变压器感应耐压试验方法及原理
- 格式:docx
- 大小:36.90 KB
- 文档页数:1
变压器交流耐压试验及感应耐压试验变压器绝缘主要分为主绝缘与纵绝缘两种。
主绝缘主要是指线圈自身以外的其他结构的绝缘,包括油箱、铁芯等位置的绝缘;纵绝缘是指变压器绕阻在不同电位的各个点及部位之间的绝缘,如线圈匝间绝缘等。
为了全面掌握变压器绝缘承受过电压的能力,一般情况下,根据变压器绝缘等级的情况分为交流耐压试验和感应耐压试验两项试验。
一、变压器交流耐压试验交流耐压试验是鉴定电力设备绝缘强度有效和直接的方法,是预防性试验的一项重要内容。
此外,由于交流耐压试验电压一般比运行电压高,因此通过试验后,设备有较大的安全裕度,因此交流耐压试验是保证电力设备安全运行的一种重要手段。
变压器作为工业生产的一部分,是满足工业日常生产需求的关键。
而变压器在投入使用之前,应对其进行耐压试验,掌握变压器整体性能。
变压器外施交流耐压主要包括一般工频、工频调感等耐压类型。
在实验过程中,被试验线圈的端口需要与试验电压相连接,而非试验端口需要进行接地处理,保障试验人员安全性。
二、变压器交流耐压试验设备交流耐压试验中,通常我们会遇到的电力试验设备包括“串联谐振耐压试验装置”、“干式试验变压器”、“感应耐压试验装置”。
(1)串联谐振试验装置串联谐振试验装置串联谐振试验装置变频串联谐振试验装置是运用串联谐振原理,利用励磁变压器激发串联谐振回路,调节变频控制器的输出频率,使回路电感L和试品C串联谐振,谐振电压即为加到试品上电压。
变频谐振试验装置广泛用于电力、冶金、石油、化工等行业,适用于大容量,高电压的电容性试品的交接和预防性试验。
(2)干式试验变压器干式试验变压器干式试验变压器按交流耐压试验规程,各种大型电力变压器、电力电缆、汽轮及水轮发电机及其它容性设备都必须严格定期进行交流耐压试验。
我们常用的干式试验变压器分为一体式高压试验变压器(30kV以下)和分体式试验变压器两类。
首先,微安电力生产的GTB干式试验变压器属于高一体式高压试验变压器。
长时感应耐压试验(ACLD)1.适用范围三相和单相电力变压器(包括自藕变压器)。
2.试验种类Um≤72.5kV 不适用;72.5 <Um≤170kV属特殊试验;Um>170kV属例行试验。
3.试验依据GB 1094.1—1996《电力变压器第一部分总则》GB 1094.3—2003《电力变压器第三部分绝缘水平、绝缘试验和外绝缘空气间隙》GB/T16927.1—1997《高电压试验技术第一部分:一般试验要求》GB/T16927.2—1997《高电压试验技术第二部分:测量系统》JB/T501—1991《电力变压器试验导则》产品技术条件4.试验设备500kVA发电机组(电动机200 kW):额定频率150Hz;额定电压3.15kV;额定电流电抗器3台。
单台参数:额定频率150Hz ,额定阻抗3档,分别为30Ω、20Ω、10Ω。
S9—3000/35中间变压器分接高压电压(V) 高压电流(A) 接法1 3150 550 直送2 1100 157 D3 1100 157 D4 22000 79 D5 38100 45 Y6 38100 45 Y7 40730 43 延D低压:额定电压3000V,额定电流577A接法D。
