第二章无线电波传播原理2
- 格式:pdf
- 大小:2.58 MB
- 文档页数:81
无线电信号的传播原理无线电波是指在空间中传播的电磁波,具有特定的频率和波长。
无线电信号的传播原理是电磁波的传播原理,要了解其原理,首先需要了解电磁波的基本特性。
一、电磁波的基本特性1.频率和波长无线电波具有特定的频率和波长,频率和波长是电磁波两个基本参数中的关系。
频率越高,波长越短,能量越强。
例如,如果有两个无线电波,一个频率为1MHz,一个频率为2MHz,那么2MHz的无线电波的波长是1MHz的无线电波的一半。
2.传播速度无线电波是在真空中传播的,其传播速度为光速,即约为300,000 km/s。
3.极化电磁波的方向和振动方向之间的关系称为极化。
无线电波可以是水平、垂直或圆极化。
不同极化方式的无线电波在传播过程中受到的衰减程度也不同。
二、无线电信号的传播方式无线电波的传播可以分为三种主要的传播方式:地面波、天波和空间波。
1.地面波地面波是指沿着大地表面传播的电磁波。
地面波的传播距离一般不超过数百千米,其主要特点是传输距离较短,适用于在负责的局域内通信。
2.天波天波是指折射在电离层上方的电磁波。
由于电离层具有反射和折射的特性,天波可以传播数千千米,其主要特点是传输距离较远,适用于远距离通信。
3.空间波空间波是指由天线向空间发射的电磁波,其传播距离与地球曲率半径成正比,可以传播数百到数千千米。
空间波传输主要分为直射和反射两种方式,具体的传播方式取决于天线的高度和环境的情况。
三、无线电信号的传播影响因素无线电信号的传播受到各种因素的影响,主要包括:1.频率无线电波传播的频率越高,传输距离越短,对障碍物的穿透能力越差。
2.反射和衰减无线电波在传播过程中会遇到障碍物并遭到反射、折射和散射,这些因素会改变信号的传播方向和功率,导致信号衰减。
3.天气状况天气的变化会对无线电波的传播产生影响。
例如,电离层的变化会影响天波信号的传播,大气条件的变化会影响空间波信号的传播。
4.传输距离传输距离对无线电波的传播也有很大的影响。
无线电波原理
无线电波是指一种电磁传播波,它可以传输无线通信和广播电视信号。
无线电波的产生是通过交流电源将电能转换为高频电能,然后将电能加载到天线上。
天线把电能转换成电磁波并将其辐射到空间中。
这些电磁波可以传播很远的距离,并通过天线接收器被接收并转换回电能。
无线电波的频率和波长是不可分割的关联。
波长越长,频率越低,与此同时,波束扩散效应也会增加,信号衰减程度也会增大。
频率越高,波长越短,信号穿透力越强。
无线电波遵循迪朗贝尔无线电波传播原理。
根据这一原理,无线电波在自由空间中传播的速度接近于光速,并以直线传播。
然而,无线电波在传播过程中会受到多种因素的影响,例如天线高度、障碍物、地形等。
这些因素会导致无线电波的传播距离和质量发生变化。
通过调整发射和接收设备的参数,可以实现调制和解调无线电波,从而传输各种类型的信息。
其中,调制是指将信息信号加工到无线电波中,而解调则是将无线电波中的信息信号还原出来。
这样,我们可以利用无线电波进行语音通话、数据传输等。
总之,无线电波是一种通过发射和接收设备传输信息的电磁波。
无线电波的频率和波长决定了其传播特性,而迪朗贝尔无线电波传播原理则规定了它的传播路径和速度。
(
(
((
例:已知基站处天线增益为10dB, 发射功率为10W, 移动台接
路径损耗:表示信号衰减,定义为有效发射功率和接收功(1)远场预测
的天线的远场
S偏振P偏振
上述两种情况下,对于理想导体界面有:
S偏振:反射电场与入射电场大小相等,相位连续。
P偏振:反射电场与入射电场大小相等,相位相差半个波长。
(
不同无线环境下的路径损耗指数:
数正态分布,即
)
参考距离d0、路径损耗指数n和标准方差 ,系统地描述了具有特定距离的位置的路径损耗模型。
该模型可用于无线系统设计和分析过
为 处的接收功率,
为使用路径损耗模型对 的估计值。
那么测量与估计值的均方差之和为 ∑
,使该值最小。
)利用(*)式计算 : = 10nlog /
=-3n, =-10n, =-14.77n
=6525-2887.8n+327.15n 2
距离处,载波频。
无线电传输原理无线电传输原理指的是通过无线电波将信息从一个位置传输到另一个位置的过程。
在无线电传输中,信息可以是语音、数据、图片等形式。
本文将详细介绍无线电传输的原理。
无线电波是一种具有电磁性质、可以传播的电磁波。
无线电波的传播速度与光速相同,即299792458米/秒。
无线电波的频率范围非常广泛,从低频率一直到高频率。
频率越高,无线电波的能量越强,传播距离也越远。
在无线电传输中,需要一台发送设备和一台接收设备。
发送设备会将信息转化成电信号,然后将电信号转化成无线电波进行传输。
