产生感应电流的条件
- 格式:ppt
- 大小:6.64 MB
- 文档页数:35
感应电流产生的条件和方向的判断一. 教学内容:感应电流产生的条件和方向的判断1. 电磁感应现象(1)利用磁场产生电流的现象叫电磁感应现象,产生的电流叫感应电流。
(2)产生感应电流的条件:穿过闭合电路中的磁通量发生变化。
(3)磁通量变化的几种情况:①闭合电路的面积不变,磁场变化;②磁场不变,闭合电路面积发生变化;③线圈平面与磁场方向的夹角发生变化;④磁场和闭合回路面积都变化(一般不涉及)。
2. 感应电流的方向(1)右手定则:伸开右手,使拇指与四指在同一平面内且跟四指垂直,让磁感线垂直穿入手心,使拇指指向导体的运动方向,这时四指所指的方向就是感应电流的方向。
(2)楞次定律①内容:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
②意义:确定了感应电流的磁场方向与引起感应电流的原磁场方向间的关系,当电路中原磁场的磁通量增加时,感应电流的磁场与原磁场的方向相反;当电路中原磁场的磁通量减小时,感应电流的磁场与原磁场的方向相同,这一关系可概括为“增反,减同”。
③应用楞次定律判断感应电流方向的步骤:(i)查明电路中的磁场方向;(ii)查明电路中的磁通量的增减;(iii)根据楞次定律确定感应电流的磁场方向;(iv)由安培定则判断感应电流的方向。
④楞次定律的另一种表述:感应电流的效果总反抗引起感应电流的原因。
说明:①右手定则是楞次定律的特殊情况,它的结论和楞次定律是一致的,当导体做切割磁感线运动时,用右手定则判断感应电流的方向比用楞次定律简便。
②左手定则用于判断磁场对电流的作用力的情况,右手定则用于判断导体切割磁感线产生感应电流的方向。
二. 难点分析:正确理解楞次定律的关键是正确理解“阻碍”的含义。
(1)谁起阻碍作用?要明确起阻碍作用的是“感应电流的磁场”;(2)阻碍什么?感应电流的磁场阻碍的是“引起感应电流的磁通量的变化”,而不是阻碍原磁场,也不是阻碍原磁通量;(3)怎样阻碍?当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加。
闭合导体回路中产生感应电流的条件以《闭合导体回路中产生感应电流的条件》为标题,写一篇3000字的中文文章电磁感应是一种重要的物理现象,在现实的生活中有着广泛的应用。
闭合导体回路中产生感应电流,是一种重要的电磁感应现象。
要了解其发生的条件,有助于更好地利用它。
首先,要产生闭合导体回路中的感应电流,必须有一个闭合的导体回路,其中包括一个电磁源,它可以产生感应电磁场,并且要有一个可变的电磁感应环境,这种感应环境必须与电磁源相关联。
其次,闭合导体回路中产生感应电流的另一个条件是,必须有一个可变的电磁感应力。
电磁感应力是一种电磁场,它可以改变附近导体回路中电流的大小。
当电磁感应力非常大时,就会产生一种被称为感应电流的电流。
此外,另一个条件是,感应电流的变化必须是连续的,也就是说在感应电磁场的变化过程中,对导体回路中的电流产生的影响是连续的。
最后,闭合导体回路中产生感应电流的最后一个条件是,必须有一个有效的电磁能量源供给电磁感应力。
如果电磁能量源消失,感应电流也就不会产生。
总而言之,要在闭合导体回路中产生感应电流,必须有一个闭合的导体回路,有一个可变的电磁感应力,变化过程必须连续,而且要有一个有效的电磁能量源。
在现实的应用中,电磁感应是一种重要的物理现象,它可以在条件允许的情况下,在闭合导体回路中产生感应电流。