标准电压互感器40kV电压等级:比数(40、30、20、15、10/√3)/(0.1/√3)3kV电压等级:比数(3/√3)/(0.1/√3)1.0kV电压等级:比数(0.5/√3)/(0.1/√3)标准电流互感器40kV电压等级:比数(800、600、400、200、100、80、40、20、10)/5A0.5kV电压等级:比数(0.5/√3)/(0.1/√3)5.测量仪器峰值电压表。
JF2001干扰判别式局部放电测试仪;LDD—6局部放电测试仪。
6.一般要求试验应在10℃~40℃环境温度;试品与接地体或邻近物体的距离,一般应不小于试品高压部分与接地部分间最小距离的1.5倍。
如无特殊规定,带分接的绕组试验时应处于主分接。
变压器的绝缘试验(以前称耐压试验),包括外施耐压、感应耐压、冲击耐压等试验。
1 外施耐压试验外施耐压试验是对被试变压器加一分钟的工频高压的试验,也曾称工频耐压试验。
它是考核不同侧绕组间和绕组对地间的绝缘性能,也就是考核变压器主绝缘的水平,所以只适用于全绝缘变压器。
因此,试验时被试变压器的不同侧绕组各自连在一起,一侧绕组施加电压,另一侧绕组接地。
外施耐压试验时,在电源电压较低时合闸;试验电源电压达到试验电压的40%以下时,升压速度是任意的;在40%以上时,应以每秒3%速度均匀上升;达到规定电压和持续时间后,应在5s内将电压迅速而均匀地降到试验电压的25%以下,才能切断电源。
2 感应耐压试验全绝缘变压器的感应耐压试验是高压绕组开路,向低压上施加100~250Hz的两倍额定电压的耐压试验。
由于频率增高,铁心在不饱和时能保证两倍感应电压,从而试验了绕组匝间、层间和相间的绝缘性能,即考核了变压器的纵绝缘水平。
对于分级绝缘的变压器,把中性点电压抬高(支撑起来),就可以考核主绝缘水平了。
这样,感应耐压试验既进行了纵绝缘的试验,又补救了该种变压器不能做外施耐压试验的不足,也同时等效地做了外施耐压试验。
分级绝缘的感想变压器听感应耐压试验,常采用分相感应试验方法。
将非试的两相线端并联接地,把中性点抬高到电压的1/3左右,从而使试验相线端达到外施耐压试验的要求,而该相绕组的感应电压又达到了感应试验的要求。
如果这样做不能符合试验要求,可以调节位置,甚至可以用另一台变压器作支撑变压器来支撑中性点。
新标准中要求感应试验时要测局部放电量、起始与熄灭局部放电电压。
3 冲击电压试验冲击电压试验分雷电冲击试验(包括全波冲击试验和截波冲击试验)和操作波冲击试验。
在新编制的IEC76-3标准中,对小于Um≤40.5kV变压器,全波冲击试验和截波和操作波冲击试验均是例行试验。
对Um≥72.5kV变压器,全波冲击试验是例行试验,截波冲击试验是型式试验,对Um≥252kV变压器,全波、截波和操作波冲击试验均是例行试验。
主变压器耐压试验主变压器耐压试验是检验变压器绝缘强度和确定变压器是否能够安全运行的重要手段。
通过对变压器的耐压试验,可以发现变压器的潜在缺陷,从而及时采取措施进行维修或更换,避免因变压器故障导致的供电中断或其他严重后果。
本篇文档将详细介绍主变压器耐压试验中涉及的主要测试项目和技术要求。
一、绝缘电阻测量绝缘电阻测量是变压器耐压试验中的基础项目,用于检测变压器绕组与绕组之间、绕组与铁芯之间、绕组与油箱之间的绝缘性能。
通过测量绝缘电阻的大小,可以初步判断变压器的绝缘状态。
在常温下,变压器各绕组对地绝缘电阻应大于1000MΩ。
二、泄漏电流测试泄漏电流测试是通过测量变压器绕组在一定直流电压下的泄漏电流来判断绕组的绝缘状况。
泄漏电流的大小反映了变压器绕组的绝缘性能和老化程度。
正常状态下,泄漏电流应符合相关标准要求。
