熟料烧成理论
- 格式:docx
- 大小:109.72 KB
- 文档页数:26
在水泥生产中正常熟料是在窑内空气略有过剩的情况下烧成的,即有足够的氧使燃料中的碳完全燃烧成CO2,放出热量。
1 前言在水泥生产中正常熟料是在窑内空气略有过剩的情况下烧成的,即有足够的氧使燃料中的碳完全燃烧成CO2,放出热量。
如窑内氧气不足,燃料燃烧不完全,产生CO时,就形成还原气氛,其反应式为:C+O2→CO2+408630J/molC+12O2→CO+123053J/mol在还原气氛条件下生产出来的熟料,我们称之为“还原熟料”。
在还原气氛下烧成时,窑内热力强度低,高价的过渡型的元素氧化物被还原成低价的,产生各种异常颜色的熟料。
据此特点,一般把还原料分为黄心料、绿心料、析铁料三种。
还原熟料常见的为黄心料,在熟料中所占比例也较大。
而绿心料、析铁料较少出现,即使存在,量也不多。
还原熟料的危害很多,影响窑的产量、质量、煤耗、热工制度的稳定;影响熟料、水泥的质量外观颜色等。
特别是熟料、水泥的外观上,还原料较多时,不仅熟料颜色难看,就连磨制出的水泥颜色也发黄,水泥用户极易把此熟料水泥比作立窑的废品熟料黄料球来看待,使用户购买使用都不放心,影响企业的声誉,因此,必须采取措施进行解决。
1.1 黄心料窑外分解窑产生的黄心料,可分为:疏松性黄心料和致密性黄心料,疏松性黄心料结构疏松,熟料烧失量高, fCaO也高,后期强度明显降低,它是在窑头温度低,窑尾存在还原气氛下产生的。
而致密性黄心料外壳的颜色与正常熟料相似,结粒较大,砸开熟料球,核心呈大小不等的黄心,它是在还原气氛或煤粉直接还原作用下,氧化铁还原致使熟料颜色发黄,当冷却时,表层熟料因再氧化而呈黑色。
黄心料其化学成分上最突出的变化就是随黄心程度的增加其中FeO含量也增加,而总的铁含量却没有明显变化;而有些黄心料中SiO2和Al2O3的含量较高,这主要是煤灰掺入造成的。
致密性黄心料在岩相结构上有两个特征:其一,B矿呈手指状、树叶状,这种B矿的产生与还原气氛下C2S和CFS固溶体的分离有关。
回转窑加热煅烧过程中如何进行熟料烧成物料加热到最低共熔温度(物料在加热过程中,开始出现液相的温度称为最低共熔温度)时,物料中开始出现被相,液相主要由C3A和C4AF所组成,还有MgO、Na2O、K20等其他组成,在液相的作用下进行熟料烧成。
液相出现后,C2S和CaO都开始溶于其中,在液相中C2S吸收游离氧化钙(CaO)形成C3S,其反应式如下:C2S(液)+ CaO(液)→ C3S(固)(条件:1350 - 1450℃)熟料的烧结包含三个过程:C2S和CaO逐步溶解于液相中并扩散;C3S晶核的形成;C3S 晶核的发育和长大,完成熟料的烧结过程。
即随着温度的升高和时间延长,液相量增加,液相粘度降低,CaO和C2S不断溶解、扩散,C3S晶核不断形成,并逐渐发育、长大,最终形成几十微米大小、发育良好的阿利特晶体;与此同时,晶体不断重排、收缩、密实化,物料逐渐由疏松状态转变为色泽灰黑、结构致密的熟料,这个过程称为熟料的烧结过程。
这个过程也称石灰吸收过程。
大量C3S的生成是在液相出现之后,普通硅酸盐水泥组成一般在1300℃左右时就开始出现液相,而C3S形成最快速度约在1350℃,一般在1450℃下C3S绝大部分生成,所以熟料烧成温度可写成1350 - 1450℃或1450℃。
任何反应过程都需要有一定时间,C3S的形成也不例外。
它的形成不仅需要有一定温度,而且需要在烧成温度下停留一段时间,使其能充分反应,在煅烧较均匀的回转窑内时间可短些。
而在煅烧不均匀的立窑内时间需长些,但时间不宜过长,时间过长易使C3S生成粗而圆的晶体,使其强度发挥但而且还要降低。
一般需要在高温下煅烧20一30min。
从上述的分析可知,熟料烧成形成阿利持的过程,与被相形成湿度、液相量、液相性质以及氧化钙、硅酸二钙溶解液相的溶解速度、离子扩散速度等各种因素有关。