它的原理是,当电磁源(包括电磁感应环境)在一定时期内发生变化时,可以在电磁界中产生感应电流。
它可以用来获取能量,广泛应用于电机、发电机、变压器等电气设备中。
理解闭合导体回路中产生感应电流的条件,有助于利用这种重要的物理现象,更好地满足实际的生活需要。
通过深入的研究,它可以为各种工程技术提供科学的基础。
只要我们对这种非常重要的物理现象进行充分的研究,就可以大大地提高实际应用中的效率,从而切实实现电磁感应在实际中的科学利用。
由此可见,在闭合导体回路中产生感应电流,需要满足一定的条件,因此,要更好地利用电磁感应,必须对它有更深入的了解,才能更有效地使用它。
一、 感应电流产生的条件:1.电磁感应现象:能产生感应电流的现象称电磁感应现象。
2.产生感应电流的条件: 电路闭合;回路中磁通量发生变化;S B ∆=Φ-Φ=∆Φ12BS ∆=S B ∆∆=二、 感应电流方向的判定:1.右手定则:让磁力线穿过手心,大拇指指向导体的运动方向,四指所指的方向就是感应电流的方向。
例:在一个匀强磁场中有一个金属框MNOP ,且MN 杆可沿轨道滑动。
(1) 当MN 杆以速度v 向右运动时,金属框内有没有感应电流?(2) 若MN 杆静止不动而突然增大电流强度I ,金属框内有无感应电流?方向如何?2.楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(1) 阻碍的理解: 阻碍变化—— 增反减同阻碍不等于阻止,阻碍的是磁通量变化的快慢 阻碍相对运动(敌进我退,敌退我扰)O N MP(2) 应用楞次定律判断感应电流的方法:① 明确原磁场(B 原)方向;② 分析磁通量(ф)的变化;③ 确定感应电流的磁场(B 感)方向,④ 用右手螺旋法则判定感应电流(I 感)的方向。
例:磁通量的变化引起感应电流。
三、 法拉第电磁感应定律:1.在电磁感应现象中产生的电动势叫感应电动势,不管电路闭合与否,只要穿过电路的磁通量发生变化,电路中就有感应电动势。
闭合 感应电动势 有电流断开 感应电动势 无电流(1)tn ∆∆Φ=ε (感应电动势与磁通量的变化律成正比)——平均电动势 (2) (3) 自感电动势:tI L ∆∆=ε L 为自感系数(①线圈面积;②匝数;③铁芯。
)电流强度增大时,感应电动势的方向与电流方向相反;电流强度减小时,感应电动势的方向与电流方向相同;阻碍的是电流的变化,电流将继续增大到应该达到的值。
注:自感现象是楞次定律“阻碍”含义的另一体现。
(4) 电磁感应现象中的能量守恒:① 向上平动、向下平动;② 向左平动、向右平动;③ 以AB 为轴向外转动;④ 以BC 为轴向外转动; ⑤ 以导线为轴转动;判断上列情况下的感应电流方向,若两导线呢?I P O M N MN 杆匀速向右运动: BLv t tL v B t S B t =∆∆=∆∆=∆∆Φ=ε (使用于B 、L 、v 相互垂直)(L 为有效长度) v BL =ε 即即=BLv εa b大家再看这个图,ab 杆以速度v 向右运动切割磁力线,ab 杆上产生的感应电流方向是b →a ,在产生感应电流的同时,就会受到磁场对它的力的作用,安培力的方向是垂直于导线向左,为保证ab 向右匀速做切割磁力线运动就必须对ab 施加一个与安培力大小相等,方向相反的外力F 的作用,这样外力F 就要克服安培力做功,维持导体ab 匀速运动。
产生感应电流的条件是产生感应电流的条件是指在一定的条件下,导体中发生磁场变化时,会在导体中引起感应电流的产生。
感应电流的产生主要依赖于法拉第电磁感应定律。