三、介质损耗角正切值tanδ测试介质损耗角正切值tanδ是衡量变压器绝缘性能的重要参数。
通过测量tanδ值,可以检测变压器绝缘材料的水分、老化、受潮等情况。
正常状态下,tanδ值应小于规定限值。
四、交流耐压试验交流耐压试验是检验变压器绝缘强度的关键手段。
通过向变压器施加高于额定电压一定倍数的交流电压,测试变压器的绝缘承受能力。
在试验过程中,应观察变压器的电压、电流、功率等参数变化,确保设备安全运行。
五、感应耐压试验感应耐压试验用于检验变压器承受暂态过电压的能力。
通过模拟变压器在运行过程中可能出现的暂态过电压,对变压器的匝间绝缘进行考验。
感应耐压试验应在变压器额定频率下进行。
六、局部放电试验局部放电试验是检测变压器中局部放电现象的一种方法。
通过观察变压器在不同电压下的局部放电情况,可以判断变压器的绝缘状况和老化程度。
局部放电试验应在较低的电压下进行,以避免对设备造成损伤。
七、频率响应试验频率响应试验是利用频率扫描的方式分析变压器绕组的电气性能。
通过测量绕组在不同频率下的阻抗值,分析绕组的电气特性,判断变压器的性能状况。
电力变压器长时感应耐压及局部放电试验技术要点分析摘要:长时感应耐压试验及局放试验用于变压器出厂试验以及现场交接试验,主要用于检查变压器的安装质量,考查其绝缘情况是否达到设备运行标准,这对变压器长期安全可靠运行起着至关重要的作用。
本文针对某220kV变电站主变压器开展长时感应耐压及局部放电试验的过程及过程中遇到问题的处理进行了技术探讨。
关键词:电力变压器;长时感应耐压试验;局部放电;技术实施要点电力变压器在电网体系结构中占有关键地位,电力变压器能否维持可靠与平稳的最佳运行状况,在根本上决定于电力变压器的组成材料安全性能,并且取决于电力变压器所在的空间环境因素。
长时感应耐压试验及局放试验用于变压器出厂试验以及现场交接试验,主要用于检查变压器的安装质量,考查其绝缘情况是否达到设备运行标准,这对变压器长期安全可靠运行起着至关重要的作用。
本文介绍了某220kV变电站主变压器开展长时感应耐压及局部放电试验的情况,并对相关试验的技术要点进行了探讨。
1试验过程1.1变压器参数1.2试验接线考虑到变压器结构,拟采用如下试验接线(图1仅为A相,B、C相类似)。
图1 220kV变压器感应耐压试验接线1.3试验参数计算220kV主变220kV变高系统最高电压U m=252kV,Ur=220kV,110kV变中系统最高电压U m=126kV,Ur=121kV,局放激发试验电压值按高压侧整定:U1=1.8Ur/=228.6kV。
从感应耐压原理图分析可得:高压绕组A相对地电压U AH=228.6kV。
高压考虑5%的电压容升,通过计算,高压侧第9档时,折算至低压侧电压Uac=228.6×(1-5%)÷11.547=18.81kV。
中压考虑3%的电压容升,该接线方式在被试变压器低压侧施加18.81kV的试验电压值时,感应至中压侧的感应电压值为18.81×6.351÷(1-3%)=123.1kV,与110kV高压侧 1.8Ur /(125.7kV)相近,符合试验要求。
220kv变压器感应耐压试验变压器的工频耐压试验只能检验其绕组的主绝缘,即绕组与绕组间,绕组对箱壳和铁心等接地部分的绝缘,而绕组的匝间.层间与段间的纵绝缘部分未能受到考核。
随着电压等级的提高,大容量变压器的匝间绝缘相对比较弱,于是对变压器匝间绝缘的考验就显得重要了。
