的传播速度与介质的性质有关,例如在空气中的声波传播速度约为343m/s,而在真空中的电磁波传播速度为光速。
2. 波动理论的应用波动理论在现实世界中有着广泛的应用,下面将介绍其中几个典型的应用领域。
2.1 声学声波是一种机械波,通过介质的分子之间的振动传播。
声学研究声波的传播、共振和声音的产生原理等。
它不仅应用于音乐、语言等艺术领域,也广泛应用于声纳、超声波医学成像等技术中。
2.2 光学光是一种电磁波,是波动的重要表现形式之一。
光学研究光的传播、折射、干涉等现象,也包括光的成像原理和光学仪器的设计与制造。
光学在光通信、激光技术、光学仪器等领域都有着重要的应用。
2.3 电磁波电磁波是一种由电场和磁场相互作用而产生的波动现象。
电磁波的频率范围很广,包括了射频波、微波、红外线、可见光、紫外线、X射线和γ射线等。
电磁波的应用非常广泛,涉及到电视、无线通信、微波炉、医疗影像等多个领域。
3. 振动的概念和应用振动是指物体在平衡位置附近作往复运动的现象。
它具有以下几个重要特征。
3.1 频率和周期振动的频率是指在单位时间内振动重复出现的次数,用赫兹(Hz)来表示。
周期则是指振动完成一次完整往复运动所需要的时间。
3.2 阻尼和共振振动中存在着阻尼和共振的现象。
阻尼是指振动受到外界阻力的影响而逐渐减小或停止,共振是指在某个特定频率下振幅达到最大值的现象。
第2章波动(Wave)前言:1.振动在空间的传播过程叫做波动。
波动是一种重要的运动形式。
2.常见的波有两大类:(1)机械波:机械振动在媒质中的传播。
(2)电磁波:变化电场和变化磁场在空间中的传播。
·此外,在微观中波动的概念也很重要。
3.各种波的本质不同,传播机理不同,但其基本传播规律相同。
本章讨论:机械波(Mechanical wave)的特征和有关规律,具体为,(1)波动的基本概念;(2)与波的传播特性有关的原理、现象和规律;(3)与波的叠加特性有关的原理、现象和规律。
§1 机械波的产生和传播一、机械波的产生1.产生条件:(1)波源;(2)介质(媒质)2.弹性波:机械振动在弹性介质中的传播(如弹性绳上的波)。
弹性介质的质元之间以弹性力(elastic force) 相联系。
3.简谐波:若媒质中的所有质元均按一定的相位传播规律做简谐振动,此种波称为简谐波(simple harmonic wave)。
以下我们主要讨论简谐波。
二、波的传播1.波是振动状态的传播以弹性绳上的横波为例,由图可见:由图可见:t = T/4t = T/2t = 3T/4t = T弹性绳上的横波(1)媒质中各质元都只在自己的平衡位置附近振动,并未“随波逐流”。
波的传播不是媒质质元的传播。
(2)“上游”的质元依次带动“下游”的质元振动(依靠质元间的弹性力)。
(3)某时刻某质元的振动状态将在较晚时刻于“下游”某处出现,这就是“波是振动状态的传播”的含义。
(4)有些质元的振动状态相同,它们称作同相点。
相邻的同相点间的距离叫做波长(wave- length)λ,它们的相位差是2π。
2.波是相位的传播·由于振动状态是由相位决定的,“振动状态的传播”也可说成是“相位的传播”,即某时刻某点的相位将在较晚时刻重现于“下游”某处。
·于是沿波的传播方向,各质元的相位依次落 后。
图中b 点比a 点的相位落后即a 点在t 时刻的相位(或振动状态)经∆t 的时间传给了与它相距为∆x 的b 点,或b 点 在t +∆t 时刻的相位(或振动状态)与a 点在t时刻的情况相同( 即波的传播速度)。
∆x ∆t2π ∆ϕ = ( )∆x λx u 传播方向b 点和a 点的相位比较三、波形曲线(波形图)1.波形曲线(ξ−x 曲线) 波形曲线(wave formcurve) 是ξ−x 关系曲线),·ξ-质元的位移·x -质元平衡位置的坐标 ·ξ--x 曲线反映某时刻t 各质元位移ξ 在空间 的分布情况。
(t 时刻用照相机为所有质元拍的团体相) ·波的传播在外貌上表现为波形的传播。
不同 时刻对应有不同的波形曲线。
每过一个周期 (质元振动一次),波形向前传播一个波长的距 离。
ξx·在波形曲线上必须标明时刻t和波的传播方向。
·波形曲线不仅能反映横波也能反映纵波的位移情况。