阿利持的形成也可以通过固相反应来完成,但需要较高的温度(1650℃以上),因而这种方法目前在工业上没有实用价值。
水泥熟料形成热的计算方式熟料形成热的计算方式很多,有理论计算方式,也有体会公式计算方式。
现介绍我国《水泥回转窑热平稳、热效率综合能耗计算通那么》中所采纳的方式。
第一是依照熟料成份、煤灰成份与煤灰掺入量直接计算出煅烧1kg熟料的干物料消耗量,然后再计算形成lkg熟料的理论热消耗量。
假设采纳一般原料(石灰石、粘土、铁粉)配料,以煤粉为燃料,其具体计算方式如下:第一确信计算基准,一样物料取1kg熟料,温度取0℃,并给出如下已知数据:(1)熟料的化学成份;(2)煤的工业分析及煤灰的化学成份*(*假设采纳矿渣或粉煤灰配料还应给出矿渣或粉煤灰的化学成份及配比);(3)熟料单位煤耗,关于设计计算要依照生产条件确信,关于热工标定计算通过测定而得。
(一)生成lkg熟料干物料消耗量的计算1.煤灰的掺入量m = m A a —!—(1-1)A r ar 100式中mA——生成lkg熟料,煤灰的掺入量(kg/kg-ck);m r—每熟料的耗煤量(kg / kg-ck)A.——煤灰分的应用基含量(%) ara—煤灰掺入的百分比(%)。
2.生料中碳酸钙的消耗量CaO K—CaO A m M(1-2)ar^^ r - ----------------------- A- CaCOCa CO 3 100 MCaO式中m r CaCO3, ——生成lkg熟料碳酸钙的消耗量(kg/ kg-ck);CaO k——熟料中氧化钙的含量(%);CaO A——煤灰中氧化钙的含量(%);M caCO3、M CaO——别离为碳酸钙、氧化钙的分子量;同(1-1)式3 .生料中碳酸镁的消耗量MCO 2 M CaCO 3-二氧化碳的分子量;M^CO M C aCO——别离为碳酸镁及碳酸钙的分子量。
6 .生料中化合水的消耗量2 Mm r = m ----- H -O-(1-6)H 2OAS 2 H2 MAS 2 H 2式中m r O------ 生料中化合水的含量(kg / kg —ck);H2Om r MgCO3MgO K 一 MgO A m=----------------------- 100MMgCO 3M(1-3)式中m rMgCO3—生成1kg 熟料碳酸镁的消耗量(kg / kg -ck) MgOA ——煤灰中氧化镁的含量(%); MgOK —熟料中氧化镁的含量(%); M MgCO3、M MgO——别离为碳酸镁、氧化镁的分子量;m ---- 同(1-1)式。
烧成理论与技术新型干法水泥生产线概述新型干法,就是以悬浮预热和窑外分解技术为核心,并把现代科学技术和工业生产成果广泛用于水泥生产全过程,使水泥生产具有高效、优质、低耗、环保和大型化、自动化特征的现代水泥生产方法。
传统的湿法、半干法回转窑生产工艺中,生料的预热、分解和烧成过程均在窑内完成。
虽然回转窑能够提供断面温度分布均匀的温度场,并能保证物料在高温区有足够的停留时间,能够满足熟料在高温下煅烧的需要,但作为传热、传质设备其效率则不理想,因为窑内物料主要处于堆积状态,气流与物料的接触面积很小,热传导及对流换热效率很低,同时在堆积状态下,内层物料分解反应受到抑制。
因为反应产物CO2扩散的面积很小,阻力大、速率慢,料层内部颗粒被CO2气膜包裹,CO2的分压大,分解要求温度高,这就增加了石灰石分解的困难,降低了分解速率。
悬浮预热、窑外分解技术的突破,从根本上改变了物料的预热、分解过程的传热状态,将窑内(物料堆积状态下)的预热和分解过程,分别移到预热器和分解炉内进行。
从而使入窑生料的分解率从悬浮预1热窑的30%左右提高到85%~95%。
这样,不仅可以减轻窑内煅烧带的热负荷,有利于缩小窑的规格及生产大型化,而且可以节约投资,延长衬料寿命。
第一部分悬浮预热技术悬浮预热技术是指低温粉状物料均匀分散在高温气流之中,在悬浮状态下进行热交换,使物料得到迅速加热升温的技术。