随着局部放电测量技术的发展.IEC还规定:变压器的局部放电量测量应在变压器的线路端子与中性点的端子之间施加1.5(或l.3)倍Zui大相电压的试验电压;而且在测量之前应施加1 .73倍Zui大相电压的短时激发电压变压器应过激磁1.73倍以上。
由于磁路饱和的缘故,给变压器加1. 3倍额定值以上的工频激磁电压是行不通的,难以提高励磁电源频率来提高绕组匝间电压.使其达到预期的倍数。
现在高压大容量变压器大部分采用中性点半绝缘结构,绕组首末端对地绝缘强度不同,不能承受同一对地试验电压。
感应耐压试验则可使试验电压沿着绕组轴向高度的分布与运行时电位分布相对应。
倍频电源可采用2~4倍频的试验发电机组或可控硅逆变装置,后者由于输出容量限制和技术复杂而未能普遍推行。
现在还可利用变压器的铁磁特性,在过激磁状态下产生大功率的3次谐波电压作为试验电源。
电厂 1000kV 变压器现场感应耐压及局放测量试验技术发表时间:2020-12-31T07:39:54.367Z 来源:《福光技术》2020年21期作者:张立超[导读] 采取合理的试验方案及有效的干扰抑制措施将对试验项目的顺利实施起到至关重要的作用。
天津市特变电工变压器有限公司天津 300000摘要:变压器现场感应耐压及局放测量试验是变压器现场交接试验中最为复杂和难度最大的试验,也是对变压器绝缘考核最为严格的试验。
现场采用变频电源加补偿电抗器对变压器进行感应耐压及局放测量试验,其因具有重量轻、体积小、试验所需电源容量小等优点而得到了广泛的应用,基本原理是根据经验或计算方法正确估算变压器低压侧的入口等效电容,依据试验频率范围,确定所需的补偿电抗器的大小,当入口等效电容与补偿电抗器满足并联谐振条件时,试验所需的无功全由补偿电抗器提供,大大减小了对试验装置容量的要求,且被试变压器在试验电压和频率下的空载损耗为试验中主要的功率损耗,根据有功损耗大小,即可选择所需变频电源与励磁变压器的容量。
文章介绍电力变压器局放试验电源的类型及容量选择,分析现场试验的接线方式、干扰抑制措施等。
关键词:变压器;局部放电;变频电源;故障诊断;现场试验1现场局放试验方案的设计1.1主变长时感应耐压及局放试验系统主变长时感应耐压及局放试验系统包括正弦波变频电源柜、远程智能操作控制箱、无局放中间变压器、无局放补偿电抗器、无局放电容分压器、无局放耦合电容器、数字式局部放电测试仪、系统附件等部件。
局放试验设备的本体局放量应小于 10pC 及以下。
依据扬州电网主变压器的最大容量为 120000kV A,空载损耗为 0.967‰以下,试验电源容量裕度 30%,因此选用输出功率为 150kW 的正弦波变频电源柜,即可满足局放试验要求。
该变频电源柜采用高保真线性功放技术,输入电压为三相 AC380V,输出电压为单相 0~350V,额定输出电流为 0~429A,频率输出范围为 30~300Hz 内连续可调,可持续工作 1h,采用强迫风机冷却方式。
变压器耐电压试验方法嘿,咱今天就来聊聊变压器耐电压试验方法。
这变压器啊,那可是电力系统中的大功臣。
就好比人体的心脏,给各个器官输送着至关重要的能量。
那怎么知道这变压器能不能扛得住电压的考验呢?这就得靠耐电压试验啦。
先说说工频耐压试验。
这就像是一场对变压器的严格考试。
把变压器接上电源,逐渐升高电压,看看它在高压下能不能稳定运行。
这过程可不简单呐!就像在走钢丝,稍有不慎就可能出问题。
要是变压器没通过这场考试,那可就麻烦了。
说不定啥时候就掉链子,影响整个电力系统的运行。