2.注意区别波形曲线和振动曲线波形曲线:ξ−x曲线振动曲线:ξ−t曲线,反映某一质元的位移随t的变化。
(用摄像机为“舞姿优美”的某质元拍的一段特写镜头)。
·在振动曲线上应标明是哪个质元的振动曲线。
3.要求:应掌握,(1)由某时刻的波形曲线→画出另一时刻的波形曲线;(2)由某时刻的波形曲线→确定某些质元的振动趋势→画出这些质元的振动曲线;(3)由某质元的振动曲线→画出某时刻的波形曲线。
☆重要原则:不管是在波形曲线还是振动曲线上,同一质元在同一时刻的振动位移应相同(可用此原则检验所画曲线是否正确)。
练习:1.已知t = 0时刻的波形曲线如下图,(1)画出t +(T/4),t +(T/2),t +(3T/4)(2)在题图上用小箭x头示出a 、b 、c 、d 各质元的振动趋势,并 分别画出它们的振动曲线。
2.已知x =0处质元 的振动曲线如图,画出t = 0时刻的波形曲线(设波沿+x 方向传播)。
四、波的特征量1.波长λ:两相邻同相点间的距离。
波长—也即波形曲线上一个完整波形的长度,或 一个振动周期内波传过的距离。
2.波的频率ν :即媒质质点(元)的振动频率。
·波的频率—也指单位时间传过媒质中某点的 练习题用图ξt波的个数。
·通常情况下有波的频率ν = 波源的振动频率νs3.波速u :波速是振动状态的传播速度,数值 上等于单位时间内振动状态传播的距离。
·波速u 主要决定于媒质的性质和波的类型(横波、纵波)。
·因振动状态由相位决定,所以波速也就是相位传播的速度,称相速度(phase velocity)。
·要注意区分波速u和 媒质质元的振动速度 。
∂ξ ∂t五、横波和纵波横波(transverse wave):质元振动方向 ⊥ 波的传播方向纵波(longitudinal wave):质元振动方向 ‖波的传播方向演示:横波、纵波模型§2 一维简谐波的表达式一、一维简谐波的表达式一维简谐波的表达式也称波函数(wavefunction) 讨论:沿+x 方向传播的一维简谐波(波速u ,振动角频率为ω)假设:媒质无吸收(质元振幅均为A )x o 任一点p 参考点a 波速u已知:参考点a 的振动表达式为ξa (t ) = A cos(ωt + ϕa )求写:任一点p 的振动表达式比较:p 点和a 点的振动·其A 和 ω均各相同·但p 点比a 点相位落后 任一点p 的振动表达式为一维简谐波的表达式 它即是任一点的振动表达式,反映任一点 (位置在x )在任一时刻t 的位移。
2π λ(x - d )★如果选 原点为参考点 (即d = 0), 且其 初相 ϕa 为零,则可得表达式为此情形下波的表达式还有几种形式:式中 ω 1 λ λ 2π u k = = 称作角波数(圆波数) 称作波数 (wave number)。
(angular wave number)练习:如果波沿- x方向传播,请写出波的表达式?二、一维简谐波表达式的物理意义由ξ(x, t) =A cos(ωt -kx)从几方面讨论:1.固定x:如令x = x0,则波的表达式变为ξ(x0, t) = A cos(ωt - kx0)·即x0处质元的振动表达式(初相是-kx0),·由它画出的曲线是x0处质元的振动曲线。
2.固定t:如令t = t0,则波的表达式变为ξ(x, t0) =A cos(ωt0 -kx)·反映t 0时刻各不同x 处质元的位移状况。
·由它画出的曲线即t 0时刻的波形曲线。
3.如看定某一相位,即令(ωt - kx ) =常数(x ,t 均为变量),则此相位在不同时刻出现 于不同位置,它的传播速度(相速度) 可由上 式的微分得出为4.表达式也反映了波是振动状态的传播。
可以验证有 ξ(x +∆x , t +∆t ) = ξ(x , t )其中∆x = u ∆t 。
上式说明t 时刻x 处质元 的振动状态在t +∆t 时传到了x +∆x 处。
d x = u = d t ω k5.表达式还反映了波的时间、空间双重周期性。
(1)周期T代表了时间周期性·由质元运动看:每个质元振动周期为T ·由波形看:t时刻和t +T时刻的波形曲线完全重合。
(2)波长λ代表了空间周期性·由质元看:相隔λ的两点振动状态完全相同(同相点)。