接收设备会接收无线电波,并将其转化成电信号,最终还原出原始信息。
无线电传输的原理基于安培环路定理和法拉第电磁感应定律。
安培环路定理指出,磁场的变化会产生电场,从而引起电流的产生。
法拉第电磁感应定律则说明,在磁场中运动的导体中会产生电动势。
基于这两个定律,无线电传输的原理可以归纳为三个步骤:1. 调制:发送设备会将信息转化成电信号。
电信号可以是模拟信号或数字信号。
模拟信号是连续变化的信号,而数字信号是离散的信号,只有两种状态。
电信号可以通过调幅、调频或调相等方式进行调制,将其转化成与信息相适应的无线电波。
2. 辐射:发送设备将调制后的电信号转化成无线电波,并通过天线进行辐射。
天线会将无线电波向空间中传输,并形成一个电磁场。
3. 接收:接收设备接收无线电波,并通过天线将其转化成电信号。
电信号与原始电信号类似,但可能存在噪声和失真。
接收设备会通过解调和滤波等过程,还原出原始信息。
无线电传输的应用非常广泛,包括无线电广播、移动通信、卫星通信、雷达等。
无线电传输的原理也在不断发展和创新,例如4G、5G等技术的出现,进一步提升了无线电传输的速度和效率。
无线电波发射原理无线电波发射原理是指通过将电能转化为无线电波的方式进行信息传输的过程。
无线电波发射原理的研究和应用在现代通信领域具有重要的意义。
一、无线电波的产生无线电波是由振荡电流产生的,而振荡电流则是由振荡器产生的。
振荡器是一种能够产生周期性电信号的电路。
当振荡器中的电荷发生周期性变化时,就会产生振荡电流。
这个振荡电流在天线中产生感应作用,从而产生无线电波。
二、电能转化为无线电波的过程无线电发射器是将电能转化为无线电波的设备。
它包括振荡器、放大器和天线等部件。
振荡器产生振荡电流,经过放大器放大后,送入天线。
天线将电能转化为无线电波,并以一定的频率和波长传播出去。
三、无线电波的特性无线电波具有以下几个重要的特性:1. 频率:无线电波的频率决定了它的特定应用。
不同频率的无线电波可用于不同的通信和广播系统。
2. 波长:无线电波的波长与频率有关,波长越短,频率越高。
3. 传播特性:无线电波可以在真空和大气中传播,它的传播速度与光速相同。
4. 传播距离:无线电波的传播距离与频率和功率有关,功率越大,传播距离越远。
四、无线电波的应用无线电波的应用广泛,包括无线通信、无线电广播、卫星通信、雷达等。
其中,无线通信是无线电波应用最为广泛的领域。
手机、电视、无线网络等现代通信设备都是基于无线电波发射原理工作的。
五、无线电波的发展趋势随着科技的不断进步,无线电波的应用也在不断发展和创新。
无线通信技术不断提升,传输速度和质量得到了显著提高。
卫星通信技术使无线电波可以跨越大洋和边境,实现全球通信。
此外,无线电波在医学、航空航天等领域也有着广泛的应用和发展。
总结:无线电波发射原理是通过将电能转化为无线电波的方式进行信息传输的过程。
无线电波的产生依靠振荡器产生的振荡电流,经过放大器和天线的作用,电能被转化为无线电波并传播出去。
无线电波具有特定的频率、波长、传播特性和传播距离等特点,被广泛应用于无线通信、广播、卫星通信和雷达等领域。
无线电波的传播原理无线电波的传播原理是指无线电波从发射器向接收器传播的过程。
无线电波是一种电磁波,它的传播过程主要受到电磁波的特性、天线的特性和传输环境的影响。
首先,电磁波的传播是通过电场和磁场相互作用而实现的。
无线电波由交变的电流在天线上产生,并形成一个环绕天线的电磁场。
这个电磁场在空间中传播,并会被接收器中的天线捕获。
其次,无线电波的传播会受到天线的特性影响。
天线作为无线电波的收发器,它的尺寸和结构会对无线电波的辐射方向、辐射功率等起到重要作用。
天线的设计和选择能够影响无线电信号的传输距离、传输质量等。
不同类型的天线适用于不同的场景和环境,例如杆状天线适用于远距离传输,而补偿天线适用于增强信号强度。
最后,无线电波的传播还会受到传输环境的影响。
无线电波在空气、水、建筑物和地形等环境中传播时会与这些介质发生干扰、反射、折射和散射等现象,从而影响无线电信号的传播性能。
例如,在城市中,建筑物的多个反射面会引起多径传播,导致信号的时延扩展和多径衰落。
此外,在开放空旷区域,无线电波传播的路径会较为直接,传播损耗较小。
通过以上原理,无线电波可以实现远距离传输和通信。
当发射器发出无线电波时,它会被天线辐射,形成一个电磁场,从而造成电磁波的发射。
这个电磁波会在空间中自由传播,当它遇到接收器的天线时,电磁波会产生电流,从而实现信号的接收。
接收器将接收到的信号经过处理后,可以恢复出原始的信息。
无线电波的传播原理是无线通信技术的基础。
通过研究无线电波的传播规律,我们可以优化通信系统的性能,提高信号的传播距离和传输质量。