再讲讲感应耐压试验。
这感应耐压试验就像是给变压器来了一场特殊的“按摩”。
通过特殊的设备,给变压器施加高频电压,让它内部的各个部件都能感受到压力。
这可不是瞎折腾,这是为了确保变压器在实际运行中能够承受各种复杂的情况。
你想想,要是变压器在关键时刻掉链子,那得多闹心啊!还有冲击耐压试验。
这冲击耐压试验就像是给变压器来了一记重拳。
瞬间给变压器施加高电压冲击,看看它能不能扛得住。
这就好比一个运动员在比赛中突然受到强大的冲击,只有身体素质过硬的才能挺过去。
变压器也是一样,只有经过了冲击耐压试验的考验,才能在实际运行中应对各种突发情况。
进行变压器耐电压试验的时候,那可得小心谨慎。
每一个步骤都不能马虎,每一个参数都得精确控制。
要是有一点差错,那后果可不堪设想。
就像盖房子,基础没打好,房子迟早得塌。
变压器耐电压试验也是这个道理,只有把每一个环节都做到位,才能保证变压器的安全可靠运行。
而且,不同类型的变压器,耐电压试验的方法也可能不一样。
这就需要我们根据具体情况,选择合适的试验方法。
不能一概而论,得对症下药。
就像医生给病人看病,得根据病人的症状开合适的药方。
总之,变压器耐电压试验是非常重要的。
它关系到电力系统的安全稳定运行,关系到我们的生产生活。
我们一定要认真对待,严格按照标准进行试验,确保变压器能够在各种情况下都能正常工作。
这样,我们才能放心地使用电力,享受现代生活带来的便利。
配电变压器感应耐压标准电源变压器是用来改变交流电压、交流电流的器件。
作为和产品相关的重要元件,其质量好坏直接影响到整机的质量和用户的安全。
1试验简介电介质强度是检验电源变压器的一个重要指标。
对于电源变压器初级和次级绕组的匝间和层间绝缘的电介质强度,要求必须在潮湿预处理后通过下述试验:用其绕组额定电压的2倍或其绕组额定电压范围上限的2倍、而频率不低于额定频率2倍的电压加在绕组的两端。
试验时,所有不打算与供电网相连的绕组必须空载,绝缘的任何部分不得发生闪络和击穿。
试验后,不得有可觉察到的变压器损坏现象。
2电源变压器的结构及特性分析电源变压器主要由初、次级绕组和铁芯构成,其初、次级绕组大多采用密绕多层式结构。
在一个横截面是矩形的绝缘框架上,用高强度漆包线均匀密绕,一层完毕后,敷以绝缘材料后,再绕第二层,直到匝数合适为止。
根据设计要求,在一个线圈框架上,既可以绕制一个绕组,也可以绕制多个绕组。
相对于变压器的主绝缘即绕组与绕组之间以及绕组与铁芯之间的绝缘而言,变压器还有另外一项很重要的绝缘性能指标——纵绝缘。
纵绝缘是指变压器绕组具有不同电位的不同点和不同部位之间的绝缘,主要包括绕组匝间、层间和段间的绝缘性能,而国家标准和国际电工委员会(IEC)标准中规定的“感应耐压试验”则是专门用于检验变压器纵绝缘性能的测试方法之一。
感应耐压试验是指给变压器规定的绕组外施加一电压,该电压不低于2倍的额定电源电压,频率不小于2倍的最低额定频率,要求在该电压按规定持续的时间内绕组无灼热、飞弧、击穿或损伤等现象;要求感应耐压试验前后额定工作电源下的空载电流和功耗无明显的变化。
变压器的纵绝缘主要依赖于绕组内的绝缘介质——漆包线本身的绝缘漆、变压器油、绝缘纸、浸渍漆和绝缘胶等等(不同种类的变压器可能包含其中一种或多种绝缘介质);纵绝缘电介质很难保证100%的纯净度,难免混含固体杂质、气泡或水分等,生产过程中也会受到不同程度的损伤;变压器工作时的最高场强集中在这些缺陷处,长期负载动作的温升又降低绝缘介质的击穿电压,造成局部放电,电介质通过外交变电场吸收的功率即介质损耗会显著增加,导致电介质发热严重,介质电导增大,该部位的大电流也会产生热量,就会使电介质的温度继续升高,而温度的升高反过来又使电介质的电导增加。