·由波形看:波形在空间以λ为“周期”分布着。
λ称波的“空间周期”。
时间、空间两方面的周期性以相速u联系起来:=u =λTωk三、平面波和球面波1.波的几何描述·波线(wave line):沿波传播方向的射线。
·波面(wave surface):波在同一时刻到达的各点组成的面。
一个波面上各点是同时开始振动的,具有相同的相位,波面又称同相面。
·波前(波阵面) (wave front):最前沿的波面。
·平面波(plane wave):波面是一些平行平面的波。
·球面波(spherical wave):波面是一些同心球面(可以是球面的一部分)的波。
在各向同性的媒质中波线 波面。
2.平面简谐波的表达式若平面简谐波(plane simple harmonic wave) 沿+x 向传播,空间任一点p(x , y , z )的振动相 位只和x 与t 有关,而和它空间坐标无关。
前面讲的一维简谐波的表达式就可以表示平面简谐波。
3.球面简谐波的表达式·设一各向同性的点波源,在各向同性媒质 中向四面八方发出球面波。
球面波平面波 波面和波线·各点的频率仍决定于波源,·但振幅和各点到波源的距离r 成反比(原因 见波的能量部分),其表达式为式中A 0为距波源r 0处的振幅。
§3 波动方程和波速本节对媒质的波动行为作动力学分析,导 出连续弹性媒质中波所遵守的运动微分方 程−波动方程(wave function)。
一、平面波波动方程A 0r 0 r 为r 处的振幅,随r 的增大而减小。
1.一般形式·此即沿x 向传播的平面波(不限于平面简谐 波)的动力学方程,等号右端项的系数即波 速u 的平方。
·前面所讲的平面简谐波的表达式是此波动 方程的解(可用代入法检验)。
2.弹性绳上的横波·波动方程: ·波速: T -绳的初始张力 η-绳的线密度 3.固体棒中的纵波η√ u = T ∂ t 2 ∂ x 2 ∂2ξ∂2ξ = T η·波动方程:·波速: Y -杨氏弹性模量 ρ -体密度 ·相应形变:长变4.固体中的横波·波动方程:·波速: G -切变模量 ∵ G <Y,固体中u 横波< u 纵波√u =G ρ∂2ξ ∂2ξ ∂ t 2 ∂ x 2= Y ρ ρ√u = Y = Y F S ∆ l l 0∂2ξ ∂2ξ ρ ∂ t 2∂ x 2 = G p 长变(拉、压)F 切F 切面积Sϕ固体的几种基本形变容变ppp 切变·相应形变:切变思考:如果发生地怎样的震感?5.流体中的声波·波动方程: ·波速: k -体积模量ρ0 -无声波时的流体密度 理想气体: ∂ t 2∂ x 2 ∂2ξ ∂2ξ = kρ0√u = k ρ0= G ϕF SγRT √u = μ家中的震感式中 μ−摩尔质量·相应形变:容变可见,波速取决于·媒质的性质(弹性和惯性,材料对不同 的形变有不同的抵抗能力即表现出不同的弹性); ·波的类型(横波、纵波)。
二、固体棒中纵波的波动方程(推导) 思路:·由胡克定律(应力、应变关系) ·由牛顿第二定律 1.某截面处的应力、应变关系γ = C p C υ p = -k ( ∆V V 0 )在棒上取长为∆x 的一小段质元, ·t 时刻, x 处截面的位移:ξ(x , t ) x +∆x 处截面的位移:ξ(x +∆x , t ) ·波引起的∆x 段的平均应变:·当∆x →0时,得x 处截面t 时刻的应变 为 ·x 处截面的应力为 ·由胡克定律有∂ξ ∂xF (x , t ) S ξ(x +∆x , t ) - ξ(x , t )∆xxt ξ(x , t )ξ(x +∆x , t )有纵波时棒中质元t 时刻的位形与它原来位形的比较x 处截面的应力 、应变关系(待下面用) 2.波动方程·在棒上取质元∆x ,其质心位移为ξ(x , t )·由牛顿定律有,·将前述应力、应变结果代入有 ·令∆x →0,并取极限即得所求波动方程(ρS ∆x ) ∂2ξ∂t 2 = F 2 - F 1∂2ξ∂ t 2ρ F 2 S F 1 S - ∆x= ⇒ = Y F S ∂ξ ∂xξ(x , t )x 1截面 x 2截面截面S有纵波时棒中质元t 时刻的位形和受力情况§4 波的能量·前已讲:波是振动状态的传播, 相位的传播, 外观上有波形在传播。