在实际应用中,我们需要选择适当的天线和调节传输环境,以实现最佳的无线通信效果。
综上所述,无线电波的传播原理主要包括电磁波的相互作用、天线的特性和传输环境的影响。
通过深入研究和理解这些原理,我们可以更好地利用无线电波进行远距离的通信和传输。
无线电波传播原理1无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.1 电磁场与电磁波基础1820年奥斯特电磁1831年法拉第磁电产生产生变化的电场磁场变化的磁场电场激发?电磁场理论麦克斯韦在总结前人工作的基础上,提出了著名的电磁场理论(经典电磁场理论),指出变化电场和变化磁场形成了统一的电磁场,预言电磁场能以波动的形式在空间传播,称为电磁波;并得到电磁波在真空中传播的速度等于光速,从而断定光在本质上就是一种电磁波。
后来,赫兹用振荡电路产生了电磁波,使麦克斯韦的学说得到了实验证明,为电学和光学奠定了统一的基础。
因此,麦克斯韦的经典电磁场理论是人类对电磁规律的历史性总结,是19世纪物理学发展的最辉煌成就,是物理学发展史上一个重要的里程碑。
电磁波的诞生赫兹----德国物理学家赫兹对人类伟大的贡献是用实验证实了电磁波的存在,发现了光电效应。
1888年,成了近代科学史上的一座里程碑。
开创了无线电电子技术的新纪元。
赫兹用各种实验,证明了不仅电磁波的性质和光波相同,而且传播速度也相同,并可发生反射、折射、干涉、衍射和偏振等现象,即电磁波服从一般波动所具有的一切规律。
如果空间的电场或磁场变化是周期性的,我们用周期和频率来描述变化快慢。
电磁场变化过程中产生的电磁波的频率等于电磁场的变化频率;电磁波在传播中从一种介质进入另一种介质时,其频率不会发生改变,但其传播速度会发生改变。
电磁波的应用从1888年赫兹用实验证明了电磁波的存在,1895年俄国科学家波波夫发明了第一个无线电报系统。
1914年语音通信成为可能。
1920年商业无线电广播开始使用。
20世纪30年代发明了雷达。
40年代雷达和通讯得到飞速发展,自50年代第一颗人造卫星上天,卫星通讯事业得到迅猛发展。
如今电磁波已在通讯、遥感、空间控测、军事应用、科学研究等诸多方面得到广泛的应用。
无线电通信的起源1897 年:马可尼完成无线通信试验——电报发收两端距离为18 海里试验是在固定站与一艘拖船之间进行的20 世纪初:两次世界大战导致无线通信蓬勃发展步话机、对讲机等1941 年美陆军就开始装备步话机短波波段,电子管电磁波分类-按传输方式电磁波分类-按传输方式电磁波分类-按波长电磁波分类-按波长各波段电磁波特点长波通信:沿地面传播,衰减小、穿透能力强 中波通信:地波传播及夜晚电离层反射传播 短波通信:天波传播,适合远距离传输超短波通信:直线传播,视距通信,广播电视、移动通信微波通信:工作频带宽,长距离接力通信第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析传播途径①建筑物反射波②绕射波③直射波④地面反射波①建筑物反射波②绕射波③直射波④地面反射波第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.3 无线传播环境•问题:移动通信比较固定通信有那些特殊性呢?•多径无线传播无线路径是一个很复杂的传播媒介•手机发射功率有限手机的发射功率客观限制了蜂窝小区的服务范围手机电池寿命和对人体危害决定了发射功率大小•频率资源有限带宽一定信道编码等占用额外频率资源频率需要被重复利用==> 产生同频干扰•用户行为的不确定性第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析无线信道分析在移动通信研究中的意义无线通信系统的信道十分复杂:9地理环境的复杂性和多样性9用户移动的随机性9多径传播无线信道是制约移动通信质量的主要因素无线信道是研究各种技术的主要推动力量无线信道的建模对于整个移动通信系统仿真的正确性和可靠性有着举足轻重的意义1.4 无线信道分析•无线信道中的损耗一般分为三个层次:—大尺度(又称路径损耗)【path loss】—中等尺度(阴影衰落、慢衰落)【shadowing】—小尺度衰落(快衰落)【fast fading】无线信道分析场强平均值随距离增加而衰减(路径损耗,大尺度衰落)•电磁波在空间传播的损耗场强中值呈慢速变化(慢衰落,阴影衰落,中等尺度衰落)•由地形地貌导致场强瞬时值呈快速变化(快衰落,小尺度衰落)•多径效应——由移动体周围的局部散射体引起的多径传播,表现为快衰落•多普勒效应——由移动体的运动引起,多径条件下引起频谱展宽三种衰落区别•大尺度衰落主要是路径损耗,可用自由空间传播模型来近似;其特点是:慢变,信道在很长时间内可以认为是恒定的,而且衰落的幅度很小。