变压器现场感应耐压和局部放电试验分析摘要:本文以某变压器设备厂所制造的变压器为主要分析对象,在进行普通试验分析以后,再实施变压器现场感应耐压和局部放电试验,进而分析和总结变压器试验结果,综合保障变压器设备的运行稳定性和安全性。
关键词:变压器设备;现场试验;感应耐压试验;局部放电试验1局部放电试验分析1.1 试验对象及方法本次试验以某变压器设备厂所制造的220kV变压器作为主要分析对象。
具体试验中将会采用倍频加压方法,低压绕组单相励磁,高压绕组和中压绕组中性点接地,构成较为标准的接线形式,并通过分组的方式进行具体试验实施。
1.2 加压形式试验中具体加压形式如图1所示。
其中,需要以u1和t1分布为试验电压和预加压时间;u2和t2分布为激发电压和激发电压时间;t3为试验持续时间[1]。
图1 加压形式示意图在试验中,在将电压提高至试验电压值u1以后,需要将保持5min,即t1设置为5min,时间超过预加压时间以后,将电压提高至激发电压值u2以后,保持5s,然后再将电压降至u1,保持30min,即t3为30min。
试验中除了需要控制电压变化以外,还需要时刻关注放电量变动情况。
根据现行规定标准可以计算出:1.3 试验回路局部放电试验具体试验回路接线如图2所示。
图2 局部放电试验回路接线示意图在试验中,T1为电源变压器,其实际参数为35/0.4kV,180kVA;T2为中间变压器,其实际参数为2×35/0.66kV,180kVA;T3为此试验中待试验变压器;T4为自耦调压器,其实际参数为0.5~1kVA;V为电压表,其实际参数为0.5V、150V、300V、600V;C为套管电容;Z为检测阻抗。
1.4 局部放电量测定分析局部放电量测定分析过程中主要采用的测定设备为JF8601局部放电仪。
1.4.1 测定回路校正在试验中,需要通过局部放电仪对放电测定阻抗区域的电脉冲幅值进行有效读取,为保障读取结果的精确性和有效性,需要先对测定回路进行科学校正。
变压器操作波感应法耐压试验简介史鸿福原辽宁省农电局试验所(116300)王运通北京空间技术总公司机电工程公司(100080)问题一:什么叫操作波电力系统中由于断路器操作,(中性点绝缘系统中)对地弧光短路及切空载等原因,所形成的过电压波叫作操作波。
国际电工委员会(IEC)60-2出版物规定了一般供作绝缘试验的标准操作波波形是:波前时间为250μs,半峰值时间为2500μs。
而IEC 76-3出版物(1980年版)专门规定了供变压器类试品内绝缘作试验的标准操作波波形是:视在波前时间Tf ≥20μs,90%波幅持续时间Td≥200μs,视在波长时间T2≥500μs,极性为负。
电力部DL/T 596-1996规程中规定的波形符合上述IEC标准。
该规程6.2款中,详细规定了不同电压等级的电力变压器操作波耐压试验的试验电压值。
问题二:操作波耐压与工频耐压之间是什么关系考虑雷电过电压和操作波过电压对电力设备绝缘的作用,理应采用模拟雷电波及操作波的耐压试验。
由于雷电冲击波试验对于某些电力设备的绝缘会产生积累效应,而且长期以来人们认为冲击波试验,在试验方法上不如工频耐压试验方便,所以常用工频耐压来等值地代表雷电和操作波耐压。