1.1悬浮预热技术的优越性悬浮预热技术从根本上改变了物料预热过程的传热状态,将窑内物料堆积态的预热过程移到预热器内,在悬浮状态下进行预热。
由于物料悬浮在热气流中,与气流的接触面积大幅度增加,因此传热速率快,传热效率高。
1.2预热器的构成及功能目前在预分解窑中使用的预热器主要是旋风预热器,构成旋风预热器的热交换单元主要是旋风筒及各级旋风筒之间的连接管道(换热管道)。
预热器系统要求具备使气、固两相能充分分散、迅速换热、高效分离三个功能。
1.3 旋风预热器1旋风预热器是由旋风筒和连接管道(即风管)组成的热交换器。
关于生料烧制熟料的方案为了寻求所产出的经过提碱、提铝的末次赤泥和其他几种废料的利用途径,根据领导安排我们自己初步对几种废料通过干燥机烘干、研磨、合理比例组合进行生料烧制,进行前期经验的积累,现对初步考虑的方案进行粗略罗列,有不当之处领导指出。
废料明细:电厂:渣脱碱赤泥、脱铝渣(产品)、粉煤灰、脱硫石膏原赤泥(含碱高)、煤气站碳芒硝、电石泥、盐泥、铝渣石灰粉、除尘粉。
烧制熟料名称:重点是硫铝酸盐为主,普通硅酸盐为辅。
一、原料分析:二、化验设备:101B干燥机、制样研磨机、盘式三头研磨机、1300度电阻炉、1600度电阻炉(附带不带釉的陶瓷坩埚、坩埚钳)三、配料计算:烧制熟料需要关注熟料的三个率值:硅率SM、铝率IM、石灰饱和系数KH1、硅率:硅率又称硅酸率,它表示熟料中Si02 的百分含量与AI2O3和Fe203百分含量之比,用SM 表示:通常硅酸盐水泥的硅率在 1.7-2.7 之间。
但白色硅酸盐水泥的硅率可达 4. 0 甚至更高。
硅率除了表示熟料的Si02 与A1203 和Fe2O3 的质量百分比外,还表示了熟料中硅酸盐矿物与溶剂矿物的比例关系,相应地反映了熟料的质量和易烧性。
2、铝率:铝率又称铁率,以IM 表示。
其计算式为:铝率通常在0. 9-1. 7 之间。
抗硫酸盐水泥或低热水泥的铝率可低至0. 7 。
铝率表示熟料中氧化铝与氧化铁的质量百分比,也表示熟料中铝酸三钙与铁铝酸四钙的比例关系,因而也关系到熟料的凝结快慢。
同时还关系到熟料液相粘度,从而影响熟料的锻烧的难易。
3、石灰饱和系数:石灰饱和系数KH :,是熟料中全部氧化硅生成硅酸钙(C3S-I-CzS) 所需的氧化钙含量与全部二氧化硅理论上全部生成硅酸三钙所需的氧化钙含量的比值,也即表示熟料中氧化硅被氧化钙饱和成硅酸三钙的程度。
硅酸盐水泥熟料KH 值在0. 82-0. 94 之间,我国湿法回转窑KH 值一般控制在0. 89 士0. 0l 左右。
水泥熟料生产过程的热力学分析水泥是现代建筑业所必不可少的一种建筑材料,而水泥的主要原料就是熟料。
水泥熟料的生产是一个相当复杂的工艺过程,其中涉及到多种物理化学方法,其中热力学的理论应用尤为重要。
本文将通过热力学分析的角度,深入探讨水泥熟料生产过程中的一些关键问题。
首先,水泥熟料的生产需要采用高温烧成的方法。
这个烧成过程其实就是一个氧化还原反应的过程,通过把石灰石、粘土等原材料送到高温反应炉中,在合适的氧气和水蒸气的条件下进行烧结反应,最终得到水泥熟料。
这里涉及到的原理就是热力学中的“焓变”原理。
点燃火焰后,炉内的原材料受热并逐渐升温,同时也产生了不同的化学反应。
在这个过程中,尤其是热稳定性较差的化合物(如CaCO3等)经过一定的加热后会逐渐分解(如分解为CaO等),最终进行焙烧得到相应的产物。
这一过程的重要催化剂之一就是水,同时还有氧气和其他化学物质的参与,这些参与物的变化同样可以通过热力学的方法进行分析。
其次,烧结过程中产生的热量需要通过冷却设备进行相应的处理。
这个过程涉及到了热力学的“熵变”原理,即通过热量传递和传导使物体的熵值增大。
在水泥熟料生产中,这个原理的应用与一般的制冷设备大同小异,只是在处理高温烧成的水泥熟料时需要特别注意,并采取一系列措施让这些热量得到充分的利用而不浪费。