下面将从磁场变化、导体环境和导体特性等方面进行详细的阐述。
首先,产生感应电流的条件之一是磁场的变化。
当导体所处的磁场发生变化时,通过导体的磁通量也会随之发生变化。
根据法拉第电磁感应定律,导体两端会产生感应电动势,进而产生感应电流。
这种磁场变化可以是磁场强度大小的变化,也可以是方向的变化,甚至是磁场的移动。
其次,导体所处的环境也是产生感应电流的重要条件。
一般情况下,导体周围的磁场强度越大,磁场变化越明显,产生的感应电流也会越大。
此外,导体与周围环境的相对运动也会影响感应电流的产生。
例如,当导体与磁场相对运动时,由于磁场的变化,会产生感应电流。
另外,导体自身的特性也对感应电流的产生起到重要的作用。
首先,导体的形状和尺寸会影响感应电流的大小。
一般来说,导体越长,感应电流越大;导体的截面积越大,感应电流也越大。
其次,导体的电阻对感应电流的产生也有一定的影响。
电阻越小,感应电流越大。
此外,导体材料的导电性也会对感应电流的产生起到影响。
导体材料的导电性越好,导体内部的电流传输越容易,从而产生感应电流的可能性也越大。
另外,导体材料的磁导率也会对感应电流的产生起到一定的影响。
磁导率越大,感应电流也越容易产生。
总结起来,产生感应电流的条件主要包括磁场的变化,导体所处的环境以及导体自身的特性。
磁场的变化可以是磁场强度的变化或方向的变化,也可以是磁场的移动。
导体所处的环境包括周围磁场的强度和导体与周围环境的相对运动。
导体自身的特性包括形状、尺寸、电阻和导电性等。
这些条件相互影响,共同作用,决定了感应电流的产生与大小。
感应电流产生的条件摘要:只要穿过闭合导体回路的磁通量发生变化,闭合导体回路中就有感应电流。
很多教师和教辅材料中将产生感应电流的条件归纳为:有闭合回路和回路中磁通量发生变化。
但并不满足上述两个条件,回路中仍然有感应电流。
要判断是否有感应电流,一要看导体所在区域是否有感生电场,导体中的自由电荷能否在感生电场电场力的作用下持续移动。
二要看回路中的部分导体是否切割磁感线运动,导体中的自由电荷在洛伦兹力作用下能否沿导体持续定向移动。
关键词:感应电流;感应电流产生的条件;法拉第圆盘起电机;中图分类号:g633.8 文献标识码:a 文章编号:1002-7661(2011)12-039-01在高中物理人教版选修3-2第四章《电磁感应》第二节《探究感应电流的产生条件》中,教材介绍了三个实验。
实验一:向线圈中插入磁铁,把磁铁从线圈中抽出。
实验结论,磁铁插入线圈或从线圈中抽出过程中,线圈中有感应电流产生。
实验二:模仿法拉第的实验。
如图,线圈a通过变阻器和开关连接到电源上,线圈b的两端连到电流表上,把线圈a装在线圈b 的里面。
观察在开关闭合瞬间、开关断开瞬间、开关闭合时滑动变阻器不动、开关闭合时迅速移动滑动变阻器的滑片时,线圈b中是否有感应电流。
实验结论:开关闭合或断开瞬间,开关闭合时迅速移动滑动变阻器的滑片时,线圈b中有感应电流产生。
实验三:如图,把导体棒ab的两端分别与电流表的两个接线柱相连,于是构成了一个闭合回路,当闭合回路的一部分做切割磁感线的运动时,其中会产生感应电流。
从以上几个实例可以看出,产生感应电流的条件与磁场的变化和闭合导体回路包围的面积有关系。
由于闭合导体回路的面积与垂直穿过它的磁感应强度的乘积叫做磁通量,因此以上实验表明:只要穿过闭合导体回路的磁通量发生变化,闭合回路中就有感应电流。
很多教辅材料以及教师在讲解这句话时把它归纳为产生感应电流必须同时具有两个条件:1、有闭合回路。
2、穿过闭合回路的磁通量发生变化。