后来人们又考虑工频耐压对内绝缘可能会产生残留性损伤,所以规定330kV以上的变压器,在出厂时必须进行操作波耐压试验,而不再进行很高电压的工频耐压试验。
雷电冲击试验一般只在型式试验时进行,或在用户要求的情况下,可作为出厂试验项目进行。
在电力系统中,对现场的大容量电力变压器进行工频耐压试验时,还会碰到试验设备过于庞大的问题。
此时常用三倍频感应耐压试验或操作波感应耐压试验来代替外施工频耐压试验。
既然原来的工频耐压试验是等值地代表操作过电压及雷电过电压的作用的,那么现在采用操作波的耐压试验是具有更大的合理性的。
在电力部上述规程中所规定的变压器操作波耐压试验值,既保证了基本操作波耐压水平,而且也适当考虑了等值的雷电冲击耐压水平。
变压器绕组的匝间、层间、段间及相间绝缘的绝缘感应耐压试验1.引言1.1 概述本文旨在探讨变压器绕组的匝间、层间、段间及相间绝缘的绝缘感应耐压试验。
作为电力系统中重要的电气设备,变压器的绝缘系统必须保证其正常运行和安全性能。
而变压器绕组中的绝缘部分,包括匝间、层间、段间及相间绝缘的性能评估对于确保变压器的可靠性和安全性至关重要。
本文将分别针对变压器绕组中的四种绝缘部分进行绝缘感应耐压试验的背景介绍和相关测试方法的阐述。
首先,将对匝间绝缘的绝缘感应耐压试验进行描述,该部分旨在评估绕组中相邻绕组之间的绝缘性能。
其次,将探讨层间绝缘的绝缘感应耐压试验,该部分用于评估绕组内相同层上不同导线之间的绝缘性能。
然后,将对段间绝缘的绝缘感应耐压试验进行介绍,该部分应用于评估绕组内不同段之间的绝缘性能。
最后,将详细讨论相间绝缘的绝缘感应耐压试验,该部分用于评估绕组间不同相之间的绝缘性能。
本文的研究意义在于深化对变压器绕组绝缘的理解,为变压器绕组的绝缘设计和工程实践提供指导。
通过合理的绝缘感应耐压试验,可以全面评估和验证绕组中不同绝缘部分的绝缘性能,进一步保证变压器的运行安全和可靠性。
因此,本文的研究对于提高电力系统的稳定性和可靠性,具有一定的实际应用价值。
在下一节中,我们将详细介绍本文的结构和各部分的内容安排。
1.2文章结构本文主要讨论了变压器绕组的匝间、层间、段间及相间绝缘的绝缘感应耐压试验。
文章结构如下所述。
第一部分为引言,具体包括以下几个方面:概述、文章结构和目的。
在概述部分,会简要介绍变压器绕组的重要性以及绝缘感应耐压试验的必要性。
文章结构部分将会概述本文的大致组织结构,让读者可以更好地了解文章的逻辑顺序。
目的部分将明确本文的研究目标和意义,以便读者了解本文的研究价值和重要性。
第二部分为正文,分为四个小节:匝间绝缘的绝缘感应耐压试验、层间绝缘的绝缘感应耐压试验、段间绝缘的绝缘感应耐压试验和相间绝缘的绝缘感应耐压试验。
110k V 主变感应耐压试验方案
一、主变铭牌
型 号:SFZ9—40000/110 接线方式:YNd11
额定容量:40 MV A 厂 家:江苏华鹏变压器有限公司 额定电压:110/35kV 出厂序号:2001-207 额定电流:209.9/659.8 A 冷却方式:ONAF 绝缘水平:LI480AC200—LI325AC140/LI250AC95 二、试验依据
依据ICE 标准及厂家标准 三、试验项目及要求
系数:5
.1*3/121170
62.1
四、电压测量:
1. 高压侧采用高压分压器直接测量: U = 170 kV
(若采用高压分压器对中性点测量: U = 170/3 =56.6 kV ) 2. 低压侧采用PT 测量:
K = 50000/200 = 250 u = 17820/250 = 71.28 V 五、过电压保护:
Q2:放电电压275 kV(铜球Φ=25 cm 球隙δ=12 cm)Q1:放电电压69 kV(铜球Φ=15 cm 球隙δ=4 cm)
六、试验步骤:
1. A相端部耐压BC相支撑接地a相加压c相接地
2. B相端部耐压AC相支撑接地b相加压a相接地
3. C相端部耐压AB相支撑接地c相加压b相接地
七、试验设备、仪器、仪表:
试验前对套管等(升高座)充分排气;
注意人身安全,特别是防止自励磁升压。
变压器耐压试验原理
变压器耐压试验是一项重要的测试,用于评估变压器绝缘系统的可靠性和耐压
能力。
该测试通过施加高电压以检测变压器是否能够经受额定电压的压力,以保证其安全运行。
在变压器耐压试验中,主要采用的方法是交流耐压试验。
测试过程中,首先通
过特定的控制设备将高压电源连接到变压器的绕组上。
然后,施加一定的测试电压,在规定的时间内持续加压。
测试中的电压应符合国家标准或相关规范的要求。
测试期间,测试人员需要监测绕组的电流、电压和绝缘电阻等参数。
绕组的电
阻应在规定范围内,以确保变压器的绝缘系统良好。
同时,还需要观察是否有放电现象或其他异常情况发生。
变压器耐压试验的目的是确保变压器在正常运行条件下能够耐受额定电压,并
保持足够的绝缘强度,防止绝缘击穿和漏电等故障的发生。
这项测试可以有效地发现潜在的绝缘问题,预防事故的发生。
变压器耐压试验是保证变压器正常运行和可靠性的重要环节。
它通过施加高电压、监测电流和电压等参数,评估变压器绝缘系统的耐压能力。
这种测试可以及早发现绝缘问题,为变压器的安全运行提供保障。
变压器感应耐压试验方法及原理
《变压器感应耐压试验方法及原理》
引言:
变压器是电力系统中不可或缺的设备之一,用于变换交流电压。
为了确保变压器能够长期稳定运行,需要进行一系列的测试,其中包括感应耐压试验。
本文将介绍变压器感应耐压试验的方法及原理。
一、变压器感应耐压试验方法:
1.试验仪器:
(1)电压发生器:提供高压电源,用于对变压器进行感应耐压测试。
(2)耐压表:用于测量变压器在高压下的绝缘电阻。
(3)耐压试验台:用于支撑和固定变压器,在测试时保证其安全可靠。
2.试验过程:
(1)将变压器的高压绕组和低压绕组分别与电压发生器的两端相连。
(2)将耐压表的两个电极分别放置在变压器的高压绕组和低压绕组上,测量其绝缘电阻。
(3)逐步增加电压发生器的输出电压,观察绝缘电阻是否发生明显变化。
(4)当实际电压达到设定值时,记录下绝缘电阻的数值,以及测试时的环境温度等相关参数。
二、变压器感应耐压试验原理:
当变压器的绝缘出现缺陷时,会导致绝缘电阻下降。
在感应耐压试验中,通过施加高压电源的方法,对变压器的绝缘进行检测。
理想情况下,当电压发生器施加的电压较小时,变压器的绝缘电阻应该保持在一个较高的数值,说明绝缘状况良好。
但当电压升高到一定程度时,如果绝缘存在缺陷,则会导致绝缘电阻下降。
这是因为高压电场会引起电离现象,使绝缘体内部出现漏电现象,从而使绝缘电阻降低。
根据测试结果,可以判断变压器的绝缘状况,并采取相应的措施修复或更换变压器。
结论:
变压器感应耐压试验是确保变压器安全运行的重要手段之一。
通过该测试,可以及时发现绝缘缺陷,保证变压器的运行可靠性。
在实际操作中,需要根据变压器型号和规格,按照相关标准要求进行测试,以确保测试的准确性和可靠性。