除此之外,水泥熟料生产中还涉及到了很多其他的热力学问题。
例如,在保证过程稳定性的同时,如何取得最佳的产品质量;如何通过热力学方法对产品的各项性能进行评估和分析;甚至还有如何选择最优化的生产方式和加工工艺等问题。
这些问题的解决,都需要从热力学和物理化学的基础原理出发,通过理论计算与实际操作相结合的方式进行,从而取得最好的效果。
总之,水泥熟料生产过程中的热力学分析,是一种理论与实践相结合、科学与艺术相统一的过程。
它不仅需要我们掌握先进的技术和先进的设备,更要求我们深入理解物理化学的基础原理,并在实践中不断取得经验和积累知识,才能确保产品质量稳定,生产过程顺畅。
烧成理论与技术
新型干法水泥生产线概述
新型干法,就是以悬浮预热和窑外分解技术为核心,并把现代科学技术和工业生产成果广泛用于水泥生产全过程,使水泥生产具有高效、优质、低耗、环保和大型化、自动化特征的现代水泥生产方法。
传统的湿法、半干法回转窑生产工艺中,生料的预热、分解和烧成过程均在窑内完成。
虽然回转窑能够提供断面温度分布均匀的温度场,并能保证物料在高温区有足够的停留时间,能够满足熟料在高温下煅烧的需要,但作为传热、传质设备其效率则不理想,因为窑内物料主要处于堆积状态,气流与物料的接触面积很小,热传导及对流换热效率很低,同时在堆积状态下,内层物料分解反应受到抑制。
因为反应产物CO2扩散的面积很小,阻力大、速率慢,料层内部颗粒被CO2气膜包裹,CO2的分压大,分解要求温度高,这就增加了石灰石分解的困难,降低了分解速率。
悬浮预热、窑外分解技术的突破,从根本上改变了物料的预热、分解过程的传热状态,将窑内(物料堆积状态下)的预热和分解过程,分别移到预热器和分解炉内进行。
从而使入窑生料的分解率从悬浮预
1
热窑的30%左右提高到85%~95%。
这样,不仅可以减轻窑内煅烧带的热负荷,有利于缩小窑的规格及生产大型化,而且可以节约投资,延长衬料寿命。
第一部分悬浮预热技术
悬浮预热技术是指低温粉状物料均匀分散在高温气流之中,在悬浮状态下进行热交换,使物料得到迅速加热升温的技术。
1.1悬浮预热技术的优越性
悬浮预热技术从根本上改变了物料预热过程的传热状态,将窑内物料堆积态的预热过程移到预热器内,在悬浮状态下进行预热。
由于物料悬浮在热气流中,与气流的接触面积大幅度增加,因此传热速率快,传热效率高。
1.2预热器的构成及功能
目前在预分解窑中使用的预热器主要是旋风预热器,构成旋风预热器的热交换单元主要是旋风筒及各级旋风筒之间的连接管道(换热管道)。
预热器系统要求具备使气、固两相能充分分散、迅速换热、高效分离三个功能。
1.3 旋风预热器
1
旋风预热器是由旋风筒和连接管道(即风管)组成的热交换器。
现在一般为五级预热器,也有六级预热器。
风管是旋风预热器系统中的重要组成部分,它不但承担着上下两级旋风筒间的连接和气固流的输送任务,同时承担着物料分散、均布和气、固两相间的换热任务。
预热器系统除旋风筒和换热管道外还设有下料管、撒料器、锁风阀等,它们共同组合成一个换热单元。
旋风筒的作用主要是气固分离,传热只占6%~12.5%。
气固间的热交换80%以上是在风管内进行的,热交换方式以对流换热为主。
气固之间的换热在进口管道内仅需0.05s左右即能完成,一般物料在转向被加速的起始区段内即完成换热。
最高一级旋风筒(C1)的分离效率决定着预热器系统的粉尘排出量,提高它的分离效率是降低外部循环的有效措施,因此一级旋风筒一般采用双旋风筒的形式。
各种类型的旋风预热器的换热管道风速,一般选用12~20m/s。
为了使生料能够充分的分散悬浮于管道内的气流中,加速气固之间的传热。
往往采取以下措施:
(1) 在生料进入每级预热器的上升管道处,管道内设有物料分散装置,一般分板式撒料器(如图所示)和箱式撒料器。
撒料装置的作
用在于防止下料管下行物料进入换热管道时向下冲料,并促使下冲物
1。